目录
163 关系: ANRORC机理,原子,可变当量,可裂变物质,双氢配合物,同位素,同位素分离,多量子同調,大爆炸,天体化学,天王星大氣層,天文學辭彙,太初核合成,太陽微中子,失控溫室效應,奥格·玻尔,宇宙學年表,宇宙射線散裂,宇宙形成年表,尤里,巨行星,巴納德星,中子,中子减速剂,中子截面,中微子,一氢化铁,亚恒星,序列法則,二甲基亞碸,伊西多·拉比,弱相互作用,伽馬射線天文學,微隕石,土衛六大氣層,土星,化学年表,化学符号,化學,化學元素,化學元素發現年表,化學元素豐度,北方大平原,國立臺灣大學物理學系,國立臺灣大學物理文物廳,哥倫比亞大學諾貝爾獎得主列表,哈羅德·尤里,冷核聚变,內熱,前手性,... 扩展索引 (113 更多) »
ANRORC机理
ANRORC机理,即亲核加成(addition of the nucleophile)+开环(ring-opening)+关环(ring-closing)机理,是一种取代反应机理。 常见于杂环化合物的亲核取代反应中。 低温下在液氨中用金属氨基盐(如氨基钠)作亲核试剂与取代嘧啶(如下图中的4-苯基-6-溴嘧啶,1)的ANRORC反应已被深入研究。反应具体机理见图3。该机理主要是通过以下方法得知的: 1)反应主要产物是溴被氨基取代而产生的4-苯基-6-氨基嘧啶(2)。反应不生成5-取代异构体,说明反应不经过苯炔中间体。 2)以哌啶锂为碱时,反应中还可分离出开环的腈中间体(在消除溴化氢后生成),同样否定了Meisenheimer中间体的存在。 3)用氘标记底物的C5,但反应产物中没有发现氘原子的存在。该现象可以通过下图中,4a与4b间互变异构所导致的H-D快速交换而得以解释。 4)将嘧啶的两个氮原子各用3%的 14N 标记,发现最终产物 4 中同位素含量大约减少一半,说明一个环氮原子已被所用试剂中的氮原子所替代。.
查看 氘和ANRORC机理
原子
原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.
查看 氘和原子
可变当量
可变当量在现代核武器中十分常见,它允许核武器的操作者选择核弹爆炸时产生的爆炸当量,也就是爆炸所释放出来的威力。这使得同一种核武器可以在不同的情况下通过改变其爆炸当量,而达到不同的打击效果。可变当量技术最早在20世纪的六十年代就已经出现。B61、B83、W80、W85和WE177A等型号的核弹头均拥有这一功能。 达到这一目的的方法之一便是通过核聚变加速中子。制造者在裂变式核弹内凿出一个真空凹槽,并注入氘-氚气体(DT)。当核弹的操作者转动设定爆炸当量所用的转盘时,一个阀门会被开启,并将少量的氘-氚气体释放到核弹的核心部分,并影响爆炸所释放的能量。 美军使用的潜射弹道导弹所安装的W88核弹头便使用了这一方法来改变爆炸当量。当氚被释放时,核爆炸可以产生475千吨当量,但当没有氚的时候,爆炸所释放的能量仅仅为20千吨当量。 英国军队将可变当量作为核弹头的一个必备设置。.
查看 氘和可变当量
可裂变物质
在核工程中,可裂变物质指的是有能力维持核裂变的链式反应的一种物质。根据定义,可裂变物质可以通过任意能量的中子来维持链式反应,而主要的中子能量可能是慢中子或者快中子。这样可裂变物质可以用作以下设备的核燃料.
查看 氘和可裂变物质
双氢配合物
双氢配合物是包含完整氢分子作为配体的配位化合物。最典型的这类化合物是W(CO)3(PCy3)2(H2)。这类化合物的发现解释了金属元素催化的氢分子参与的化学反应。文献已经报道了数百个双氢配合物,大多数都是过渡金属的离子形成的八面体配合物。 络合以后,通过中子衍射发现H-H键的键长增加到81-82pm,相比自由的氢分子增加了约10%。一些有多个氢配体的配合物,也就是聚合型氢化物 (例如氢化铝),也展现出更弱的H-H作用。科学家建议键长小于100pm意味着明显的双氢特征,而距离大于100pm更应该被认为是氢负离子配合物。.
查看 氘和双氢配合物
同位素
同位素(Isotope)是某種特定化學元素之下的不同種類,同一種元素下的所有同位素都具有相同原子序數,質子數目相同,但中子數目卻不同。這些同位素在化學元素週期表中佔有同一個位置,因此得名。 例如氫元素中氘和氚,它們原子核中都有1個質子,但是它們的原子核中分別有0個中子、1個中子及2個中子,所以它們互為同位素。.
查看 氘和同位素
同位素分离
同位素分离通过将某种化学元素的其它类型的同位素去除而达到浓缩某种特殊的同位素的目的。例如,通过同位素分离可以将天然铀分离成浓缩铀和贫铀,这是为核电站以及铀核武器制造铀燃料的关键技术。钚核武器所使用的钚在反应堆中制成,同样需要制备某种特别的同位素。同位素分离的理论由查尔斯·汤斯首先提出。化学元素的提纯可以通过化学过程,但是由于相同元素的同位素拥有几乎完全相同的化学性质,使得化学方法几乎无法分离同位素,除非是分离氘。.
查看 氘和同位素分离
多量子同調
多量子同調(Multiple quantum coherence,MQC)現象出現在核磁共振頻譜學與磁振造影中,提供一種特殊的對比機制,可以彰顯水等分子的異向性(anisotropic)運動。在人體組織中,水分子的非等向性運動常出現在有結構的地方,例如處於肌腱或韌帶的膠原蛋白分子間的水分子。 多量子同調可以按階數分為零量子同調(zero quantum coherence,ZQC)、單量子同調(single quantum coherence,SQC)、雙量子同調(double quantum coherence,DQC)、三量子同調(triple quantum coherence,TQC)或更高階的現象。 尋常磁振訊號來源即為SQC。常見的MQC磁振脈衝序列是將尋常SQC訊號濾除,讓其他階MQC保留,例如DQC;最後再將其他階MQC成份轉為SQC以提供頻譜或影像的訊號收取,因此扮演的腳色類似濾器,因此這類現象與相關脈衝序列又被稱為多量子濾器(multiple quantum filter,multiquantum filter,MQF)。.
查看 氘和多量子同調
大爆炸
--又稱大--靂(Big Bang),是描述宇宙的源起與演化的宇宙學模型,这一模型得到了当今科学研究和觀測最廣泛且最精確的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的。根据2015年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.99 ± 0.21亿年,并经过不断的到达今天的状态。 大爆炸这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如宇宙學原理假设空间的和各向同性)。1922年,苏联物理学家亚历山大·弗里德曼用广义相对论描述了流体,从而给出了这一模型的场方程。1929年,美国物理学家埃德温·哈勃通过观测发现,从地球到达遥远星系的距离正比于这些星系的红移,从而推导出宇宙膨胀的观点。1927年时勒梅特通过求解弗里德曼方程已经在理论上提出了同样的观点,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星系团在视線速度上都在远离我们这一观察点,并且距离越远退行视速度越大 。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去曾经距离很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个密度极高且温度极高的状态,大型粒子加速器在类似条件下所进行的实验结果则有力地支持了这一理论。然而,由于当前技术原因,粒子加速器所能达到的高能范围还十分有限,因而到目前为止,还没有证据能够直接或间接描述膨胀初始的极短时间内的宇宙状态。从而,大爆炸理论还无法对宇宙的初始状态作出任何描述和解释,事实上它所能描述并解释的是宇宙在初始状态之后的演化图景。当前所观测到的宇宙中氢元素的丰度,和理论所预言的宇宙早期快速膨胀并冷却过程中,最初的几分钟内通过核反应所形成的这些元素的理论丰度值非常接近,定性并定量描述宇宙早期形成的氢元素丰度的理论被称作太初核合成。 大爆炸一词首先是由英国天文学家弗雷德·霍伊尔所采用的。霍伊尔是与大爆炸对立的宇宙学模型——穩態學說的倡导者,他在1949年3月BBC的一次广播节目中将勒梅特等人的理论称作“这个大爆炸的观点”。虽然有很多通俗轶事记录霍伊尔这样讲是出于讽刺,但霍伊尔本人明确否认了这一点,他声称这只是为了着重说明这两个模型的显著不同之处。霍伊尔后来为恒星核合成的研究做出了重要贡献,这是恒星内部通过核反应利用氢元素制造出某些重元素的途径。1964年发现的宇宙微波背景辐射是支持大爆炸确实发生的重要证据,特别是当测得其频谱从而绘制出它的黑体辐射曲线之后,大多数科学家都开始相信大爆炸理论了。.
查看 氘和大爆炸
天体化学
天体化学(Astrochemistry);天体化学研究宇宙中元素和分子的豐度,以及它们和辐射的交互作用;还研究星际间气体和尘埃间的相互作用,特别是分子气体云的形成、相互作用和毁灭。天体化学和天文学以及化学有相互交叉之处。天体化学的研究範圍包含了太陽系行星際物質和星際物質。而研究隕石等太陽系物質元素豐度和同位素比例的學科又被稱為「宇宙化學」;研究星系物質中原子和分子以及前述物質和輻射交互作用的學科有時候稱為「」。天文化學最主要研究星際分子雲的形成、組成成分、演化和最終結局,因為這些相關知識與太陽系如何形成有關聯。 许多年来,天文学家缺少星际间的化学知识,认为星际间只是黑暗,无物。1950至60年代出现射电天文学,开始有令人兴奋的发现;观察氢分子的21公分線显示星际间有丰富的氢、氦、碳、氮等的各种化合物。从空间的微波谱发现,有180种类型的碳,氮等分子的拼料。这些分子绕化学键转动时就产生能量。研究这些新发现的化合物可以为我们提供很有价值的科学信息:.
查看 氘和天体化学
天王星大氣層
天王星的大氣層雖然還是以氫和氦為主要的成分,但與海王星相似,而不同於較大的氣體巨星木星和土星,它擁有的揮發性物質(類似於"冰"),像是水、氨和甲烷的比例較高。不同於木星和土星,天王星上層的大氣層之下被認為沒有金屬氫。取而代之的是,在內部應該是由氨、水和甲烷組成的"海洋",逐漸的轉換成以氫和氦為主的大氣層並混合在一起,而沒有很清楚的界線。由於這樣的差異,許多天文學家認為天王星和海王星應該自成一族,稱為冰巨星,以與木星和土星有所區別。 雖然沒有明確的定義天王星內部是否有固體的表面,天王星最外層被稱為大氣層的氣體部分,是很容易使用遙感設備偵測的。遙感設備能偵測到一帕氣壓之下300公里左右的深度,該處的氣壓大約是100 帕,溫度約為320K。纖細的行星環從大氣層延伸至2倍行星半徑之處,此處的行星半徑是以一大氣壓之處做為行星有名無實的表面。天王星的大氣可以區分為三層:高度從−300至 50 公里,氣壓從100至0.1帕的對流層;高度從50至4000 公里,氣壓在的平流層;以及從4000公里以上至距離表面高達50,000公里的增溫層;沒有散逸層。.
查看 氘和天王星大氣層
天文學辭彙
天文學辭彙是天文學上的一些術語。這項科學研究與關注的是在地球大氣層之外的天體和現象。天文學的領域有豐富的辭彙和大量的專業術語。.
查看 氘和天文學辭彙
太初核合成
太初核合成(BBN)是物理宇宙學的一個概念,指宇宙在早期階段產生H-1(最常見,也是最輕的氫同位素,只有單獨的一個質子)之外原子核的過程。太初核合成在大霹靂之後只經歷了幾分鐘,相信與一些較重的同位素的形成,如氘(H-2或D)、氦的同位素(He-3和He-4)、鋰的同位素(Li-6和Li-7)的形成有密切的關係。除了這些穩定的原子核之外,還有一些不穩定的放射性同位素在太初核合成之際也形成了:氚(H-3)、鈹(Be-7和Be-8)。這些不穩定的同位素不是蛻變就是融合成前述其它的穩定同位素。(所有這些原子核通常表示為NX,此處X.
查看 氘和太初核合成
太陽微中子
電子微中子是太陽進行核融合反應的一項產物,此來源的微中子稱為太陽微中子。目前穿越地球最大宗的微中子即為太陽微中子。.
查看 氘和太陽微中子
失控溫室效應
失控溫室效應(Runaway Greenhouse Effect)是指行星表面溫度和大氣不透明度之间存在净正回饋,从而增强溫室效應直到行星上的海洋完全蒸發的过程;比如金星歷史早期就发生过这样的效应。政府間氣候變化專門委員會指出,類似金星的失控溫室效應的现象在地球上几乎不可能因人为因素的诱导而发生。 其它大規模的氣候變化,有時也很粗略的被稱為失控溫室,然而這並不是一種適當的描述。例如,它曾經被假設, 二疊紀-三疊紀滅絕事件或古新世-始新世極熱事件可能是大量溫室氣體被釋放造成的。其它概念,如氣候突變(abrupt climate change)或是倾覆点(tipping point),可以用来描述这些情景。 在漫長的時間尺度上,太陽在大約50億年後擴張成為一顆紅巨星,造成亮度增加的過程,可以拼湊出地球生命逐步邁向盡頭的潛在可能。.
查看 氘和失控溫室效應
奥格·玻尔
奥格·尼尔斯·玻尔(Aage Niels Bohr,),丹麦核物理学家,因“发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系发展了有关原子核结构的理论”与本·莫特森及利奥·雷恩沃特共同榮獲1975年诺贝尔物理学奖。基于雷恩沃特提出的原子核的不规则形状液滴模型,玻尔与莫特森发展出一套与实验結果高度一致的詳細理论。他与父亲尼尔斯·玻尔是四对同获诺贝尔物理学奖的父子之一。.
查看 氘和奥格·玻尔
宇宙學年表
宇宙學年表是人類在過去兩年多千年來對於宇宙認識的發展記錄。現代宇宙學的思想遵循科學學科物理宇宙學的發展。.
查看 氘和宇宙學年表
宇宙射線散裂
宇宙射線散裂是自然發生的一種核分裂和核合成形式,它經由宇宙射線撞擊物質產生新的元素。宇宙射線是來自地球之外的高能粒子,主要是飄蕩在空間中的電子和α粒子。當宇宙射線(主要是質子)撞擊到物質,包括其他的宇宙射線,就會造成散裂。碰撞的結果是被撞的大的核子會逐出核子(質子和中子),這種過程不僅在宇宙的深處進行,宇宙射線的撞擊也在我們的上層大氣層內進行。 宇宙射線散裂製造出輕的元素,像是鋰和硼,這個過程是在1970年代偶然發現的。太初核合成的模型認為氘的總量太大,與宇宙擴散的速率不能一致,因此對在大霹靂之後是否仍有產生氘的過程在繼續進行,產生極大的興趣。 宇宙射線散裂是被調查的能製造氘的一種過程,但是它的結果是散裂不可能製造出氘,並且剩餘的氘含量可以用假設存在的重子暗物質來解釋。然而,對散裂的研究顯示,它可以產生鋰和硼。鋁、鈹、碳(碳-14)、氯、碘和氖的同位素都可以經由宇宙射線散裂產生。.
查看 氘和宇宙射線散裂
宇宙形成年表
這是宇宙從137.99±0.21億年的大爆炸和隨後演化與形成到現在的時間表。時間的量度是從大爆炸的那一刻開始。.
查看 氘和宇宙形成年表
尤里
尤里(Юрий,Юрій,Yuri)是斯拉夫民族的常見人名,与乔治含义相同,可以指:.
查看 氘和尤里
巨行星
巨行星是任何的大質量行星。它們通常是由低沸點的材料(氣體或冰)組成,而不是岩石或其它固體,但是大質量固體行星也可以存在。太陽系有4顆巨行星:木星、土星、天王星、與海王星。已經檢測到許多恆星都有巨行星在軌道上環繞著。 巨行星有時也被稱為類木行星,這是依據木星命名的。它們有些是氣態巨行星,然而,許多天文學家認為這個名詞只適用於木星和土星,天王星和海王星有不同的成分,在分類上是冰巨行星 。這兩個名詞都可能造成誤導:所有的巨行星主要的流體臨界點之上,不存在明顯的氣相和液相的組成。在木星和土星,主要的成分是氫和氦;在天王星和海王星,主要的成分是水、氨和甲烷。 天體大到足以點燃氘的核融合反應就稱為棕矮星(以太陽系的成分大約是13倍的木星質量),它們的質量範圍介於最大質量的巨行星和最低值量的恆星之間。.
