目录
太阳系
太陽系Capitalization of the name varies.
查看 水手2號和太阳系
太陽系探索年表
這是一個按航天器發射日期排列的太陽系探索年表。其中包括:.
查看 水手2號和太陽系探索年表
太陽系探測器列表
本列表包括任務成功以及試圖到達地球以外的所有探測器,其中的目標任務包括小行星、行星、衛星、太陽甚至是太陽系外的探測。其中有一些任務僅飛掠小行星、行星、衛星、太陽,由於探測地球本身的探測器數量龐雜、利用多次重力拋射的探測器軌道複雜,所以未加觀測地球、飛掠地球的探測器並未列入。另外,本列表目前也未將已取消或是未來可能發射的探測器列入,因為可能有諸多不確定因素。 截至2016年4月為止,共有248艘探測器被設定為太陽系探測器,這些探測器有些攜帶許多小探測器,但大部分為單一的探測器,其中143艘探測器成功;7艘探測器部分成功;98艘探測器失敗。.
金星大氣層
金星大氣層是由俄羅斯科學家米哈伊爾·瓦西里耶維奇·羅蒙諾索夫於1761年在聖彼得堡觀測金星凌日時發現的。它比地球大氣層更為厚重與濃密,其表面溫度為740 K或467°C,而氣壓則為93大氣壓,主要為二氧化碳所構成。金星的大氣層中有硫酸形成的不透明雲,因此在地球或金星環繞探測器上不可能以可見光觀測金星表面。金星表面的地形是以雷達成像的方式探測得知。金星大氣層主要由二氧化碳和氮組成,以及少許痕量氣體。 金星的大氣層受到超高速大氣環流和超慢速自轉影響。金星的大氣環流只需要四個地球日就可以環繞金星一周,但金星的恆星日卻有243日。金星的風速最高可達到100 m/s或360 km/h,是金星自轉速度的60倍;而地球最高速的風速度只有地球自轉速度的10%到20%。另一方面,金星的風速隨高度下降而降低,在表面時風速大約是10 km/h。金星兩極則有屬於反氣旋的極地渦旋。每個氣旋都有兩個風眼,並且有特殊的S型雲結構。 金星和地球不同的是它缺乏磁場,而金星的電離層將大氣層和太空以及太陽風分離。電離層將太陽磁場隔離,使金星的磁場環境相當特殊,造成金星的磁層是「誘發磁層」。包含水蒸氣等較輕氣體則持續被太陽風經由誘發磁尾吹出金星大氣層。推測40億年前的金星大氣層與表面有液態水的地球大氣層相當類似。失控溫室效應(Runaway greenhouse effect)造成金星表面的液態水蒸發,並且使其他溫室氣體含量上升。 儘管金星表面的狀況相當嚴苛,在金星大氣層50到65公里高的地方氣壓與溫度卻與地球相若,使金星的高層大氣是太陽系中環境最類似地球的地方,甚至比火星表面更類似。因為溫度和壓力類似,並且在金星上可呼吸空氣(21%的氧和78%的氮)是上升氣體,類似地球大氣層中的氦。因此有人提出可在金星的高層大氣進行探測和殖民。 2013年1月29日,歐洲太空總署科學家宣布金星電離層物質外流的模式與「類似條件下來自彗星彗核的離子尾」類似。.