查看 氘和巨行星
巴納德星
巴納德星(英语:Barnard's Star)是一顆質量非常小的紅矮星,位在蛇夫座β星附近,蛇夫座66星的西北側,距離地球僅約6光年遠。美國天文學家愛德華·愛默生·巴納德在1916年測量出它的自行為每年10.3角秒,是已知相對太陽自行最大的恆星。為紀念巴納德的發現,後來稱這顆恆星為巴納德星。巴納德星距離太陽約1.8秒差距(6光年),是蛇夫座內距離我們最近、宇宙中第二接近太陽的恆星系統,也是第四接近太陽的恆星,前三接近太陽的恆星都是半人馬座α系統的成員。儘管它如此的接近地球,但是人類裸眼仍然看不見巴納德星。 由於它相當接近太陽,而且位於容易觀測的天球赤道附近,所以M型矮星巴納德星比任何恆星受到天文學家更多的研究和注意。天文學家的研究曾經聚焦在恆星的特徵、天體測量和推敲系外行星可能存在的極限。雖然這是一顆古老的恆星,天文學家仍然觀測到巴納德星發生過耀斑爆發。 天文學家曾對這顆恆星的一些研究題材發生爭議。從1960年代初至1970年代初長達十年之久,天文學家彼得·范德坎普(Peter van de Kamp)曾聲稱有一顆巨大的氣體行星環繞著巴納德星,一些天文學家也接受他的說法。天文學家後來認為恆星附近可能存在類似地球的小型行星,所以巨大行星存在的可能性就大為降低,范德坎普的主張被推翻。天文學家十分注意這顆恆星,它是無人旅行到鄰近的恆星系統可以快速前往研究的一個目標。 因為巴納德星擁有幾點與眾不同的特徵,所以它成為天文學家相當矚目的恆星。巴納德星是目前所有已知恆星中自行運動最快的恒星,因此有時候也被稱為巴納德「逃亡之星」(Runaway Star),它的自行速度比大熊座的飛行之星快一倍。恒星通常每年的自行速度還不到1角秒,牧夫座大角星自行運動算是比較明顯的,但是一年也不到2角秒,而巴納德星每年的自行運動卻高達10.31角秒。巴納德星距離太陽系只有5.96光年,除了南門二系統(半人馬座α三合星)外,它是距離地球最近的恒星。巴納德星最吸引人的地方是這顆恒星周圍很可能有兩顆大小約等於木星和土星的行星圍繞它公轉,是一個距離地球很近的恆星系。.
查看 氘和巴納德星
中子
| magnetic_moment.
查看 氘和中子
中子减速剂
中子减速剂(Neutron moderator,又称中子慢化剂)在一般情况下,可裂变核发射出的中子的飞行速度比可被裂变核捕获的中子速度要快,因此为了产生链式反应,就必须要将中子的飞行速度降下来,这时就会使用中子减速剂。 石墨中的碳元素,以及水中的氢元素都能起到慢化作用。因此通常用于热中子反应堆慢化剂的有三种材料.
查看 氘和中子减速剂
中子截面
中子截面(Neutron cross-section)常用於核物理學與粒子物理學中,表示入射中子與靶核交互作用的一種帶有機率意義的常數。單位以barn表示,等於10−24cm2。中子截面與中子通量、核反應速率計算有關,例如:計算一座核電廠的功率。.
查看 氘和中子截面
中微子
中微子(Neutrino,其字面上的意義為「微小的電中性粒子」,又譯作--)是一种电中性的基本粒子,自旋量子數為½,以希腊字母ν标记。现在已经有证据表明其具有质量。但其质量即使相比于其他亚原子粒子也是非常微小的。它可能是现在唯一一种已探测到的暗物质,是一种热暗物质。 中微子与电子、μ子以及τ子同属轻子,有三种“味”:电中微子()、μ中微子()以及τ中微子()。每种味的中微子都相应存在一种同样电中性且自旋量子數為½的反中微子。在标准模型中,中微子的产生过程遵循轻子数守恒定律。 由于中微子是电中性的,同时还是一种轻子,因而其并不参与电磁相互作用以及强相互作用。其只参与弱相互作用以及引力相互作用。 由于弱相互作用作用距离非常短,而引力相互作用在亚原子尺度下又是十分微弱的,因而中微子在穿过一般物质时不会受到太多阻碍,且难以检测。 中微子可以通过放射性衰变以及核反应等多种方式产生。由于太阳内部时时刻刻都在发生着核反应,而超新星产生等过程也会伴随着剧烈的核反应,因而在宇宙射线中可以检测到中微子的存在。地球附近所检测到的中微子大多来源于太阳。事实上,地球面向太阳的区域每秒钟在每平方厘米上都会穿过大约650亿个来自太阳的中微子。 人们现在认识到中微子在飞行过程中会在不同味间振荡,比如β衰变中产生的电中微子可能在检测时会变为μ中微子或τ中微子。这一现象表明中微子具有质量,且不同味的中微子的质量也是不同的。依据现在宇宙学探测的数据,三种味的中微子质量之和小于电子质量的百万分之一。.
查看 氘和中微子
一氢化铁
一氢化铁是由铁和氢形成的化合物,化学式为FeH。仅在极端环境中才检测到单独存在的一氢化铁,如在低温稀有气体中,在冷恒星的大气层中,或在高于铁沸点的温度以气体的形式存在。它被假定为具有三个悬空的价键,因此是一种自由基;其通式可以写成FeH2•以强调这一事实。 在极端低温下(低于10 K),FeH可以与分子氢形成配合物FeH·H2。 一氢化铁是几种已知的铁和氢气的化合物之一,都同样罕见;其中还包括只在极端低温下才能稳定存在的二氢化铁(FeH2),及一种高压铁氢合金,化学式也为FeH。 20世纪50年代,科尔曼和L.
查看 氘和一氢化铁
亚恒星
亚恒星天体,也被称为亚恒星,是一类质量小于恒星的质量下限的天体。恆星質量下限約0.08''M''☉(約80倍木星質量),天体的质量只有达到该质量下限,才能够维持天体内的氢聚变。该类天体包括:棕矮星和行星質量體——尽管这两类天体的形成机制有所不同,其四周是否存在主星的情况也不同。 假设一颗亚恒星天体的物质构成类似于太阳,而其最小质量接近于木星质量(约为太阳质量的千分之一),则其半径则也将接近于木星半径(约为太阳半径的十分之一)。当一个亚恒星天体恰好处于触发氢聚变的临界条件下时,其内核的简并压缩将十分剧烈,密度将达到约1千克/立方厘米;但是随着亚恒星天体质量的减小,其内核密度也将随之减小,当质量仅相当于木星质量时,其内核密度将小于10克/立方厘米。由于天体密度的减小抵消了天体质量的减小,所以亚恒星天体的半径能够大致保持恒定。 一个质量恰好处于触发氢聚变的临界条件下的亚恒星天体的内核也可能能够短暂的发生氢聚变反应——这一反应将会为天体提供少量的能量——但是却不足以克服天体中持续进行的引力坍缩;同样的,虽然一个质量略大于0.013''M''☉的天体能够短暂的触发氘聚变,但是燃料也将在大约100万年至1亿年间耗尽。这些燃料耗尽之后,亚恒星天体所能使用的能量将仅仅来自于引力势能,这将导致天体逐渐冷却和收缩。环绕恒星运行的亚恒星天体由于能够接收到恒星的热量,其冷却收缩的的过程可能较为缓慢,并将逐渐达到一种辐射出的能量相当于从恒星处接收的能量的平衡状态。.
查看 氘和亚恒星
序列法則
序列法則(Cahn–Ingold–Prelog (CIP) sequence rules、CIP priority rules)是一套用於有機化學的規則,用來命名有機分子的立體異構現象。一個有機分子可能含有多個立體中心和雙鍵,而每一個都給了這個分子兩種可能的組態。這個規則的目的是給予立體中心R/S標記,雙鍵E/Z標記,而使每個組態都可以用系統性的語言來描述。 序列法則和其他的命名原則,如IUPAC命名法有顯著的不同,原因是此規則是被制定來命名有立體異構物的分子,而不是來一般的分類與描述化合物。 使用序列法則的步驟通常是:.
查看 氘和序列法則
二甲基亞碸
二甲基亞碸(Dimethyl sulfoxide,簡稱DMSO),是分子式為(CH3)2SO的化學物質。其為一無色液體,並為重要的極性非质子溶剂。它可與許多有機溶劑及水互溶。二甲基亞碸具有極易滲透皮膚的特殊性質,造成使用人員感覺類似牡蠣般的味道。.
查看 氘和二甲基亞碸
伊西多·拉比
伊西多·艾薩克·拉比(Isidor Isaac Rabi,出生名為以色列·拉比,),美國猶太人物理學家,因發現核磁共振(NMR)而獲得1944年的諾貝爾物理學獎,而核磁共振成像(MRI)就是基於核磁共振技術的。他也是其中一個最早研究多腔磁控管的美國科學家,多腔磁腔管可用於微波雷達和微波爐。.
查看 氘和伊西多·拉比
弱相互作用
弱相互作用(又稱弱力或弱核力)是自然的四種基本力中的一種,其餘三種為強核力、电磁力及万有引力。次原子粒子的放射性衰變就是由它引起的,恆星中一種叫氫聚變的過程也是由它啟動的。弱相互作用會影響所有費米子,即所有自旋為半奇數的粒子。 在粒子物理學的標準模型中,弱相互作用的理論指出,它是由W及Z玻色子的交換(即發射及吸收)所引起的,由於弱力是由玻色子的發射(或吸收)所造成的,所以它是一種非接觸力。這種發射中最有名的是β衰變,它是放射性的一種表現。重的粒子性質不穩定,由於Z及W玻色子比質子或中子重得多,所以弱相互作用的作用距離非常短。這種相互作用叫做“弱”,是因為β衰變發生的機率比強交互作用低很多,表示它的一般強度比電磁及強核力弱好幾個數量級。大部份粒子在一段時間後,都會通過弱相互作用衰變。弱相互作用有一種獨一無二的特性——那就是夸克味變——其他相互作用做不到這一點。另外,它還會破壞宇稱對稱及CP對稱。夸克的味變使得夸克能夠在六種“味”之間互換。 弱力最早的描述是在1930年代,是四費米子接觸相互作用的費米理論:接觸指的是沒有作用距離(即完全靠物理接觸)。但是現在最好是用有作用距離的場來描述它,儘管那個距離很短。在1968年,電磁與弱相互作用統一了,它們是同一種力的兩個方面,現在叫電弱相互作用。 弱相互作用在粒子的β衰變中最為明顯,在由氫生產重氫和氦的過程中(恆星熱核反應的能量來源)也很明顯。放射性碳定年法用的就是這樣的衰變,此時碳-14通過弱相互作用衰變成氮-14。它也可以造出輻射冷光,常見於超重氫照明;也造就了β伏這一應用領域(把β射線的電子當電流用)。.
查看 氘和弱相互作用
伽馬射線天文學
伽馬射線天文學是指以伽馬射線研究宇宙的天文學分支。伽馬射線是可穿透整個宇宙的電磁波中最高能量的波段,也是電磁波譜中波長最短的部分。 伽馬射線可由太空中的超新星、正電子湮滅、黑洞形成、甚至是放射衰變產生。例如超新星SN 1987A就發射了來自超新星爆炸的放射性產物鈷56釋放的伽馬射線。大多數天體釋放的伽馬射線一般認為並非來自放射衰變,而是和X射线天文学一樣來自加速的電子、電子和正電子作用(但因為能量較高而產生伽馬射線)。.
查看 氘和伽馬射線天文學
微隕石
微隕石是在地球表面收集到來自地球之外的小天體,大小範圍從50微米至2毫米。微隕石是進入地球大氣層而倖存下來的流星塵。它們從大小、組成都與隕石不同,並且數量、種類更為豐富,其中也包括較小的星際塵埃的顆粒(IDPs) ,是宇宙塵的一部分。流星體以高速(至少11Km/s)進入地球的大氣層,經過加熱和大氣的磨擦和壓縮。目前已經在地球上蒐集到,來自地球之外個別微隕石的質量在10−9和 10−4公克之間 。 弗雷德·惠普爾首先創造了微隕石這個名稱來描述落在地球上如灰塵大小的天體 。有時,隕石和微隕石在進入地球大氣層時是被看見的流星,但不論它們能否墬落到地球表面被找到,隕石和微隕石依然都存在著。.
查看 氘和微隕石
土衛六大氣層
土衛六大氣層是太陽系的天然衛星中唯一發展高度完整的衛星大氣層。.
查看 氘和土衛六大氣層
土星
土星,為太陽系八大行星之一,至太阳距离(由近到远)位於第六、体积則僅次於木星。並與木星、天王星及海王星同属氣體(類木)巨星。古代中国亦称之填星或鎮星。 土星是中国古代人根据五行学说结合肉眼观测到的土星的颜色(黄色)来命名的(按照五行学说即木青、金白、火赤、水黑、土黄)。而其他语言中土星的名称基本上来自希臘/羅馬神話传说,例如在欧美各主要语言(英语、法语、西班牙语、俄语、葡萄牙语、德语、意大利语等)中土星的名称来自于羅馬神話中的农业之神萨图尔努斯(拉丁文:Saturnus),其他的还有希臘神話中的克洛諾斯(泰坦族,宙斯的父親,一说其在罗马神话中即萨图尔努斯)、巴比倫神话中的尼努尔塔和印度神话中的沙尼。土星的天文学符號是代表农神萨图尔努斯的鐮刀(Unicode: )。 土星主要由氫組成,還有少量的氦與微痕元素,內部的核心包括岩石和冰,外圍由數層金屬氫和氣體包覆著。最外層的大氣層在外观上通常情况下都是平淡的,雖然有时会有長时间存在的特徵出現。土星的風速高達1,800公里/時,明顯的比木星上的風快速。土星的行星磁場強度介於地球和更強的木星之間。 土星有一個顯著的環系統,主要的成分是冰的微粒和較少數的岩石殘骸以及塵土。已經確認的土星的衛星有62顆。其中,土卫六是土星系統中最大和太陽系中第二大的衛星(半徑2575KM,太陽系最大的衞星是木星的木衛三,半徑2634KM),比行星中的水星還要大;並且土卫六是唯一擁有明顯大氣層的衛星。.
查看 氘和土星
化学年表
化学年表列出了深远地改变人们对化学这门现代科学认识的重要著作、发现、思想、发明以及实验等。化学作为一门对物质组成和相互作用进行研究的自然科学,虽然其根源可以追溯到自有文字记载之时,但我们可以认为现代化学史是从英国科学家罗伯特·波义耳开始的。 后来被引入到现代化学中的早期思想主要有两个:一是自然哲学家(例如亚里士多德和德谟克利特)试图使用演绎推理来解释所处的世界,二是炼金术士(例如贾比尔和拉齐)和炼丹家(比如孙思邈和葛洪)试图使用实验方法来延长生命或进行物质的转化,例如用丹炉炼金丹,或将贱金属转化成金。 17世纪时,“演绎”和“实验”两种思想正融合到了一起,这种处于发展中的思想被称为科学方法。随着科学方法的引入,现代化学诞生了。 被称为“中心科学”的化学很大程度上受到其他学科的影响,也在许多科学技术领域发挥着强大的影响力。许多化学领域的重大事件对其他领域来说也是关键的发现,如物理学、生物学、天文学、地质学、材料科学,不一而足 。.
查看 氘和化学年表
化学符号
化学符号以拉丁字母缩写的形式表达化学元素或官能基。化学元素的符号通常为一个或两个字母,而一些人造元素的IUPAC临时符号则使用三个字母。 元素的化学符号在元素周期表中使用,亦用来书写化学式。例如下列把氢及氧化合为水的反应的化学方程式: 多数元素的符号缩写都是来自它的英语名称,但亦有部分缩写是来自它的拉丁语或德语名称。如钠(Na)来自拉丁语natrium、钨(W)来自德语wolfram。 除此之外,氢的同位素氘(2H)会以 D 来表示,氚(3H)会以 T 来表示。 R 在有机化学中用来表示烃链。 要查找全部化学元素的符号,可参见:.
查看 氘和化学符号
化學
化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.
查看 氘和化學
化學元素
化學元素指自然界中一百多种基本的金属和非金属物质,同一種化學元素是由相同的原子組成,也就是其原子中的每一核子具有同样数量的質子,用一般的化学方法不能使之分解,并且能构成一切物质。一些常見元素的例子有氫、氮和碳。 原子序數大於82的元素(即鉛之後的元素)沒有穩定的同位素,會進行放射衰變。另外,第43和第61種元素(即锝和鉕)沒有穩定的同位素,會進行衰變。可是,即使是原子序數大於94,沒有穩定原子核的元素,有些仍可能存在在自然界中,如鈾、釷、钚等天然放射性核素。 所有化學物質都包含元素,即任何物質都包含元素,隨著人工的核反應,會發現更多的新元素。 1923年,国际原子量委员会作出决定:化学元素是根据原子核电荷的多少对原子进行分类的一种方法,把核电荷数相同的一类原子称为一种元素。 2012年,總共有118種元素被發現,其中地球上有94種。.
查看 氘和化學元素
化學元素發現年表
化学元素發现年表将各种化学元素的发现按时间顺序列出。其中--发现的时间以提炼出元素单质的时间为准,因为元素化合物的发现时间无法准确定义。表中列出了每种元素的名称、原子序数、发现时间、发现者姓名和发现方式的简介。.
查看 氘和化學元素發現年表
化學元素豐度
化學元素豐度(Abundance of the chemical elements)是在測量上與所有元素相比較所得到含量多寡的比值。豐度可以是質量的比值或是莫耳數(氣體的原子數量比值或是分子數量比值),或是容積上的比值。在混合的氣體中測量氣體容積上的比值是最常用於表示豐度的方法,對混合的理想氣體(相對於是低密度和低壓的氣體)這與莫耳數是相當一致的。 例如,氧在水中的質量比是89%,因為這是水的質量和氧的質量的比值,但是氧在水中的莫耳比值只有33%,因為在水的莫耳數中只有三分之一是氧原子。在整個宇宙中,和在如同木星這樣的巨大的氣體行星中,氫和氦在質量上的豐度比值分別相對是74%和23-25%,但是摩爾(原子)比值卻高達92%和8%。但是,因為氫是雙原子分子,而氦在木星外層的大氣環境下只是單原子分子,以分子的摩爾數來比較,在木星大氣層中氫的豐度是86%,而氦的豐度是13%。 在本文中所提到的豐度,多數都是質量百分比的豐度。.
查看 氘和化學元素豐度
北方大平原
北方大平原(拉丁語:Vastitas Borealis,北方荒地)是火星北半球的廣大平原,範圍為北緯54.68度以北,一般指不包含北極冠的平原地區。Vastitas為廣大的低原,borealis為北方。本文介紹北方大平原和整個北半球低地。.
查看 氘和北方大平原
國立臺灣大學物理學系
國立臺灣大學物理學系(Department of Physics, National Taiwan University),略稱臺灣大學物理系、臺大物理系,創辦於1946年8月,首任系主任為物理學家戴運軌。台大物理系是為國立臺灣大學改制之後首創的第一個系所。前身是日治時期臺北帝國大學的理學部化學科所設置的物理學講座,當時有兩三間辦公室和實驗室。.
查看 氘和國立臺灣大學物理學系
國立臺灣大學物理文物廳
臺大物理文物廳位於國立臺灣大學校總區椰林大道上的二號館(原台北帝國大學理農學部理化學教室校舍,為臺大物理系舊館),是臺大博物館群的其中一個展覽館,由臺大物理系負責日常維運,2005年正式成立。.
哥倫比亞大學諾貝爾獎得主列表
諾貝爾獎由瑞典皇家科學院、瑞典學院、卡羅琳學院和挪威諾貝爾委員會每年頒發一次,分別授予在化學、物理學、文學、和平、生理學或醫學和經濟學領域作出傑出貢獻的人士。每個獎都是由獨立的委員會頒發,瑞典皇家科學院頒獎物理學、化學和經濟學獎,瑞典學院頒獎文學獎,卡羅琳學院頒獎生理學或醫學獎,挪威諾貝爾委員會頒獎和平獎。 截至2017年,根據哥倫比亞大學的統計,共有83位諾貝爾獎得主與該校存在某種程度的關聯;根據該校的官方定義,這些人包括該校的畢業生、教師(包括兼職教師)、研究人員和行政人員。1906年諾貝爾和平獎得主、時任美國總統狄奧多·羅斯福曾在哥倫比亞法學院就讀,也是與該校相關的首位諾貝爾獎得主。有13位哥倫比亞大學的諾貝爾獎得主共同分享了六座獎項,他們分別是:波利卡普·庫施與威利斯·蘭姆共同獲得1955年諾貝爾物理學獎;迪金森·伍德拉夫·理查茲與安德烈·弗雷德里克·考南德共同獲得1956年諾貝爾生理學或醫學獎;奧格·波耳與利奧·雷恩沃特共同獲得1975年諾貝爾物理學獎;巴魯克·塞繆爾·布隆伯格與丹尼爾·卡爾頓·蓋杜謝克共同獲得1976年諾貝爾生理學或醫學獎;利昂·萊德曼、梅爾文·施瓦茨與傑克·施泰因貝格爾共同獲得1988年諾貝爾物理學獎;理察·阿克塞爾與琳達·巴克共同獲得2004年諾貝爾生理學或醫學獎。有27位哥倫比亞大學諾貝爾獎得主獲得了諾貝爾物理學獎,在數量上超過任何其他獎項;1976年,該校有四人獲得了三項不同的諾貝爾獎,為歷年最多。.
哈羅德·尤里
哈羅德·尤里(Harold Urey,),美國科學家,因發現氫的同位素氘獲得1934年諾貝爾化學獎。 此外,尤里和史丹利·米勒於1953年完成了生命起源的經典實驗米勒-尤里實驗。.
查看 氘和哈羅德·尤里
冷核聚变
冷核融合(Cold fusion)是指理论上在接近常温(1000K以下)常压和相对简单的设备条件下发生核聚变反应。核聚变反应中,多个轻原子核被强行聚合形成一个重原子核,并伴随能量释放。 冷核融合是現在所用更正式名稱——「低能量核反應」(Low Energy Nuclear Reactions, LENR)——的通俗名稱,隸屬於凝態物質核科學(condensed matter nuclear science, CMNS)的範疇。.
查看 氘和冷核聚变
內熱
內熱是源自天體內部,如行星、卫星、棕矮星和恆星,由引力坍缩、核聚变、潮汐加热、核心凝固(核心物质由液态凝固为固态时会释放热能)、放射性物質衰變等原因產生的熱。內熱與天體的質量有關,質量越大內熱就越多。內熱能使天體溫暖而活躍。.
查看 氘和內熱
前手性
当一个无手性分子中处于等同地位(对映异位、非对映异位)的一对原子或基团,被另一个不同于原来的原子或基团取代后,成为了手性分子,产生手性,这时原来的分子中进行取代的一个中心、轴或面就被称为是前手性的(Prochiral),也称为潜手性、原手性(prochirality)。 前手性一般可分为前手性中心、前手性轴和前手性面三种。例如,乙醇(CH3CH2OH)中的两个亚甲基氢原子是等同的(对映异位),但当其中之一被氘原子替换后,形成的 CH3CDHOH 具有对映异构,因此乙醇中的亚甲基碳原子就是一个前手性中心。前手性中心的两个等同基团可通过顺序规则中的R/S标记来识别。当相同的两个基团之一被高一级次序的基团取代,并且不改变原有基团的优先次序,根据所得到的化合物构型属R或S来确定原有化合物中这两个相同基团为“前(R)-基团”(pro-R)或“前(S)-基团”(pro-S)。 对于乙醛等存在 sp2-前手性的分子来说,可以通过另一套 Re/Si 标记辨别对映平面的两侧,从而确定出反应物对双键的加成方向。观察者从垂直于平面的方向向 sp2 碳原子看去,将该原子所结合的三个基团按顺序规则排列,若从大至小的顺序为顺时针方向,则此面记为 Re-面,反之则记为 Si-面。如果存在两个前手性中心,那么采用双标记法,记为 Re-Re 面、Re-Si 面或 Si-Si 面等。Re- 和 Si- 两个标记源于拉丁语,分别是 rectus(右)和 sinister(左)的缩写。 前手性的概念在生物化学中十分重要,因为许多生物学反应中的酶,自身作为具有手性特征的催化剂,可以识别两个相同的基团,而且只取代其中的一个或只从对映平面的一面进行进攻。将前手性分子转变为手性分子,并且生成不等量的立体异构体的过程称为不对称合成,也称手性合成。.
查看 氘和前手性
国际热核聚变实验反应堆
国际热核聚变实验反应堆(International Thermonuclear Experimental Reactor,缩写为ITER)是国际核聚变研究和巨型工程,将成为世界上最大的磁约束等离子体物理学实验,这是目前正在建设世界上最大的实验性托卡马克核聚变反应堆,邻近于法国南部的卡达拉舍设施。ITER工程的目标是从等离子体物理实验研究,到大规模电力生产的核聚变发电厂的期待已久的转变。“ITER”在拉丁文意为“道路”,因此这个实验的缩写“ITER”也意味着和平利用核聚变能源之路。 它建立在由、歐洲聯合環狀反應爐(JET)、JT-60和等装置所引导的研究之上,并将显著的超越所有前者。此项目预期将持续30年:10年用于建设,20年用于运行,总花费大约100亿欧元。 该项目是由七个成员实体资助和运行,欧盟、印度、日本、中国、俄罗斯、韩国和美国。欧盟作为ITER设施的主办方,贡献的费用有45%左右,其他六方各贡献约9%。2016年,ITER组织与澳大利亚国家核聚变机构签署了技术合作协议,使该国可获得ITER的研究成果,以换取ITER机器选定部分的建设。 ITER托卡马克综合设施的建设始于2013年,截至2015年6月,建筑成本现在已超过140亿美元。预计该设施将于2021年完成建设阶段,并将于同年开始启动反应堆,并于2025年开始等离子体实验,2035年开始进行全氘 - 氚聚变实验。.
国际聚变材料放射测试设施
国际聚变材料放射测试设施(International Fusion Material Irradiation Facility,缩写:IFMIF),是一项国际科学研究项目,目的是测试核聚变反应堆所用墙壁材料的可用性。IFMIF将使用基于粒子加速器的中子源在适当的时间周期内产生大的但合适的中子流,以测试在极端情况下材料的长期行为,这些极端情况类似于反应堆内壁处的情况。 IFMIF将由两个平行的加速器构成,每个长约50米,用来产生氘核粒子束。用这些粒子束撞击锂元素组成的标靶后,可得到高能中子,进而照射材料样本和被测试成分。.
CPK配色
在化學中,CPK配色是一種國際通用的原子或分子模型的配色方式,也是最常用、最多人使用的分子模型上色方式,可用於各種分子模型或元素標示,最常用於CPK模型、球棒模型和空間填充模型。該配色方式由CPK模型的設計者Corey、Pauling(萊納斯·鮑林)與Koltun提出且改進。.
查看 氘和CPK配色
玻尔模型
玻尔模型是丹麦物理学家尼尔斯·玻尔于1913年提出的关于氢原子结构的模型。玻尔模型引入量子化的概念,使用经典力学研究原子内电子的运动,合理地解释了氢原子光谱和元素周期表,取得了巨大的成功。玻尔模型是20世纪初期物理学取得的重要成就,对原子物理学产生了深远的影响。.
查看 氘和玻尔模型
玻色子
在量子力學裡,粒子可以分為玻色子(boson)與費米子。Carroll, Sean (2007) Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 p. 43, The Teaching Company, ISBN 978-1-59803-350-2 "...boson: A force-carrying particle, as opposed to a matter particle (fermion).
查看 氘和玻色子
硼氢化钇
氢化钇是一种无机化合物,化学式为Y(BH4)3,为黄色晶体。.
查看 氘和硼氢化钇
磁矩
磁矩是磁鐵的一種物理性質。處於外磁場的磁鐵,會感受到力矩,促使其磁矩沿外磁場的磁場線方向排列。磁矩可以用向量表示。磁鐵的磁矩方向是從磁鐵的指南極指向指北極,磁矩的大小取決於磁鐵的磁性與量值。不只是磁鐵具有磁矩,載流迴路、電子、分子或行星等等,都具有磁矩。 科學家至今尚未發現宇宙中存在有磁單極子。一般磁性物質的磁場,其泰勒展開的多極展開式,由於磁單極子項目恆等於零,第一個項目是磁偶極子項、第二個項目是磁四極子(quadrupole)項,以此类推。磁矩也分為磁偶極矩、磁四極矩等等部分。從磁矩的磁偶極矩、磁四極矩等等,可以分別計算出磁場的磁偶極子項目、磁四極子項目等等。隨著距離的增遠,磁偶極矩部分會變得越加重要,成為主要項目,因此,磁矩這術語時常用來指稱磁偶極矩。有些教科書內,磁矩的定義與磁偶極矩的定義相同。.
查看 氘和磁矩
系外衛星
系外衛星泛指在系外行星周圍依照閉合軌道做週期性運行的衛星,雖然目前人類尚未發現任何系外衛星,但是理論上應該有許多衛星運行在系外行星周圍。不過要偵測到系外衛星是非常困難的。.
查看 氘和系外衛星
紫外线
紫外線(Ultraviolet,簡稱為UV),為波長在10nm至400nm之間的電磁波,波長比可見光短,但比X射線長。太陽光中含有部分的紫外線,電弧、水銀燈、黑光燈也會發出紫外線。雖然紫外線不屬於游離輻射但紫外線仍會引發化學反應與使一些物質發出螢光。 而小于200纳米的紫外線輻射會被空氣強烈的吸收,因此稱之為真空紫外線The ozone layer protects humans from this.
查看 氘和紫外线
羟醛缩合
羟醛缩合是一种有机反应:烯醇或烯醇负离子和羰基化合物反应形成β-羟基醛或者β-羟基酮,然后发生脱水得到共轭烯酮。 羟醛缩合在有机合成当中很重要,它是形成碳碳单键的关键条件之一,罗宾逊成环反应中有一步就是羟醛缩合反应。羟醛缩合在大学有机化学课程中常作为一个经典构建碳键的反应进行讲解,并用该反应介绍反应机理。 在普通的羟醛缩合反应中,包涵了酮的烯醇对于醛的亲核加成,形成β-羟基酮或者“羟醛”(广泛出现于各种天然产物及药物中的一种结构单元)。 羟醛缩合在生物化学中也同样广泛存在。羟醛反应自身由醛缩酶催化,然而该反应不是正式的缩合反应,这是因为过程中并未脱除小分子。 反应在醛和酮之间发生(交叉羟醛缩合),或者在两个醛之间发生,则称为Claisen-Schmidt缩合反应。这些反应都被冠以发现人的名字莱纳·路德维希·克莱森和J.G.施密特。他们分别于1880和1881年发表了自己在该领域的论文。 一个相关的例子是合成二亚苄基丙酮。.
查看 氘和羟醛缩合
烯烃复分解反应
烯烃复分解反应(Olefin metathesis)涉及金属催化剂存在下烯烃双键的重组,自发现以来便在医药和聚合物工业中有了广泛应用。相对于其他反应,该反应及废物排放少,更加环保。 2005年的诺贝尔化学奖颁给了化学家伊夫·肖万、罗伯特·格拉布和理查德·施罗克,以表彰他们在烯烃复分解反应研究和应用方面所做出的卓越贡献。 烯烃复分解反应由含镍、钨、钌和钼的过渡金属卡宾配合物催化,反应中烯烃双键断裂重组生成新的烯烃,通式如右边所示。.
查看 氘和烯烃复分解反应
电子
电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.
查看 氘和电子
盐酸
酸,學名氢氯酸(hydrochloric acid),是氯化氢(化学式:HCl)的水溶液,属于一元无机强酸,工业用途广泛。盐酸为无色透明液体,有强烈的刺鼻味,具有较高的腐蚀性。浓盐酸(质量百分濃度约为37%)具有极强的挥发性,因此盛有浓盐酸的容器打开后氯化氢气体会挥发,与空气中的水蒸气结合产生盐酸小液滴,使瓶口上方出现酸雾。盐酸是胃酸的主要成分,它能够促进食物消化、抵御微生物感染。 16世纪,利巴菲乌斯正式记载了纯净盐酸的制备方法:将浓硫酸与食盐混合加热。之后格劳勃、普利斯特里、戴维等化学家也在他们的研究中使用了盐酸。 工业革命期间,盐酸开始大量生产。化学工业中,盐酸有许多重要应用,对产品的质量起决定性作用。盐酸可用于酸洗钢材,也是大规模制备许多无机、有机化合物所需的化学试剂,例如聚氯乙烯的前体氯乙烯。盐酸还有许多小规模的用途,比如用于家务清洁、生产明胶及其他食品添加剂、除水垢试剂、皮革加工。全球每年生产约两千万吨的盐酸。.