查看 水手2號和金星大氣層
金星地質
金星的表面有許多讓人驚訝的地表特徵。今日對金星表面所知道的知識大多來自於1990年8月16日至1994年9月完成6次環繞金星的麥哲倫號金星探測器;該探測器總共測繪了98%的金星表面,且有22%是可使用3D眼鏡觀看的立體影像。 金星表面被濃密的大氣層覆蓋,並且有火山曾經激烈活動的證據。金星上的盾狀火山和複式火山和地球相似。 相對於月球、火星和水星,金星表面甚少小型撞擊坑。這很可能是因為金星的濃密大氣層將較小的流星燒光。金星的中型到大型撞擊坑比小型撞擊坑多,但數量仍不如月球和水星。 在金星上還有一些特殊的地表特徵,其中包含冕狀物(Corona,因為外表像帽子)、鑲嵌地塊(Tesserae,指高度變形的大範圍區域,可見到二維或三維地形摺曲和破碎地形,一般認為只在金星發現)、蛛網膜地形(Arachnoid,類似蜘蛛網)。並有發現長熔岩河,以及風蝕作用和板塊運動造成金星表面現在複雜地形的證據。 雖然金星是最接近地球的行星(和地球下合時距離僅約4000萬公里左右),而且和地球體積相近;但至今沒有一個探測器可在金星表面工作數小時以上,這是因為金星的大氣壓力是地球的 90 倍。而金星表面的溫度大約是 450°C。最可能原因是金星大氣層大量二氧化碳 (96.5%)造成的溫室效應。 以紫外線探測金星可看到在赤道附近有 Y 形的雲系統形成,代表赤道上空的大氣環流每四天就可環繞金星一週,所以風速可高達 500 km/h 。這種高速風存在於高空,但在金星表面附近的大氣層則相當平靜,且多數金星影像中甚少風蝕的證據。.
查看 水手2號和金星地質
水手號計劃
水手號計劃(Mariner program)是由美國太空總署所主導的太空探索計劃。在此計劃中發射了一系列為探索水星、金星和火星而設計的無人太空船。這個計劃奪得多項第一,包括第一次星際飛越(flyby)、第一個行星探測器以及第一個以重力加速航行的太空船。 在水手號計劃系列中十個飛行器中,七個成功三個失敗。原本計劃的水手11號及水手12號演變成航海家計畫中的航海家1號及航海家二號,而維京1號及維京2號火星軌道太空船則是放大版的水手9號太空船。從航海家系列之後基於水手號設計的太空船還包括前往金星的麥哲倫號、前往木星的伽利略號。被稱為Mariner Mark II的第二代水手號太空船最終演變成為曾環繞土星的卡西尼-惠更斯号。最近發射前往冥王星的新視野號,雖然大致基於簡化的先鋒10號、先鋒11號,但也有部份特徵源自水手號系列,包括三軸穩定器(3-axis stabilization)及一個航海家、卡西尼號式的通訊碟型天線。.
查看 水手2號和水手號計劃
游騎兵計畫
游騎兵計畫是美國在1960年代進行的系列無人太空任務之一,其目的是拍攝最早的月球表面近攝照片。游騎兵太空船被設計成撞擊月球的表面,並在撞毀之前將影像傳回地球。 游騎兵的原始設計開始於1959年,被區分為三個不同的階段,稱為模組。每個模組有不同的任務和使命,並逐步的提升系統的設計。噴射推進實驗室的設計師在每個模組中設計多次的發射,以獲取最大化的工程經驗和科學價值,並至少完成一次成功的飛行。游騎兵系列(從1號到9號)整體的研究、發展、發射和支援的花費大約是美金一億七千萬元。.
查看 水手2號和游騎兵計畫
擎天神系列運載火箭
擎天神系列運載火箭(Atlas,也称作阿特拉斯火箭)屬於美國研製運載火箭,而擎天神系列運載火箭的前身來自SM-65擎天神飛彈,這種飛彈在1950年代末期完成設計且即刻佈署,當時做為洲際彈道飛彈來與蘇聯抗衡,SM-65擎天神飛彈最初使用煤油及液態氧作為燃料,並延續此傳統至最新型號,另外SM-65擎天神飛彈運用一項特別的設計-火箭發射推進時會將三個引擎的其中兩顆拋棄,如此便能於發射時提供足夠推力,亦能維持較長的推進時間。 擎天神2號運載火箭於1991~2004年之間發射63次;擎天神3號運載火箭僅於2000年~2005年之間發射6次;擎天神5號運載火箭仍是現役的運載火箭,到目前為止仍持續發射,預計將持續發射任務直到2020年以後。 擎天神的名稱來自於卡莱尔·查理·博萨特在康维尔任職時所提出,命名來自於希臘神話的擎天神,代表著當時最強而有力的洲際彈道飛彈也是體現康维尔的母公司的一種表現,因為康维尔的母公司也稱做擎天神 。 時至2015年10月,已經有346次的擎天神系列運載火箭在卡納維爾角空軍基地發射;另外也有295次在范登堡空軍基地發射,整體而言形成一個龐大的系列運載火箭。.