查看 氘和盐酸
發電
電(),泛指從其它種類的能源轉換為電力的過程。 現今主要使用的發電基本原理,於公元1820~1830年間,由英國科學家麥可·法拉第所發現。法拉第电磁感应定律,藉由一組以上的線圈在磁場中進行旋轉運動,藉以產生感應電流。.
查看 氘和發電
百武二號彗星
武二號彗星(C/1996 B2)是一顆非週期性彗星,由日本鹿兒島業餘天文學家百武裕司於1996年1月30日在日本鹿兒島縣發現,是他发现的第二顆彗星。該彗星於1996年3月25日最接近地球(距離地球約135萬公里),該彗星由2月初的10等猛增至3月底的0等。藍綠色彗頭配以3月底時彗尾長達120度,細長的藍色彗尾橫跨北斗七星至半個天空,令不少親眼目睹的天文愛好者著迷,同年5月1日通過近日點。 3月25日,哈伯望遠鏡拍攝到百武彗星彗核物質分裂的樣子,同時地面天文愛好者亦拍攝到此現象。3月26日至28日,美國和德國的天文學家使用伦琴X射线天文卫星(ROSAT)發現彗星的X射線辐射,這是人類首次探測到彗星發射X射線,且其強度也是天文學家始料不及的。百武彗星的X射線是在彗星內部形成還是太陽風與彗星物質的猛烈撞擊還沒有定案。 另外,美國哈佛史密松天文物理中心的天文學家分析次毫米波段的觀測資料,在百武彗星上所觀測到的氫和氘(即重氫)比例計算,推斷地表水份來源,和地球形成過程中,某時期內有眾多彗星隕落地球的假設依據。欧洲南方天文台針對百武彗星上所含元素的分析,氨、烷類以及氫氧化物等有機物所佔的比率不少。 2000年尤利西斯号探测器的研究小組公佈,報道探測器在1996年5月1日穿越百武彗星離子尾的質譜分析;測量到大量C+、O+及不太多的C2+、O2+、N+、OH+、H2O+。 這顆彗星的公轉週期極長,對照上一次回歸的時間約為17000年前,由於受行星引力影響致其軌道改變,因此以後十萬年內回歸的機會很少。 百武裕司發現的第一顆彗星編號為C/1995 Y1(1995年12月25日在鹿兒島縣發現,當時光度10.5等),1996年2月24日過近日點,由於此彗星光度不亮(最亮也只有7.8等),普通小型望遠鏡也難以看到,因此不受天文愛好者注目,而第二顆明顯比第一顆亮得多而更為人熟悉,因此「百武彗星」通常是指第二顆。.
查看 氘和百武二號彗星
D (消歧义)
D,d可以指:.
查看 氘和D (消歧义)
Dowd–Beckwith扩环反应
Dowd–Beckwith扩环反应(Dowd–Beckwith ring expansion reaction) 环状β-酮酯经过α-卤烷基取代中间体,得到环扩大产物。 反应为自由基机理,自由基引发剂体系为AIBN和三丁基锡烷。原料环状β-酮酯可通过Dieckmann缩合合成。底物通过此反应可在环中增加 1~4 个碳原子。 反应的最初版本是环己酮-2-羧酸乙酯用氢化钠处理产生的烯醇负离子,对1,4-二碘丁烷行亲核脂肪取代,生成α-碘丁基取代物,然后再用 AIBN/Bu3SnH 处理,得环癸酮-6-羧酸乙酯及碘丁基取代物被还原得到的副产物。 Dowd-Beckwith扩环反应.
聲致發光
聲致發光(sonoluminescence),是指當液體中的氣泡受到聲音的激發時,氣泡內爆(implosion)並迸發出極短暫的亮光的現象。.
查看 氘和聲致發光
荒勝文策
荒勝文策(,)是一名日本高能物理學家。他出生於日本兵庫縣姬路市,畢業於東京高等師範學校數物化學科,為京都帝國大學理學部物理學博士。他也曾短暫留學德國,跟隨阿爾伯特·愛因斯坦進行研究。 1928年,荒勝文策出任臺北帝國大學首任物理學講座教授。他領導建造直線粒子加速器,於臺灣做出亞洲第一次人工撞擊原子核實驗。1936年,他轉任京都帝國大學教授,並曾吸引湯川秀樹回母校旁聽其課程。後者於1949年成為日本首位諾貝爾物理學獎得主。二戰期間,荒勝文策曾為大日本帝國海軍的原子能研究計畫服務,並於其後不久成為京都大學名譽教授。他在二戰後期被委任調查廣島市原子彈爆炸的受害區域,以了解原子彈的影響力,其調查報告數據之精確震驚世界。 聯合國軍最高司令官總司令部(GHQ)於戰後下令拆除京都大學荒勝研究室的迴旋加速器,使大量荒勝文策的報告與其製作的儀器因此而流失。該次拆除行動也引來國際的批評。此外,中華民國國民政府為發展核子技術,曾派遣教育部次長前往日本訪問荒勝文策等人,希望他們能協助發展原子科學研究,然未成功。荒勝文策於晚年曾參與創辦私立的甲南大學,並成為其首任校長。1973年,他於神戶市逝世,享壽83歲。.
查看 氘和荒勝文策
衝量引擎
衝量引擎(英文:Impulse drive或impulse engine),出現在科幻影視作品《星际旅行》中,做為太空船艦如聯邦星艦的一項推進工具。使用這項推進裝置僅能達到次光速(亞光速,.
查看 氘和衝量引擎
行星定義
行星定義直到2006年8月24日才有了一個比較明確且可以被接受的文字敘述。在這之前,尽管行星一詞已經被使用了數千年,但令人驚訝的是,科學界始終沒有給過行星明確的定義。進入21世紀後,行星的認定成為一個備受爭議的主題,這才迫使天文學界不得不為行星做出定義。 數千年來,「行星」一詞只被用在太陽系內。當時天文學家尚未在太陽系以外發現任何行星。但從1992年起,人類陸續發現了許多比海王星更遙遠的小天體,而且其中也不乏與冥王星大小相當者,這使得有資格成為行星的天體由原有的9顆增加至數打之多。1995年,科學家发现了第一个太阳系外行星飛馬座51b。之後,陸續發現的太阳系外行星已經有數百顆之多。這些新發現不僅增加了潛在行星的數量,且由於這些行星具有迥異的性質──有些大小足以成為恒星,有些又比我們的月球還小──使得長久以來模糊不清的行星概念,越来越有明確定義的必要性。 2005年,一顆外海王星天體,阋神星(當時編號為2003 UB313)的發現,使得對行星做明確定義的必要性升至頂點,因為它的質量比冥王星(在當時是已被定義為行星的天體中最小者)還要大。國際天文學聯合會(IAU),由各國的天文學家組成負責為天體命名與分類的組織,在2006年對此問題做出了回應,發佈了行星的定義。依據這最新的定義,行星是環繞太陽(恆星)運行的天體,它們有足夠大的質量使自身因為重力而成為圓球體,並且能清除鄰近的小天體。未能清除軌道內小天體的則被納入一個新創的分類,稱做矮行星。除了以上兩類,其他圍繞太陽運行的天體則被稱為「太陽系小天體」。 按照以上定義,太陽系有八個行星:水星、金星、地球、火星、木星、土星、天王星和海王星,而冥王星被排除在外。至2007年7月為止,已獲承認的矮行星則有冥王星、穀神星和鬩神星,2008年7月才增加了第四顆鳥神星,又於同年9月增加了第五顆妊神星。但國際天文學聯合會的這項決議並無法弭平所有爭議,部分天文學家拒絕承認此一決議。.
查看 氘和行星定義
行星質量體
行星質量體(Planetary-mass objects),是一個質量落入行星定義範圍的天體:有足夠的質量,能以自身的重力克服剛體力,因此能呈現流體靜力平衡的形狀(接近圓球體),但不足以像恆星一樣維持核心的氘的融合。.
查看 氘和行星質量體
飛馬座V342
HR 8799是一顆位於飛馬座,距離地球129光年(39秒差距)的年輕(~6,000萬年)主序星,質量大約是太陽的1.5倍,光度約為4.9倍。這個系統包含了部份的岩屑盤和至少3顆大質量行星(與北落師門 b相同,是第一批軌道以直接影像被證實的系外行星)。HR 8799是耶魯亮星星表所使用的標識與編號。這顆星是劍魚γ型變星:它的光度改變是表面非徑向上的脈動造成的;這顆星也是牧夫座λ型星,這意味著它的表層是被耗盡鐵峰頂元素,這也許可以歸咎於金屬的吸積缺乏拱星氣體(星周氣體)。它是唯一已知同時是劍魚座γ型變星、牧夫座λ型星和類織女星(因為拱星盤而造成紅外線過量)的恆星。.
查看 氘和飛馬座V342
詹姆斯·查德威克
詹姆斯·查德威克爵士,CH,FRS(Sir James Chadwick,),英国物理学家,因於1932年发现中子而获1935年诺贝尔物理学奖。1941年,他为核武器报告的最後稿本执笔,这份报告促使美國政府開始积极进行核武器研究。第二次世界大戰期間,他担任曼哈頓計劃英國小組的組長。因對物理學的貢獻,他於1945年在英格蘭被冊封為爵士。.
查看 氘和詹姆斯·查德威克
魔法科高中的劣等生
| | | | 《魔法科高中的劣等生》(魔法科高校の劣等生),是日本小說家佐島勤撰寫的輕小說系列。小說最初从2008年10月至2011年3月,在「成為小說家吧」上進行網絡連載。直至与電擊文庫达成协议后,从2011年7月起发行成書版。2013年,不同的漫画家与出版社把小說各各篇亦发行成漫畫。同一年,MADHOUSE宣布電視動畫於2014年4月至9月的播放。魔法科高中的劣等生中文特许经营权由三间公司本地化。在台湾小说与漫画由Kadokawa Fantastic Novels代理,而电视动画则由台湾角川代理。在中国,小说与漫画由天聞角川輕小說代理。而在美国,魔法科高中的劣等生英文特许经营权则由两间公司本地化。小说与漫画由Yen Press代理,而Aniplex of America则代理电视动画。电视动画由四个广播网广播,之后亦在Netflix播放。 故事以一个充满先进科技改善的魔法的架空历史为背景。故事叙述进入国立魔法大学附属第一高中就读的兄妹:司波达也与司波深雪。在保持与四叶家关系秘密的同时, 尝试过着平安的日常生活。司波达也因无能而招人回避,而司波深雪则因魔法功能而备受验证。 電視動畫普遍上受人好评。小说出现于SUGOI JAPAN Award 2015的民意调查,自2011年以来小说是日本最畅销的小说系列。截至2016年已售卖了六百五十万本。 除此以外,它的漫画与动画也出现在销售量排行榜。 劇場版《魔法科高中的劣等生劇場版 呼喚繁星的少女》(魔法科高校の劣等生 星を呼ぶ少女)於2017年6月17日於日本上映。同年香港地區於8月10日上映。台灣地區於12月22日上映。.
查看 氘和魔法科高中的劣等生
诺贝尔化学奖得主列表
诺贝尔化学奖 (Nobelpriset i kemi)是诺贝尔奖的六个奖项之一,1895年设立,由瑞典皇家科学院每年颁发给在化学相关的各个领域中做出杰出贡献的科学家。根据奖项设立者阿尔弗雷德·诺贝尔的遗愿,该奖由诺贝尔基金会管理,瑞典皇家科学院每年选出五人委员会来评选出当年获奖者。第一个诺贝尔化学奖于1901年颁发给荷兰科学家雅各布斯·亨里克斯·范托夫。每一位获奖者都会得到一块奖牌,一份获奖证书,以及一笔不菲的奖金,奖金的数额每年会有变化。例如,1901年,范托夫得到的奖金为150,782瑞典克朗,相当于2007年12月的7,731,004瑞典克朗;而2008年,下村脩、马丁·查尔菲和钱永健分享了总数为一千万瑞典克朗的奖金(略多于100万欧元,或140万美元)。该奖每年于12月10日,即阿尔弗雷德·诺贝尔逝世周年纪念日,以隆重的仪式在斯德哥尔摩颁发。 就获奖领域而言,有至少25名获奖者在有机化学研究中做出贡献,比其他化学领域的获奖者都多。有两位诺贝尔化学奖获奖者,德国的里夏德·库恩(1938年获奖)和阿道夫·布特南特(1939年获奖),受其政府阻止不能接受奖金。他们虽然后来收到了奖牌和获奖证书,但没有收到奖金。弗雷德里克·桑格是至今唯一一位两次(1958年和1980年)获得诺贝尔化学奖的科学家。其他两次获得诺贝尔奖的玛丽·居里(1903年获物理学奖,1911年获化学奖)和萊納斯·鮑林(1954年获化学奖,1962年获和平奖)都是在不同领域获奖。有四位女性获得过化学奖:玛丽·居里、伊雷娜·约里奥-居里(1935年获奖)、多萝西·克劳福特·霍奇金(1964年获奖)和阿达·约纳特(2009年获奖)。截至2015年,已经有171人获得诺贝尔化学奖。从1901年至今,该奖有8年因故停发(1916-1917年、1919年、1924年、1933年、1940-1942年)。.
查看 氘和诺贝尔化学奖得主列表
诺曼·拉姆齐
小诺曼·福斯特·拉姆齐(Norman Foster Ramsey Jr.,),美国物理学家,1989年因发明对于设计制造原子钟非常重要的分离振荡场法而获得诺贝尔物理学奖。拉姆齐在其职业生涯中主要担任哈佛大学的物理学教授,同时还曾在美国原子能委员会等政府机构以及北约等国际组织任职。此外,他还参与创建了美国能源部下属的布鲁克黑文国家实验室以及费米实验室。.
查看 氘和诺曼·拉姆齐
質子
|magnetic_moment.
查看 氘和質子
質子﹣質子鏈反應
質子﹣質子鏈反應是恆星內部將氫融合成氦的幾種核融合反應中的一種,另一種主要的反應是碳氮氧循環。質子﹣質子鏈反應在太陽或更小的恆星上佔有主導的地位。 克服兩個氫原子核之間的靜電斥力需要很大的能量,並且即使在太陽高溫的核心中,平均也還需要1010年才能完成。由於反應是如此的緩慢,因此太陽迄今仍能閃耀著,如果反應稍為快速些,太陽早就已經耗盡燃料了。 通常,質子﹣質子熔合反應只有在溫度(即動能)高到足以克服它們相互之間的庫侖斥力時才能進行。質子﹣質子反應是太陽和其它恆星燃燒產生能量來源的理論,是在1920年代由亞瑟·史坦利·艾丁頓主張和提出基本原則的。當時,太陽的溫度被認為太低,以至於不足以克服庫侖障壁。直到量子力學發展之後,發現質子可以經由波函數的隧道,穿過排斥障礙而在比傳統預測為低的溫度下進行融合反應。.
查看 氘和質子﹣質子鏈反應
超重水
超重水(Tritium oxide),是一種無機化合物,由两个氚和一個氧組成,故又稱一氧化二氚,其化学式为T2O或3H2O。氚是氫的放射性同位素,該原子由原子核由質子和兩個中子,半衰期約12年,水在地球上的总重大约是一百三十六京噸,超重水在天然水中極其稀少,其比例不到十億分之一。若要制取1公斤的超重水需要超過100萬噸的天然水和大量的電能,因此超重水成本比黃金高上百倍,比重水提取成本高上萬倍。 超重水不應該和重水混淆,差別於超重水是T2O或3H2O;而重水是D2O或2H2O。.
查看 氘和超重水
麒麟座V838
麒麟座V838(V838 Monocerotis、V838 Mon)是位在麒麟座的一顆紅色變星,距離太陽約20,000光年(6 kpc);它可能是已知最大的恆星之一,該恆星在2002年經歷了一次爆發事件並被觀測到。一開始相信這是一次新星爆發,但在之後發現並非如此。爆發的原因至今不明,但有數個理論已經提出,其中包含恆星死亡的過程、聯星合併或吞噬行星。.
查看 氘和麒麟座V838
远紫外分光探测器
远紫外分光探测器(Far Ultraviolet Spectroscopic Explorer,缩写为FUSE)是约翰霍普金斯大学应用物理实验室为美国宇航局研制的一颗紫外天文卫星,是美国宇航局“起源计划”的一部分。加拿大和法国也参与了卫星的研制。该卫星于1999年6月24日在卡纳维拉尔角用德尔塔Ⅱ型火箭发射升空,运行在高度为773公里的近地轨道上,倾角约25度,周期为100分钟。 远紫外分光探测器工作在电磁波谱中波长为90-120纳米的紫外波段,主要科学目标包括研究宇宙大爆炸初期的氘合成、宇宙中各种化学元素的丰度、星系的化学演化、星际介质等。.
查看 氘和远紫外分光探测器
鈾
鈾(Uranium)是一種銀白色金屬化學元素,屬於元素週期表中的錒系,化學符號為U,原子序為92。每個鈾原子有92個質子和92個電子,其中6個為價電子。鈾具有微放射性,其同位素都不稳定,并以鈾-238(146個中子)和鈾-235(143個中子)最为常见。鈾在天然放射性核素中原子量第二高,仅次于钚。其密度比鉛高出大約70%,比金和鎢低。天然的泥土、岩石和水中含有百萬分之一至百萬分之十左右的鈾。採礦工業從瀝青鈾礦等礦物中提取出鈾元素。 自然界中的鈾以三种同位素的形式存在:鈾-238(99.2739至99.2752%)、鈾-235(0.7198至0.7202%)、和微量的鈾-234(0.0050至0.0059%)。鈾在衰變的時候釋放出α粒子。鈾-238的半衰期為44.7億年,鈾-235的則為7.04億年,因此它们被用于估算地球的年齡。 鈾獨特的核子特性有很大的實用價值。鈾-235是唯一自发裂變的同位素。鈾-238在快速中子撞擊下能夠裂變,屬於增殖性材料,即能在核反應爐中經核嬗變成為可裂變的鈈-239。鈾-233也是一種用於核科技的可裂變同位素,可從自然釷元素製成。鈾-238自發裂變的機率极低,快中子撞擊可诱导其裂變;鈾-235和233可被慢中子撞击而裂变,如果其质量超过临界质量,就都能夠維持核連鎖反應,在核反应过程中的微小质量损失会转化成巨大的能量。这一特性使它们可用于生产核裂变武器与核能发电。耗尽后的鈾-235发电原料被称为貧鈾(含238U),可用做钢材添加剂,製造贫铀弹和裝甲。.
查看 氘和鈾
薩德伯里微中子觀測站
薩德伯里微中子觀測站(Sudbury Neutrino Observatory,缩写为SNO)是位於加拿大安大略省薩德伯里2100米深的镍矿中的中微子觀測站。因為對於中微子振盪的發現做出重大貢獻,SNO實驗主任阿瑟·麥克唐納榮獲2015年諾貝爾物理學獎。薩德伯里微中子觀測站的建立是為了要研究太陽中微子問題。觀測站的中微子探測器主要是用來探測太陽中微子,通過它們與重水的相互作用。探測器從1999年5月開始啟用,直到2006年11月為止。雖然探測器已停止運作,在未來數年中,SNO團隊仍會繼續分析在那段時期獲得的數據。現今(2015年),已被擴充的地下實驗室仍舊繼續被用來進行其它SNOLAB實驗。SNO的設備正在整修,準備未來用於實驗。.
查看 氘和薩德伯里微中子觀測站
藍色
蓝色是一种颜色,它是红绿蓝光的三原色中的其中一元,在这三种原色中它的波长最短(约470-440纳米)。 由于空气中灰尘对日光的瑞利散射,晴天的天空是蓝色的。由于水分子中的氢-氧键对约750纳米的光的吸收,大量的水集中在一起呈蓝色,由于氘-氧键吸收波长比较长的光(约950纳米),因此重水是无色的。 蓝色的互补色是橘色。.
查看 氘和藍色
钚
鈽(Plutonium,--)是原子序数94、元素符號為Pu的放射性超鈾元素。它屬於錒系金屬,外表呈銀白色,接觸空氣後容易腐蝕、氧化,在表面生成無光澤的二氧化鈽。鈽有六种同素異形體和四種氧化態,易和碳、鹵素、氮、矽起化學反應。鈽暴露在潮濕的空氣中時會產生氧化物和氫化物,其體積最大可膨脹70%,屑狀的钚能自燃。它也是一种放射性毒物,会於骨髓中富集。因此,操作、處理鈽元素具有一定的危險性。 鈽是天然存在於自然界中質量最重的原子。它最穩定的同位素是鈽-244,半衰期約為八千萬年,足夠使鈽以微量存在於自然環境中。 鈽最重要的同位素是鈽-239,半衰期為2.41萬年,常被用來製造核子武器。鈽-239和鈽-241都易于裂變,即它們的原子核可以在慢速熱中子撞擊下產生核分裂,釋出能量、伽馬射線以及中子輻射,從而形成核連鎖反應,並應用在核武器與核反應爐上。 鈽-238的半衰期為88年,並放出α粒子。它是放射性同位素熱電機的熱量來源,常用於驅動太空船。 鈽-240自發裂變的比率很高,容易造成中子通量激增,因而影響了鈽作為核武及反應器燃料的適用性。 分離鈽同位素的過程成本極高又耗時費力,因此鈽的特定同位素時幾乎都是以特殊反應合成。 1940年,格倫·西奧多·西博格和埃德溫·麥克米倫首度在柏克萊加州大學實驗室,以氘撞擊鈾-238而合成鈽元素。麥克米倫將這個新元素取名Pluto(意為冥王星),西博格便開玩笑提議定其元素符號為Pu(音類似英語中表嫌惡時的口語「pew」)。科學家隨後在自然界中發現了微量的鈽。二次大戰時曼哈頓計劃則首度將製造微量鈽元素列為主要任務之一,曼哈頓計劃後來成功研製出第一個原子彈。1945年7月的第一次核試驗「三一试验」,以及第二次、投於長崎市的「胖子原子彈」,都使用了鈽製作內核部分。關於鈽元素的人體輻射實驗研究並在未經受試者同意之下進行,二次大戰期間及戰後都有數次核試驗相關意外,其中有的甚至造成傷亡。核能發電廠核廢料的清除,以及冷戰期間所打造的核武建設在核武裁減後的廢用,都延伸出日後核武擴散以及環境等問題。非陸上核試驗也會釋出殘餘的原子塵,現已依《部分禁止核試驗條約》明令禁止。.
查看 氘和钚
钫
鍅(Francium,或譯作--)是一種化學元素,符號為Fr,原子序為87。鍅是電負性最低的元素之一。鈁是一種放射性極高的金屬,會衰變成砹、鐳和氡。和其他鹼金屬一樣,鈁有一顆價電子。 從來沒有人製成過可觀量鈁金屬,但根據元素週期表的規律,鈁的熔點比銫低,接近室溫,可能為液態。不過該元素的製備極為困難,其衰變發熱(最穩定同位素的半衰期只有22分鐘)會立即氣化所製成的鈁金屬。 1939年,法國科學家馬格利特·佩里發現了鍅元素。這是最後一次在自然界中發現元素,而非經過人工合成。一些人造元素後來也被發現在自然界中,如鍀和鈈。鍅在實驗室以外極為罕見,痕量出現在鈾和釷礦石中,其中同位素鍅-223一直在形成和衰變中。地球地殼中只有20至30克的鍅會同時存在。除鍅-223和221以外,其他的同位素都是合成的。實驗室中產生的最大一批鍅元素共有300,000個鍅原子。.
查看 氘和钫
铊
鉈(;thallium)是一種化學元素,符號為Tl,原子序為81。鉈是一種質軟的灰色貧金屬,在自然界中並不以單質存在。鉈金屬外表和錫相似,但會在空氣中失去光澤。兩位化學家威廉·克魯克斯和克洛德-奧古斯特·拉米在1861年獨立發現了這一元素。他們都是在硫酸反應殘留物中發現了鉈,並運用了當時新發明的火焰光譜法對其進行了鑑定,觀測到鉈會產生明顯的綠色譜線。其名稱「Thallium」由克魯克斯提出,來自希臘文中的「θαλλός」(thallos),即「綠芽」之意。翌年,拉米用電解法成功分離出鉈金屬。 鉈在氧化後,一般擁有+3或+1氧化態,形成離子鹽。其中+3態與同樣屬於硼族的硼、鋁、鎵和銦相似;但是鉈的+1態則比其他同族元素顯著得多,而且和鹼金屬的+1態相近。鉈(I)離子在自然界中大部份出現在含鉀礦石中。生物細胞的離子泵處理鉈(I)離子的方式也和鉀(I)類似。 在商業開採方面,鉈是硫化重金屬礦提煉過程的副產品之一。總產量的60至70%應用在電子工業,其餘則用於製藥工業和玻璃產業。鉈還被用在紅外線探測器中。放射性同位素鉈-201(以水溶氯化鉈的形態),在核醫學掃描中可用作示蹤劑,例如用於心臟負荷測試。 水溶鉈鹽大部份幾乎無味,且都是劇毒物,曾被用作殺鼠劑和殺蟲劑以及謀殺工具。這類化合物的使用已經被多國禁止或限制。鉈中毒會造成脫髮。.
查看 氘和铊
铍
鈹(舊譯作鋍、鑉、鋊)是一種化學元素,符號為Be,原子序為4,屬於鹼土金屬。鈹通常在宇宙射线散裂過程中產生,是宇宙中較為稀有的元素之一。所有自然界中的鈹都與其他元素結合,形成礦物,如綠柱石(海藍寶石、祖母綠)和金綠寶石等。單質鈹呈鋼灰色,輕、硬而易碎。 在鋁、銅、鐵和鎳中加入鈹作為合金材料,可以加強其物理性質。用鈹銅合金製成的工具十分堅硬,在敲擊鋼鐵表面時也不會產生火花。由於鈹的抗彎剛度、熱穩定性、熱導率都很高,密度卻很低(只有水的1.85倍),所以適合做航空航天材料,用於導彈、航天器和衛星之中。X射線等電離輻射能夠穿透低密度和低原子量的鈹,所以在X光儀器和粒子物理學實驗中都常用鈹作為窗口材料。鈹和氧化鈹可以很好地傳導熱量,因此被用於控制器械的溫度。 在處理鈹的時候,必須使用適當的措施控制粉塵,因為吸入含鈹粉塵會引致可致命的慢性過敏性鈹中毒。.
查看 氘和铍
锿
锿(Einsteinium,--,舊譯作釾)是一種人工合成元素,符號為Es,原子序為99。鑀是第7個超鈾元素,屬於錒系元素。 鑀是在1952年第一次氫彈爆炸的殘餘物中發現的,並以物理學家阿爾伯特·愛因斯坦命名。其最常見的同位素為鑀-253(半衰期為20.47天),是通過鉲-253的衰變而人工製造的,每年在高能核反應爐中的產量約為1毫克。合成之後,鑀-253要從其他錒系元素及其衰變產物中分離出來,這是個複雜的過程。其他的鑀同位素則在各個實驗室中以較輕元素的離子撞擊錒系元素而合成,但產量少得多。鑀除了用于合成新的元素,主要用于发射X射线。鑀曾在1955年用於首次合成鍆元素,並一共合成了17顆鍆原子。 鑀是一種柔軟的銀白色金屬,具順磁性。其化學屬性符合典型的重錒系元素,容易形成+3氧化態,並特別在固體中也可以形成+2態。鑀-253的高放射性會使它明顯地發光,並會迅速破壞其晶體金屬結構,每克釋放大約1000瓦的熱量。由於鑀-253每天都損失3%的質量,並依次衰變為錇和鉲,因此對鑀的研究十分困難。鑀-252是存留時間最長的鑀同位素(半衰期為471.7天),可以用於研究鑀的物理特性,但生產鑀-252是極為困難的,每次的產量也極少。鑀是最後一種曾在宏觀尺度下以純元素形態被研究過的元素,所用的同位素是常見但半衰期短的鑀-253。和其他的人工合成超鈾元素一樣,鑀是極具放射性的,如果進食了會對健康造成損害。.
查看 氘和锿
锔
鋦(Curium)是一種放射性超鈾元素,符號為Cm,原子序為96,屬於錒系元素,以研究放射性的科學家瑪莉·居禮(Marie Curie)和其丈夫皮埃爾·居禮命名。伯克利加州大學的格倫·西奧多·西博格等人在1944年7月首次專門合成鋦元素。發現起初被列為機密,到1945年11月才公佈於世。大部分的鋦是在核反應爐中通過對鈾或鈈進行中子撞擊產生的。每噸用盡的核燃料中含有大約20克鋦。 鋦是一種銀白色的堅硬高密度金屬,熔點和沸點是錒系元素中較高的。鋦在標準溫度和壓力下具順磁性,並在冷卻後變為反鐵磁性;許多鋦化合物也具有磁性的轉變。鋦在化合物中的氧化態通常為+3和+4,而在溶液中主要呈+3態。鋦很容易被氧化,而形成的氧化物是鋦最常見的形態。鋦可以和各種有機化合物形成螢光配合物,但不出現在任何細菌或古菌中。當攝入人體之後,鋦會累積在骨骼、肺部和肝臟中,並可致癌。 鋦的所有已知同位素都具有放射性,並具有較小的臨界質量(維持核連鎖反應所需的最低質量)。這些同位素主要放射α粒子,輻射釋放的熱量可以在放射性同位素熱電機中用來產生電力。然而由於量的稀少,以及製造費用的昂貴,鋦難以用來發電。鋦被用於製造更重的錒系元素,及在心律調節器中作為能源的238Pu放射性同位素。它也作為α粒子射源,被用在α粒子X射線光譜儀中。許多火星探測任務都使用該光譜儀來分析火星表面岩石的結構和成份,羅塞塔號的菲萊登陸器(Philae Lander)也用它來探測楚留莫夫-格拉希門克彗星的表面。.
查看 氘和锔
锕
錒是一種放射性化學元素,符號為Ac,原子序為89。錒在1899年被發現,是首個得到分離的非原始核素。雖然釙、鐳和氡比錒更早被發現,但是科學家到1902年才分離出這些元素。在元素週期表中,錒系元素始於錒,止於鐒,一共有15種元素。 錒是一種柔軟的銀白色放射性金屬。在空氣中,錒會迅速與氧氣和水氣反應,在表面形成具保護性的白色氧化層。和大部份鑭系元素和錒系元素一樣,錒的氧化態一般是+3。在自然界中,只有少量的錒出現在鈾礦石當中,主要為同位素227Ac,並進行β衰變,半衰期為21.772年。每一噸鈾礦石約含0.2毫克的錒元素。由於錒和鑭的化學和物理特性過於接近,因此要從礦石中分離出錒元素並不現實。科學家則是在核反應爐中以中子照射鐳-226來產生錒的。 錒因為稀少、昂貴,且具放射性,所以沒有大的工業用途。目前錒被用作中子源,以及在放射線療法中作為輻射源。.
查看 氘和锕
重氮甲烷
重氮甲烷是最简单的重氮化合物,化学式为CH2N2,室温下是一个不稳定的黄色有毒气体,具爆炸性,一般均使用它的乙醚溶液。它用作甲基化试剂,也用于制取亚甲基卡宾。 重氮甲烷是一个线形分子,有多个共振式,中间的氮原子带有部分正电荷,两端的碳和氮原子带有部分负电荷。其分子中可能还含有三原子四电子的大π键,从而导致重氮甲烷的偶极矩实际上并不大,与共振结构预测的结果有偏离。.
查看 氘和重氮甲烷
重水
重水(或称氘代水,化学式D2O或者2H2O)是水的一種,它的摩尔质量比一般水要重。普通的水(H2O)是由兩個只具有質子的氫原子和一個氧16原子所組成,但在重水分子內的兩個氫同位素氘,比一般氫原子有各多一個中子,因此造成重水分子的質量比一般水要重。地球上的水大約有 6,400分之一是半重水(HDO)。 由於普通水和重水都是由相同數量的氫和氧原子組成,兩者的化學反應皆會接近相同。但在物理上,重水的凝固点(即固態水的熔點)和沸點比普通水稍高,在一個大氣壓力下,重水的凝固點是攝氏3.82度,沸點是攝氏101.4度,密度為1.1056g/cm3。 有另一種重水稱為半重水,HDO,它只有一個氫原子是多一個中子的重氫。一般的半重水都並不純正,通常是50%HDO,25%的H2O 及 25%的D2O。除了由重氫組成的重水分子外,還有一種由重氧原子(氧17或氧18)組成的重水分子,稱為「重氧水」。由於分離出重氧水分子的難度較高,因此提煉純正重氧水的成本會比重氫水為高。.
查看 氘和重水
重水反應爐
重水反应堆简称“重水堆”或“HWR”(Heavy Water Reactors),是一类利用重水作为中子慢化剂的核反应堆。最常见的重水反应堆是CANDU反应堆。.
查看 氘和重水反應爐
里德伯常量
里德伯常量是物理学中经常用到的常數。根据2014年CODATA的结果,它的值是 里德伯常量起初是在为表示氢原子谱线的里德伯公式中引入的,里德伯公式 其中R即为里德伯常量。 1913年丹麦物理学家尼尔斯·波尔创立的波尔模型给出了里德伯常量的表达式: 其中: 然而应用波尔模型计算出里德伯常量的数值: 而实验值 二者差值超过万分之五。英国光谱学家福勒(A.Fowler)提出了这一质疑。1914年波尔提出,这是由于假设原子核静止不动引起的。实际情况是,原子核的质量不是无穷大,它与电子围绕共同的质心转动。波尔对其理论进行了修正,用原子核和电子的折合质量μ代替了电子质量: 不同原子的里德伯常量RA不同。令 其中: 而一种原子的里德伯常量 其中M是原子核的质量。 下面给出了几个不同元素的原子里德伯常量的数值: 1H:109 677.58 cm-1 2D:109 707.42 cm-1 3T:109 717.35 cm-1 4He+:109 722.27 cm-1 7Li2+:109 728.80 cm-1 8Be3+:109 730.70 cm-1.
查看 氘和里德伯常量
金属氢
金属氢是一种氢元素的简并态物质,双原子分子的同素异形体。当氢气被充分压缩,经过相变后便会产生金属氢,此形态的氢表现出金属的特性。此形态是由1935年以理论预测出 。 固態金属氢是由原子核(即质子)组成的晶体结构,其原子间隔小于玻尔半径,与电子波长长度相当(参见德布罗意波长)。电子脱离了分子轨道,表现为一般金属中的自由电子。而在‘液态’金屬氢中,质子没有晶格次序,质子和电子组成液态的系统。 2017年初,哈佛大學的研究团队通过对氢气施加495GPa的高压,首次制得固态金属氢。 2017年2月22日,由于操作失误,盛放金属氢的鑽石容器破裂,这块金属氢样本消失了。.
查看 氘和金属氢
金星
金星(英語、拉丁語:Venus,天文符號:♀),在太陽系的八大行星中,是從太陽向外的第二顆行星,軌道公轉週期為224.7地球日,它沒有天然的衛星。在中國古代稱為太白、明星或大囂,另外早晨出現在東方稱啟明,晚上出現在西方稱長庚。到西漢時期,《史記‧天官書》作者天文學家司馬遷從實際觀測發現太白為白色,與「五行」學說聯繫在一起,正式把它命名為金星。它的西文名稱源自羅馬神話的愛與美的女神,维纳斯(Venus),古希腊人称为阿佛洛狄忒,也是希腊神话中爱与美的女神。金星的天文符号用维纳斯的梳妆镜来表示。 它在夜空中的亮度僅次於月球,是第二亮的天然天體,視星等可以達到 -4.7等,足以照射出影子。由於金星是在地球內側的內行星,它永遠不會遠離太陽運行:它的離日度最大值為47.8°。 金星是一顆類地行星,因為它的大小、質量、體積與到太陽的距離,均與地球相似,所以經常被稱為地球的姊妹星。然而,它在其它方面則明顯的與地球不同。它有著四顆類地行星中最濃厚的大氣層,其中超過96%都是二氧化碳,行星表面的大氣壓力是地球的92倍。表面的平均溫度高達,是太陽系最熱的行星,比最靠近太陽的水星還要熱。金星沒有將碳吸收進入岩石的碳循環,似乎也沒有任何有機生物來吸收生物量的碳。金星被一層高反射、不透明的硫酸雲覆蓋著,阻擋了來自太空中,可能抵達表面的可見光。它在過去可能擁有海洋,並且外觀與地球極為相似,但是隨著失控的溫室效應導致溫度上升而全部蒸發掉了B.M.
查看 氘和金星
金星大氣層
金星大氣層是由俄羅斯科學家米哈伊爾·瓦西里耶維奇·羅蒙諾索夫於1761年在聖彼得堡觀測金星凌日時發現的。它比地球大氣層更為厚重與濃密,其表面溫度為740 K或467°C,而氣壓則為93大氣壓,主要為二氧化碳所構成。金星的大氣層中有硫酸形成的不透明雲,因此在地球或金星環繞探測器上不可能以可見光觀測金星表面。金星表面的地形是以雷達成像的方式探測得知。金星大氣層主要由二氧化碳和氮組成,以及少許痕量氣體。 金星的大氣層受到超高速大氣環流和超慢速自轉影響。金星的大氣環流只需要四個地球日就可以環繞金星一周,但金星的恆星日卻有243日。金星的風速最高可達到100 m/s或360 km/h,是金星自轉速度的60倍;而地球最高速的風速度只有地球自轉速度的10%到20%。另一方面,金星的風速隨高度下降而降低,在表面時風速大約是10 km/h。金星兩極則有屬於反氣旋的極地渦旋。每個氣旋都有兩個風眼,並且有特殊的S型雲結構。 金星和地球不同的是它缺乏磁場,而金星的電離層將大氣層和太空以及太陽風分離。電離層將太陽磁場隔離,使金星的磁場環境相當特殊,造成金星的磁層是「誘發磁層」。包含水蒸氣等較輕氣體則持續被太陽風經由誘發磁尾吹出金星大氣層。推測40億年前的金星大氣層與表面有液態水的地球大氣層相當類似。失控溫室效應(Runaway greenhouse effect)造成金星表面的液態水蒸發,並且使其他溫室氣體含量上升。 儘管金星表面的狀況相當嚴苛,在金星大氣層50到65公里高的地方氣壓與溫度卻與地球相若,使金星的高層大氣是太陽系中環境最類似地球的地方,甚至比火星表面更類似。因為溫度和壓力類似,並且在金星上可呼吸空氣(21%的氧和78%的氮)是上升氣體,類似地球大氣層中的氦。因此有人提出可在金星的高層大氣進行探測和殖民。 2013年1月29日,歐洲太空總署科學家宣布金星電離層物質外流的模式與「類似條件下來自彗星彗核的離子尾」類似。.
查看 氘和金星大氣層
金星地質
金星的表面有許多讓人驚訝的地表特徵。今日對金星表面所知道的知識大多來自於1990年8月16日至1994年9月完成6次環繞金星的麥哲倫號金星探測器;該探測器總共測繪了98%的金星表面,且有22%是可使用3D眼鏡觀看的立體影像。 金星表面被濃密的大氣層覆蓋,並且有火山曾經激烈活動的證據。金星上的盾狀火山和複式火山和地球相似。 相對於月球、火星和水星,金星表面甚少小型撞擊坑。這很可能是因為金星的濃密大氣層將較小的流星燒光。金星的中型到大型撞擊坑比小型撞擊坑多,但數量仍不如月球和水星。 在金星上還有一些特殊的地表特徵,其中包含冕狀物(Corona,因為外表像帽子)、鑲嵌地塊(Tesserae,指高度變形的大範圍區域,可見到二維或三維地形摺曲和破碎地形,一般認為只在金星發現)、蛛網膜地形(Arachnoid,類似蜘蛛網)。並有發現長熔岩河,以及風蝕作用和板塊運動造成金星表面現在複雜地形的證據。 雖然金星是最接近地球的行星(和地球下合時距離僅約4000萬公里左右),而且和地球體積相近;但至今沒有一個探測器可在金星表面工作數小時以上,這是因為金星的大氣壓力是地球的 90 倍。而金星表面的溫度大約是 450°C。最可能原因是金星大氣層大量二氧化碳 (96.5%)造成的溫室效應。 以紫外線探測金星可看到在赤道附近有 Y 形的雲系統形成,代表赤道上空的大氣環流每四天就可環繞金星一週,所以風速可高達 500 km/h 。這種高速風存在於高空,但在金星表面附近的大氣層則相當平靜,且多數金星影像中甚少風蝕的證據。.
查看 氘和金星地質
電子磁偶極矩
電子磁偶極矩 是在原子物理學中由電子自身自旋特性所引起的電子的磁矩 。電子磁偶極矩的值為−9284.764 × 10−27 J.T-1。最近量測到的電子磁偶極矩的精確度為7.6×10-13.
查看 氘和電子磁偶極矩
雙質子
在物理學中,雙質子,是指僅含有2個質子、不包含任何中子的核素,是一種假想的氦同位素,因此又稱為氦-2(Helium-2,)。一般認為雙質子(或氦-2)無法穩定存在,是由於核力的自旋-自旋間耦合(spin-spin interaction)和包立不相容原理,導致的兩個質子自旋角動量相反,使得其可能擁有負的结合能。雖然不穩定,但仍有許多相關研究。亦有研究認為,若雙質子能穩定存在,則恆星的核反應將會變得更激烈,導致宇宙成為難以孕育生命的宇宙,對大霹靂和恆星核合成也會造成影響。.
查看 氘和雙質子
HD 143567 b
HD 143567 b,即HIP 78530 b,是一顆可能是氣體巨行星或棕矮星的天體,母恆星是天蠍座的HD 143567。該天體早在2000年就被觀測到,但直到2008年直接拍攝到它之前都未被確認。該影像受到一個科學團隊的關注,並且持續對它進行觀測。HD 143567 b的母恆星是屬於上天蠍星協的明亮年輕藍色恆星。該天體本身的質量是木星的23倍,宣布發現它的論文宣稱它和母恆星的距離是冥王星與太陽距離的18倍,根據以上推測的軌道判定其公轉週期長達12000年。.
Μ子
μ子(渺子,muon)是一种带有一个单位负电荷、自旋为1/2的基本粒子。μ子与同属于轻子的电子和τ子具有相似的性质,人们至今未发现轻子具有任何内部结构。历史上曾经将μ子称为μ介子,但现代粒子物理学认为μ子并不属于介子(參見历史)。 每一种基本粒子都有与之对应的反粒子,μ子的反粒子是反μ子(反渺子,antimuon)。反μ子(μ+)与μ子(μ-)相比只是带一个单位的正电荷,质量、自旋等性质完全相同,因此又叫做正μ子。 与其他带电的轻子一样,μ子有一个与之伴随的中微子——μ中微子(νμ)。μ中微子与电中微子νe参与的反应不同,是两种不同的粒子。.
查看 氘和Μ子
NIH重排反应
NIH重排反应,或称NIH迁移(NIH shift) 芳环在羟基化或类似过程中,一个芳环氢原子发生的分子内迁移。也称1,2-负氢迁移。该现象一般通过同位素标记的方法观察到并进行研究。 上面的例子中一个芳环氢被氘原子(红)替换,底物中氘与甲基是处于对位的,最后产物中羟基与甲基处对位,而氘与甲基则处间位。 很多羟化酶的机理中包括NIH重排这一步骤,比如4-羟苯基丙酮酸双氧化酶和依赖四氢生物蝶呤的羟化酶类。反应物也可以是卤代芳烃,反应中发生卤素原子的1,2-迁移,使原来卤素取代的位置转化为酚羟基。 此反应最早是由美国国立卫生研究院(缩写NIH)的研究者发现的,反应也因此得名。.
查看 氘和NIH重排反应
OGame
《OGame銀河帝國》是一款使用网页浏览器進行的战争游戏,德國公司於2002年10月3日在德國首次運行,目前已在27個國家發行。.
查看 氘和OGame
WISE 0855–0714
WISE 0855–0714,完整編號WISE J085510.83–071442.5,是一顆距離地球7.175光年(2.2秒差距)的(次)棕矮星,天文學家分析廣域紅外線巡天探測衛星(WISE)的資料後,於2014年宣布發現該天體。 ,它是已知的恆星和棕矮星中自行第三高(8.1″ yr–1),以及恆星視差第四大的天體(454 mas),這代表它是太陽系外距離太陽第四近的恆星系。它也是已知棕矮星或次棕矮星中溫度最低的,表面溫度只有。.
暈族大質量緻密天體
晕族大质量致密天体(MAssive Compact Halo Objects,缩写为MACHOs),又名大质量致密晕天体,是一个天文学的普通名词,可以用来解释可能存在于星系晕的暗物质。晕族大质量致密天体是一些体积很小的大质量重子物质,没有或只有很少的电磁辐射,在星际空间不与恒星系统发生影响。晕族大质量致密天体自身不发光,所以很难被探测到。晕族大质量致密天体也可能是黑洞、中子星、褐矮星、自由行星、白矮星和非常微弱的红矮星,也有人认为晕族大质量致密天体和大质量弱相互作用粒子(WIMP)都是暗物质的候选者之一。.
查看 氘和暈族大質量緻密天體
柯洛3b
柯洛3b(最初也被称为柯洛-系外行星-3b)是一颗位于天鹰座的天体,其母星为F型恒星柯洛3。该天体质量为木星的21.66倍,可能是褐矮星或大质量系外行星。其轨道周期为4.2568地球日。由于法国所主持的柯洛计划观测到了柯洛3b与其母星的凌星现象,所以该天体的存在得以确定。.
查看 氘和柯洛3b
恒星
恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.
查看 氘和恒星
恆星形成
恆星形成是分子雲的高密度區崩潰成為球形的電漿形成恒星的過程。作為天文物理的一個分支,恆星形成的研究包括作為前導的星際物質和巨分子雲,到恆星形成過程,早期型恆星和行星形成則是直接的成果。恆星形成的理論,不僅是一顆單獨恆星的形成,還必須統計聯星和初始质量函数。.
查看 氘和恆星形成
恆星核合成
恆星核合成 是解釋重元素是由恆星內部的原子經由核融合創造出來的化學元素理論。自從大爆炸期間產生氫、氦、鋰之後,恆星核合成就一直持續地創造重元素。這原本是一個高度預測的理論,但經由觀測到的元素豐度和計算的基礎上,已經有了良好的協定。它解釋了宇宙中元素的豐度為何會隨著時間而增長,以及為什麼某些元素及其同位素會比其它的元素更豐富。這個理論最初是由弗雷德霍伊爾(Fred Hoyle)in在1946年提出,然後在1954年精煉 。進一步的發展,特別是對重元素中比鐵重的元素經由中子捕獲的核合成,在霍伊爾和伯比奇夫婦(傑佛瑞·伯比奇和瑪格麗特·伯比奇)、威廉·福勒四人於1957年提出了著名的元素合成理論(即著名的B2FH論文) ,成為天文物理學史上最受人引用的論文之一。 恆星演化是因它們的組成(元素的豐度)在生命歷程中的改變。首先是氫燃燒(主序星),然後是氦燃燒(紅巨星),並逐漸燃燒更重的元素。然而,因為這些重元素都包含在恆星內部,這本身並沒有明顯的改變宇宙中元素的豐度。在它們生命的後期,低質量的恆星將通過恆星風慢慢地彈出它們的大氣層,形成行星狀星雲;而質量更高的恆星將通過超新星的突發性災難事件來噴發質量。超新星核合成這個名詞被用來描述大質量恆星(12-35倍太陽質量)在演化和爆炸前所創造的元素。這些大質量恆星從碳()到鎳()的各種新同位素的最主要來源。 進一步的燃燒序列是由重力坍縮和其相應的加熱驅動的,導致重元素的碳、氧和矽燃燒。然而,大多數原子量範圍在 (從矽到鎳)核合成的重元素都是由恆星上層崩潰到核心,造成一個壓縮衝擊波反彈向外形成的。短暫的衝擊波升高了大約50%的溫度,從而引起了大約1秒鐘的劇烈燃燒。在大質量恆星最後的燃燒稱為超新星核合成或是"爆炸核合成",是恆星產生重元素的最後一個時期。 促進核合成理論發展的因素是發現宇宙中化學元素的豐度。對具體描述的需要已經受到太陽系化學同位素相對豐度的啟發。當繪製在以元素的原子數為函數的圖表上時,這些豐度有一個參差不齊的鋸齒狀形狀,而變化的因素數以萬計(參見核合成#歷史)。這表明這個自然的過程不是隨機的。第二個啟發是在20世紀了解恆星的核合成發生過程,它被認識到太陽的長壽,和從核融合反應釋放出來的能量是光與熱的來源 。.
查看 氘和恆星核合成
核原料
核原料一般指未经过提炼成核燃料的物质。核裂变与核聚变所使用的原料是不同的。.
查看 氘和核原料
核合成
核合成是從已經存在的核子(質子和中子)創造出新原子核的過程。原始的核子來自大霹靂之後已經冷卻至一千萬度以下,由夸克膠子形成的等離子體海洋。在之後的幾分鐘內,只有質子和中子,也有少量的鋰和鈹(原子量都是7)被合成,但相對來說仍只有很少的數量。太初核合成的第一個過程可以稱為核起源(成核作用),隨後產生各種元素的核合成,包括所有的碳、氧等元素,都是發生在原始恆星內部的核融合或核分裂。.
查看 氘和核合成
核嬗变
核嬗變是一種化學元素轉化成另外一種元素,或一種化學元素的某種同位素轉化為另一種同位素的过程。能夠引發核嬗變的核反應包括一個或多個粒子(如質子、中子以及原子核)與原子核發生碰撞后引發的反應,也包括原子核的自發衰變。 但反過來說,原子核的自發衰變或者與其他粒子的碰撞並不一定都導致核嬗變。比如,γ衰變以及同它有關的内轉換過程就不會導致核嬗變。核嬗變既可以自然發生,也可以人工引發。.
查看 氘和核嬗变
核動力
核动力(nuclear power,也稱原子能或核能)是利用可控核反应来获取能量,然后产生动力、热量和电能。该术语包括核裂变,核衰变和核聚变。产生核电的工厂被称作核电站,将核能转化为电能的装置包括反应堆和汽轮发电机。核能在反应堆中被转化为热能,热能将水变为蒸汽推动汽轮发电机组发电。 利用核反应来获取能量的原理是:当裂变材料(例如铀-235)在受人为控制的条件下发生核裂变时,核能就会以热的形式被释放出来,这些热量会被用来驱动蒸汽机。蒸汽机可以直接提供动力,也可以连接发电机来产生电能。世界各国军队中的某些潜艇及航空母舰以核能为动力(主要是美國)。 根據國際能源署的資料,2007年全球電力有13.8%由核能提供。截至2014年9月,全世界共有437个核电机组处于运行状态,总装机容量为374.5吉瓦,虽然不是所有的核反应堆都正在发电。超过150艘使用核动力推进的舰船已被建造,由超过180个核反应堆提供提供动力。 核动力相關的重大事故包括三哩岛核泄漏事故(1979年)、切尔诺贝利核事故(1986年)、福岛第一核电站事故(2011年)和一些核动力潜艇事故。在各種能源的事故之中,按照每个单位发电的人命损失计算,核电的安全记录優于其他几种主要的发电方式。 If you cannot access the paper via the above link, the following link is open to the public, credit to the authors.
查看 氘和核動力
核磁共振波谱法
-- 核磁共振波谱法(Nuclear Magnetic Resonance spectroscopy,简称 NMR spectroscopy 或 NMR ),又称核磁共振波谱,是将核磁共振现象应用于测定分子结构的一种谱学技术。目前,核磁共振波谱的研究主要集中在1H(氢谱)和13C(碳谱)两类原子核的波谱。 人们可以从核磁共振波谱上获取很多信息,正如同红外光谱一样,核磁共振波谱也可以提供分子中化学官能团的数目和种类,但除此之外,它还可以提供许多红外光谱无法提供的信息。核磁共振波谱对自然科学研究有着深远的影响,人们不仅可以借助它来研究反应机理,还可以用来研究蛋白质和核酸的结构与功能。供研究的核磁样品可为液体或固体。 波谱这一译名是科学家丁渝提出的。.
查看 氘和核磁共振波谱法
核素
核素(Nuclide)是具有特定原子量、原子序数和核能态,且平均寿命长得足以被观察到的一类原子。它是带有原子中的電子雲的某类特殊原子核,以其质量数、中子数以及核的能态为标识。.
查看 氘和核素
核燃料
核燃料(nuclear fuel)是指可被核反应堆利用,通过核裂变或核聚变产生实用核能的材料。核燃料既能指燃料本身,也能代指由燃料材料、结构材料和中子减速剂及中子反射材料等组成的燃料棒。 核燃料具有在所有实际燃料来源中最高的能量密度。.
查看 氘和核燃料
核融合體
核融合體(fusor)是加州柏克萊大學的教授Gibor Basri向國際天文聯合會建議,用來協助說明天體的術語。根據他的定義,一個核融合體是在"生命週期中能在核心進行核融合的天體"。這個定義包含任何一種形式的核融合,一個核融合體的最低質量大約是木星質量的13倍,在這個點是有可能上進行氘的融合,但遠低於進行氫的融合所需要的可能:大約是木星質量的60倍。而直到木星質量75倍以上的天體,即當重力收縮,也就是引力產生的收縮受到內部核反應產生的熱能抑制,才可能被視為恆星。.
查看 氘和核融合體
核聚变
--,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。在此过程中,物质没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子(能量)。核聚变是给活跃的或“主序的”恆星提供能量的过程。 两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 舉個例子:两个質量小的原子,比方說兩個氚,在一定条件下(如超高温和高压),會发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放。 原子核中蕴藏巨大的能量。根据质能方程E.
查看 氘和核聚变
核裂变
核裂变(;),--,是指由較重的(原子序数較大的)原子,主要是指鈾或鈽,分裂成较輕的(原子序数较小的)原子的一種核反應或放射性衰變形式。核裂变是由莉澤·邁特納、奥托·哈恩及奥托·罗伯特·弗里施等科學家在1938年發現。原子彈以及核电站的能量来源都是核裂变。早期原子彈應用鈽-239為原料製成。而鈾-235裂變在核電廠最常見。 重核原子經中子撞擊後,分裂成為兩個較輕的原子,同時釋放出數個中子,並且以伽马射线的方式釋放光子。釋放出的中子再去撞擊其它的重核原子,從而形成鏈式反應而自發分裂。原子核分裂時除放出中子還會放出熱,核電廠用以發電的能量即來源於此。因此核裂变產物的結合能需大於反應物的的結合能。 核裂变會將化學元素變成另一種化學元素,因此核裂变也是核遷變的一種。所形成的二個原子質量會有些差異,以常見的可裂变物质同位素而言,形成二個原子的質量比約為3:2。大部份的核裂变會形成二個原子,偶爾會有形成三個原子的核裂变,稱為,大約每一千次會出現二至四次,其中形成的最小產物大小介於質子和氬原子核之間。 現代的核裂变多半是刻意產生,由中子撞擊引發的人造核反應,偶爾會有自發性的,因放射性衰變產生的核裂变,後者不需要中子的引發,特別會出現在一些質量數非常高的同位素,其產物的組成有相當的機率性甚至混沌性,和质子发射、α衰變、等單純由量子穿隧產生的裂变不同,後面這些裂变每次都會產生相同的產物。原子彈以及核电站的能量来源都是核裂变。核燃料是指一物質當中子撞擊引發核裂变時也會釋放中子,因此可以產生鏈式反應,使核裂变持續進行。在核电站中,其能量產生速率控制在一個較小的速率,而在原子彈中能量以非常快速不受控制的方式釋放。 由於每次核分裂釋放出的中子數量大於一個,因此若對鏈式反應不加以控制,同時發生的核分裂數目將在極短時間內以幾何級数形式增長。若聚集在一起的重核原子足夠多,將會瞬間釋放大量的能量。原子彈便應用了核分裂的這種特性。製成原子彈所使用的重核含量,需要在90%以上。 核能發電應用中所使用的核燃料,鈾-235的含量通常很低,大約在3%到5%,因此不會產生核爆。但核電廠仍需要對反應爐中的中子數量加以控制,以防止功率過高造成爐心熔毀的事故。通常會在反應爐的慢化劑中添加硼,並使用控制棒吸收燃料棒中的中子以控制核分裂速度。從鎘以後的所有元素都能分裂。 核分裂時,大部分的分裂中子均是一分裂就立即釋出,稱為瞬發中子,少部分則在之後(一至數十秒)才釋出,稱為延遲中子。.
查看 氘和核裂变
核武器设计方案
核武器设计方案是指如何设计核武器,使之能够起爆引起核爆炸。设计核武器需要考虑物理上、化学上以及工程上的各种因素。核武器基本上可以分为三种类型,而这三种类型核武器爆炸时的主要能量来源在一般情况下都是核分裂,而不是核聚变。.
查看 氘和核武器设计方案
格里·诺伊格鲍尔
格哈特“格里”·诺伊格鲍尔(Gerhart "Gerry" Neugebauer,),美国天文学家,在红外天文学领域做出了开创性的工作。.
查看 氘和格里·诺伊格鲍尔
棕矮星
褐矮星又称--矮星,是質量太低,在核心不能維持大規模的氫融合反應,與主序恆星不同的次恆星。它們的質量據有最重的氣體巨星和最輕的恆星,質量上限大約在75至80 木星質量(MJ)。棕矮星的質量至少超過氘融合所需要的13 MJ,而超過〜65 MJ,鋰融合就可以進行。 在2013年3月,有一篇論文提出質量非常低的棕矮星和巨大行星的分界大約在〜13木星質量,引起了學界的討論。相似的研究涉及DENIS-P J082303.1-491201 b,在2014年3月發現的一個極低溫的聯星系統,質量較低的成員大約只有29木星質量,並且被列名為質量最大的系外行星。儘管如此,一個學派認為要基於形成;另一派認為要依據內部的物理。 棕矮星一樣可以依據光譜分類,主要的類型有M、L、T、和Y。不管它們的名稱,棕矮星有著不同的顏色。依據A.
查看 氘和棕矮星
次棕矮星
次棕矮星(sub-brown dwarf)是一種與恆星及棕矮星形成方式相同(即透過星雲塌縮而成),但擁有行星等級質量的天體。它們的質量甚至比棕矮星的質量下限(大約木星質量的13倍)還要低,因此它們並非棕矮星,故名「次棕矮星」。不同於棕矮星的性質,它們的質量不足以進行氘的融合。 POSITION STATEMENT ON THE DEFINITION OF A "PLANET" (IAU).
查看 氘和次棕矮星
武仙座14b
武仙座14b是一颗位于武仙座、距离地球59光年的系外行星,其母星为武仙座 14。该行星体积接近于木星,但是质量大于木星。1998年7月日内瓦系外行星搜索团队发现了该行星。在当时,它是已发现的系外行星中轨道周期最长的,不过随后又发现了周期更长的系外行星。.
查看 氘和武仙座14b
氚
氚(法語,德語,英語,荷蘭語: Tritium;符号:T或3H),注音:ㄔㄨㄢ;拼音:chuān(1);客家話:con1。亦稱超重氫,是氫的同位素之一,元素符號為T或3H。它的原子核由一顆質子和兩顆中子所組成,並帶有放射性,會發生β衰變,放出電子變成氦-3,其半衰期為12.43年。 由於氚的β衰變只會放出高速移動的電子,不會穿透人體,因此只有大量吸入氚才會對人體有害。 在地球的自然界中,相比一般的氫氣,氚的含量極少。氚的產生是當宇宙射線所帶的高能量中子撞擊氘核,其氘核與中子結合為氚核。 氚与氘之用途類同,都是制造氢弹的原料。另外氚還可做為不需電源、有自發光能力,供暗處識別用的氚管。 氚的半衰期只有12.43年,每過12.43年就要減少一半,所以地球誕生之初存在的氚早已衰變得無影無蹤了。自然界中的氚,是宇宙射線的產物,只有幾千克,物稀為貴,所以大部分是人工合成。.
查看 氘和氚
氢
氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.
查看 氘和氢
氢弹
氢弹,又称热核武器,屬於核武器的一种。主要利用氢的同位素(氘、氚)的核融合反应所释放的能量来进行杀伤破坏,属于威力强大的大规模杀伤性武器。聯合國安全理事會五大常任理事國(美、俄、中、英、法)合法擁有熱核武器,2017年9月朝鲜民主主义人民共和国公開測試氢弹技术。.
查看 氘和氢弹
氢化锂
氢化锂(化学式:LiH)是锂的氢化物。它是无色晶体,通常带有杂质而呈灰色。氢化锂属于类盐氢化物,熔点很高(689°C)且对热稳定。比热容为29.73 J/mol*k,导热性随温度升高而下降,随组成和压力的变化也有不同(10~5 W/m*K,400 K)。 氢化锂可燃,与水剧烈反应生成腐蚀性的氢氧化锂和氢气:.
查看 氘和氢化锂
氧燃燒過程
氧燃燒過程是發生在大質量恆星內的核融合反應,使氧成為更重的元素,它需要1.5×109 K的高溫和1010 千克/米3的高密度才能進行。 主要的反應程序如下: |16O + 16O||→||28Si + 4He + 9.594 MeV |- | ||→||31P + 1H + 7.678 MeV |- | ||→||31S + n + 1.500 MeV |- | ||→||30Si + 21H + 0.381 MeV |- | ||→||30P + 2D - 2.409 MeV | 或二擇一 |16O + 16O||→||32S + γ |- | ||→||24Mg + 24He | 在氖燃燒,惰性的氧鎂核心已經在恆星中心形成,當氖燃燒結束後,核心會收縮並持續加熱至氧燃燒所需要的溫度和密度。大約6個月至1年的時間核心的氧就會耗盡,堆積出有豐富矽含量的核心。而一旦氧被耗盡,這個核心會因為熱度不夠而呈現惰性,核心開始降溫并触发再次收縮。收縮會使核心的溫度上昇,直到達到矽燃燒的燃點。向外,仍有氧燃燒的殼層,再往外是氖的殼層、碳殼、氦殼和氫殼。 Category:核合成.
查看 氘和氧燃燒過程
氫-4
氫-4是氫的同位素之一,它包含了質子和三個中子。在實驗室裡,是用氘的原子核來轟炸氚的原子核,來合成一個氫4的原子核。在這過程中,氚的原子核會從氘的原子核上吸收一個中子。氫4的質量為4.0279121U,半衰期為9.93696x10-23秒。.
查看 氘和氫-4
氫-5
氫-5是氫的同位素之一,它的原子核包含了四個中子和一個質子,在實驗室裡用一個氚的原子核來轟炸氚,這讓氚吸收兩個氚原子核的中子而形成了氫-5。氫-5的半衰期非常短,只有8.01930秒。.
查看 氘和氫-5
氫原子
氫原子是氫元素的原子。電中性的原子含有一個正價的質子與一個負價的電子,被庫侖定律束縛於原子核內。在大自然中,氫原子是豐度最高的同位素,稱為氫,氫-1 ,或氕。氫原子不含任何中子,別的氫同位素含有一個或多個中子。這條目主要描述氫-1 。 氫原子擁有一個質子和一個電子,是一個的簡單的二體系統。系統內的作用力只跟二體之間的距離有關,是反平方連心力,不需要將這反平方連心力二體系統再加理想化,簡單化。描述這系統的(非相對論性的)薛丁格方程式有解析解,也就是說,解答能以有限數量的常見函數來表達。滿足這薛丁格方程式的波函數可以完全地描述電子的量子行為。因此可以這樣說,在量子力學裏,沒有比氫原子問題更簡單,更實用,而又有解析解的問題了。所推演出來的基本物理理論,又可以用簡單的實驗來核對。所以,氫原子問題是個很重要的問題。 另外,理論上薛丁格方程式也可用於求解更複雜的原子與分子。但在大多數的案例中,皆無法獲得解析解,而必須藉用電腦(計算機)來進行計算與模擬,或者做一些簡化的假設,方能求得問題的解析解。.
查看 氘和氫原子
氫的同位素
氢(原子量:1.00794(7))共有7個已知同位素,其中有2個同位素是穩定的。它有三個天然的同位素,分別是氕、氘和氚(1H、2H、3H),另外四個同位素都非常的不穩定(4H到7H),只有在實驗室製造出來過,並沒有在自然界中出現。氫也是唯一跟其元素擁有不同名稱的同位素。雖然其他的元素的同位素在以前也有不同的名稱,但是今天已經不再使用了。.
查看 氘和氫的同位素
水
水(化学式:H2O)是由氢、氧两种元素组成的无机物,在常温常压下为无色无味的透明液体。水是地球上最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。人类很早就开始对水产生了认识,东西方古代朴素的物质观中都把水视为一种基本的组成元素,水是中國古代五行之一。人體有百分之七十是水。.
查看 氘和水
水的性質
水分子(化学式:H2O)是地球表面上最多的分子,除了以气体形式存在于大气中,其液体和固体形式占据了地面70-75%的组成部分。标准状况下,水分子在液体和气体之间保持动态平衡。室温下,它是无色,无味,透明的液体。作为通用溶剂之一,水可以溶解许多物质。因此,自然界极少有水的纯净物。.
查看 氘和水的性質
氘代丙酮
氘代丙酮是丙酮的氘代物,一种氘代溶剂。用作核磁共振波谱法溶剂。.
查看 氘和氘代丙酮
氘代二甲基亚砜
氘代DMSO,也称氘代二甲亚砜-d6((CD3)2S.
查看 氘和氘代二甲基亚砜
氘代二氯甲烷
氘代二氯甲烷(CD2Cl2)是一种二氯甲烷(DCM,CH2Cl2)的氢("H")被另一种同位素氘("D")取代的形式。氘代二氯甲烷因价格较为昂贵,在核磁共振波谱法当中应用并不多。 Category:氘代溶剂.
查看 氘和氘代二氯甲烷
氘代甲醇
氘代甲醇(CD3OD)是一种甲醇(MeOH,CH3OH)的氢("H")被另一种同位素氘("D")取代的形式。氘代甲醇是核磁共振波谱法的一种常用溶剂。 Category:氘代溶剂.
查看 氘和氘代甲醇
氘代苯
氘代苯,是一种苯(C6H6) 的氢("H")被另一种同位素氘("D")取代的形式。氘代苯在核磁共振波谱法当中是一种常用溶剂。 Category:氘代溶剂.
查看 氘和氘代苯
氘代氯仿
氘代氯仿(CDCl3)是氯仿的氘代物,一种氘代溶剂。无色液体。核磁仪器用试剂。使用原因是(1)它对样品有较好的溶解度;(2)其残留的信号峰不会干扰样品的信号峰。氘代氯仿的残留质子信号位于7.26ppm;可能残留的水峰在1.56ppm。.
查看 氘和氘代氯仿
氘燃燒
氘燃燒是發生在一些恆星和次恆星天體的核融合反應,其中的氘原子核和質子相結合,形成一個氦-3核融合反應。它發生在質子-質子鏈反應的第二階段,由兩個質子融合形成一個氘原子核,再進一步與另一個質子融合;但也可以是原初的氘燃燒過程。.
查看 氘和氘燃燒
气体列表
本列表收集了标准状况下的气体以及低沸点(<40°C)的液体。除非特别注明,该物质在气态为无色。.
查看 氘和气体列表
氙
氙(注音:ㄒㄧㄢ,漢語拼音:xiān;舊譯作氠、氥、𣱧)是一種化學元素,化學符號為Xe,原子序為54。氙是一種無色、無味的稀有氣體。地球大氣層中含有痕量的氙。 雖然氙的化學活性很低,但是它仍然能夠進行化學反應,例如形成六氟合鉑酸氙──首個被合成的稀有氣體化合物。 自然產生的氙由8種穩定同位素組成。氙還有40多種能夠進行放射性衰變的不穩定同位素。氙同位素的相對比例對研究太陽系早期歷史有重要的作用。具放射性的氙-135是核反應爐中最重要的中子吸收劑,可通過碘-135的核衰变產生。 氙可用在閃光燈和弧燈中,或作全身麻醉藥。最早的准分子激光設計以氙的二聚體分子(Xe2)作為激光介質,而早期激光設計亦用氙閃光燈作激光抽運。氙還可以用來尋找大質量弱相互作用粒子,或作航天器離子推力器的推進劑。.
查看 氘和氙
泰勒-乌拉姆设计方案
泰勒-乌拉姆方案是当前世界上绝大部分核融合武器所使用的核武器设计概念,擁有氫彈的國家中只有中國沒有採用此法。由于这个设计方案使用氢同位素聚变反应来产生中子,它被认为是氢弹的秘密。然而,在绝大多数应用中,它的毁灭性的能量都是来自于铀的核裂变,而不是氢的核聚变。它以两个主要的贡献者命名:爱德华·泰勒和斯坦尼斯拉夫·乌拉姆。他们在1951年为美国提出了这个设计方案。最初,这个方案被用于数百万吨当量的热核武器,但是由于它也非常适用于小型核武器,现在美、英、俄基本都使用泰勒-乌拉姆方案。 在接近三十年的时间里,这个方案的基本特征都作为国家机密秘而不宣。它的特征包括.
查看 氘和泰勒-乌拉姆设计方案
泰勒·威爾遜
泰勒·威爾遜(Taylor Wilson,),生於美國德克薩斯州,核子物理學者。2008年,在他14歲時,製造出一台Fusor,促發核融合反應。在2008年至2014年間,他被稱為最年輕製造出核融合反應的人,直到2014年傑米·愛德華茲(Jamie Edwards)宣稱打破他的記錄為止。.
查看 氘和泰勒·威爾遜
温室行动
温室作戰(Operation Greenhouse)是美国的第五次核试验,也是1951年内的第二次核试验。该核试验为氢弹的研制奠定了基础。试验场所设在太平洋试验场,所有的原子弹爆炸测试都在高大的铁塔上进行,以模仿在空中引爆原子弹的情况。 温室作戰的目的是测试适合作战时发动攻击的新型核武器,最重要的目标是减少裂变材料到最必须的程度,同时提升破坏力。由于一年半前苏联进行了首次核试验,故美国开始进行新型核武器的储备工作,许多尚未来得及测试。温室作戰对于热核武器的进一步开发是至关重要的。 在试验的 Mujinkarikku 岛上,试验人员修建了一些掩体、房屋和工厂以测试核武器的威力。 乔治(George)核试验是世界首次热核试验,这是一种环形的装置,并不适合作为武器使用。在装置中心放置了一些液态氢的重中子(氘、氚)。其威力并不显著,与其说是热核武器,更类似于助爆型原子弹。这次试验为之后首枚氢弹“常春藤麥克”测试了热核武器的基本制造原则。项目(Item)核试验是第一个助爆型裂变武器,是非助爆型核武器威力的两倍。.
查看 氘和温室行动
激活产物
活产物(Activation products)又稱為活化產物,是經中子活化后變得具有放射性的物質,比如核反應堆和原子彈中的結構材料,反應堆的冷卻劑,控制棒以及其他中子毒物。這些活化產物必須作為核廢料處理。反應堆主冷卻劑環路中活化產物的產生是核電站通常使用一系列並聯冷卻劑環路的主要原因。 聚變反應器中產生的聚變產物,比如氦-4,不具有放射性。但聚變反應會產生很高的中子通量,因此而生成的活化產物是一個主要問題。 活化產物中主要核素包括:.
查看 氘和激活产物
木星大氣層
木星大氣層是太陽系內最大的行星大氣層,主要由和太陽的比例大致相同的氫分子和氦構成,其他的化學成分,包括甲烷、氨、硫化氫和水只有很少的數量。水被認為存在於大氣層的深處,所以被觀測到的數值偏低。氧、氮、硫和惰性氣體的豐度大約是太陽的三倍。 木星的大氣層沒有明確的邊界,並且逐漸轉變成為行星內部的流體。從最低處到最高處,大氣的層次為對流層、平流層、增溫層和散逸層,各層有各自的溫度梯度特徵。最底層的對流層有複雜的雲雾组成的系統,並且呈現朦朧狀,包括數層的氨、硫化氫氨和水。上層的氨雲是可見的木星表面,組織成12道平行於赤道的帶狀雲,並且被稱為噴射氣流的強大帶狀氣流(風)分隔著。這些交替的雲氣有著不同顏色:暗的雲氣稱為帶(belt),而亮的雲氣稱為區(zone)。區的溫度比帶低,是上升的氣流,而帶是下降的氣體。較淺顏色的區被认为是由氨冰形成的,但形成顏色較深的帶的物质則尚未確知。這些帶狀結構和噴流的起源也還未被瞭解,不过已存在兩種解釋的模型。淺灘模型(shallow model)認為它們是覆蓋在穩定的內部結構上的表面現象。深層模型(deep model)認為帶和噴流是被組織成一定數量的圓柱體,是深入至深層木星地函的氫分子循環顯示在木星的表面。 木星的大氣層顯示廣泛的活動現象,包括不穩定的帶狀物、旋渦(氣旋和反氣旋)、風暴和閃電。旋渦自身會呈現巨大的紅色、白色或棕色的斑點(長圓形),最大的兩個斑點是大紅斑(GRS)和也是紅色的BA橢圓。這兩個和許多其他的大斑點都是反氣旋,較小的反氣旋傾向於白色,旋渦被認為深度不會超過數百公里,相對來說是較淺的結構。位於南半球的大紅斑,是太陽系中已知最大的旋渦,它可以容下數個地球,並且已經至少存在了300年。BA橢圓在大紅斑的南邊,大小是大紅斑的三分之一,是在2000年由3個白色的橢圓合併形成的紅斑。 木星有威力強大、經常伴著閃電的風暴。風暴是潮濕的大氣對流造成水的蒸發和結露造成的結果。他們是強大上升氣流的啟動源,形成明亮和濃厚的雲層。風暴主要形成在帶的區域。木星上有少數的閃電遠比地球的更具威力,但是平均的活動水準只是可以和地球上的不相上下。.
查看 氘和木星大氣層
末次冰期
末次冰期(Last glacial period)是距今时间最近的一次冰期,发生于第四纪的更新世晚期,始於约11万年前,终於1.2万年前。 末次冰期内,各地冰盖亦曾出現数次的進退。冰退称为间冰段,格陵兰的冰芯钻探表明,过去十万年的末次冰期共有24个间冰段。 这一现象称作丹斯伽阿德-厄施格尔周期(Dansgaard–Oeschger event)。末次冰期的最盛期發生於約1.8萬年前。一般而言,全球冷卻及冰川前進的模式相似,但也有局部的分野,這使得很難以大洲來比較。 末次冰期有時又會被俗稱為「末冰河時期」,不過這並不正確。因為冰河時期(大冰期)是大部份地球被大冰原覆蓋的一段持续上千万年的地质历史时期。冰河时期由多个交替出现的冰期与间冰期组成。另一方面,冰期是指冰河時期內部,在两次間冰期之間的一段較寒冷的時期。故此,末次冰期的終末並非末次冰河時期的終末。末次冰期約於1萬年前完結,而末冰河時期的终结並未到來。几乎没有證據表明已经持续了数百萬年的“冰期-間冰期循環”已告终结。 末次冰期是現今冰河時期所知最多的時期,在北美洲、歐亞大陸北部、喜瑪拉雅山及其他結冰地區都有詳細的研究。在這段時期的結冰作用覆蓋了很多地區,主要都是在北半球,南半球則較少。傳統上按地理分佈,它們會有不同的名稱,包括菲沙冰期(北美洲的太平洋山脈)、派恩代爾冰期、威斯康辛冰期(北美洲中部)、Devensian(不列顛群島)、米德蘭冰期(愛爾蘭)、玉木冰期(阿爾卑斯山)、梅里達冰期(委內瑞拉)、威赫塞爾冰期(斯堪地那維亞及北歐)、維斯瓦冰期(中歐北部)、瓦爾代冰期(東歐)、濟浪卡冰期(西伯利亞)、米蘭科維奇冰期(智利)、大理亚冰期(中国)及奥蒂拉冰期(新西蘭)。 从人类考古学看,末次冰期发生于人类的旧石器时代与中石器时代。随着地球走出末次冰期,人类历史也进入了新石器时代。.
查看 氘和末次冰期
最小質量恆星列表
這是一份有關最小質量恆星的列表,依木星質量與太陽質量的多寡來依序排列。 恆星質量是恆星最重要的一個要素。質量加上化學成分能確定一顆恆星的光度、實際上的大小和最後的命運。列在表上的恆星質量都小於1倍太陽質量,包括棕矮星與紅矮星。研究顯示大於13倍木星質量的天體會發生氘核聚變,而大於65倍木星質量的天體會產生鋰聚變,因此恆星的質量不會低於13倍木星質量。棕矮星是類恆星天體的一種,它們是所謂「失敗的恆星」(Failed Star),由於質量不足,不能像正常恆星那樣通過氫核聚變維持光度,無法成為主序星。但它們的內部及表面均呈對流狀態,不同的化學物質並不會在內部分層存在。研究表明褐矮星為處於13倍木星質量與75-80倍木星質量之間的天體。.
查看 氘和最小質量恆星列表
惯性静电约束
慣性靜電約束(Inertial Electrostatic Confinement,縮寫為IEC),一種核融合技術,以電場來加熱電漿,以誘發核融合。電場對帶電粒子(離子或電子)做功,可以將它加熱,直到發生核融合反應。這種裝置通常會採用球面設計,讓帶電粒子在其內部可以加速運動,但也有採用圓柱幾何設計。電場可能用線柵產生,或是由非中性的電漿雲來產生。.
查看 氘和惯性静电约束
星雲假說
星雲假說是在天體演化學的場合要解釋太陽系的形成與演化最被廣泛接受的模型。它建議太陽系是在星雲物質中形成的,這個理論最早是伊曼努爾·康德於1755年發表在自然史和天空理論。起初使用在太陽系的行星系統形成過程,現在更應用在宇宙的工作中。被廣泛接受的變體現代星雲假說是太陽星雲盤假說(solar nebular disk model,SNDM)或簡單的太陽星雲模型。這個星雲假說提供太陽系各種性質的解釋,包括行星軌道接近圓形和共軌道面,和它們的運動方向與太陽自轉方向的一致性。一些星雲假說的元素反映在現代的行星形成,但大多數的元素已經被取代。 依據星雲假說,形成恆星的雲是大質量和濃稠的分子氫-巨分子雲(giant molecular cloud,GMC)。這些雲是引力不穩定,並且物質在內部密集叢生的合併,然後旋轉、坍縮形成恆星。恆星形成是一個複雜的過程,總是先在年輕恆星周圍形成氣體的原行星盤。在某些情況下這可能孕育行星,但尚不清楚。因此,行星系統的形成被認為是恆星形成的自然結果。一顆類似太陽的恆星通常需要100萬年的十來形成,從原行星盤發展出行星系統還需要再1000萬年。 - 原行星盤是餵養中心恆星的吸積盤。起初很熱,稍後盤面逐漸變冷,成為所謂的金牛T星階段;此時,可能是岩石和冰的小塵埃顆粒形成。顆粒最終可能凝聚成公里尺度的微行星。如果盤有足夠的質量,增長會開始失控,導致迅速 -100,000年到300,000年- 形成月球到火星大小的原行星。臨近恆星,原行星會經過暴力的合併,生成幾顆類地行星。這個階段可能要經歷1億年至10億年。 巨行星的形成是一個更複雜的過程。它被認為要越過凍結線才會發生,在哪裡元行星主要由各種類型的冰組成。其結果是,它們會比原行星盤內側的巨大許多倍。原行星形成後的演化並不完全清楚,有些原行星會繼續成長,最終達到5-10地球質量-臨界值,必須開始從盤中吸積氫和氦。由核心積累氣體在開始時是很緩慢的,需要持續數百萬年,但是在原行星的質量達到30地球質量(),它就會以失控的速率加速吸收。像木星和土星這樣的行星,被認為只要一萬年就能累積如此大量的質量。當氣體耗盡時,吸積就停止了。在形成的期間或形成之後,行星都可以長距離的遷移。冰巨星像是天王星和海王星,被認為是失敗的核心,形成得太晚而盤面幾乎已經消失了。.
查看 氘和星雲假說
星际旅行:进取号剧情列表
《--》每集剧情列表是美国联合派拉蒙电视网(UPN)的一部剧集《-zh-hans:进取号;zh-hk:星艦前傳;zh-tw:星艦前傳;-》的部分剧情介绍。《--》亦是《星际旅行》系列的一部分。.
海王星
海王星是太陽系八大行星中距离太阳最远的,體積是太陽系第四大,但質量排名是第三。海王星的質量大約是地球的17倍,而類似雙胞胎的天王星因密度較低,質量大約是地球的14倍。海王星以羅馬神話中的尼普顿(Neptunus)命名,因為尼普顿是海神,所以中文譯為海王星。天文學的符號(♆,Unicode編碼U+2646),是希臘神話的海神波塞頓使用的三叉戟。 作爲一個冰巨行星,海王星的大氣層以氫和氦為主,還有微量的甲烷。在大氣層中的甲烷,只是使行星呈現藍色的一部分原因。因為海王星的藍色比有同樣份量的天王星更為鮮豔,因此應該還有其他成分對海王星明顯的顏色有所貢獻。 海王星有太陽系最強烈的風,測量到的風速高達每小時2,100公里。 1989年航海家2號飛掠過海王星,對南半球的大黑斑和木星的大紅斑做了比較。海王星雲頂的溫度是-218 °C(55K),因為距離太陽最遠,是太陽系最冷的地區之一。海王星核心的溫度約為7,000 °C,可以和太陽的表面比較,也和大多數已知的行星相似。 海王星在1846年9月23日被發現, 是唯一利用數學預測而非有計畫的觀測發現的行星。天文學家利用天王星軌道的攝動推測出海王星的存在與可能的位置。迄今只有航海家2號曾經在1989年8月25日拜訪過海王星。2003年,美國國家航空暨太空總署提出有如卡西尼-惠更斯號科學水準的海王星軌道探測計畫,但不使用熱滋生反應提供電力的推進裝置;這項計劃由噴射推進實驗室和加州理工學院一起完成。.
查看 氘和海王星
海爾-博普彗星
海爾-博普彗星(英文:Comet Hale-Bopp,編號:C/1995 O1)是一顆長周期彗星,於1995年由兩位美國業餘天文學家共同發現,於1997年4月1日過近日點。 1995年7月23日,美國人艾倫·海爾和湯瑪斯·博普分別獨立發現該彗星,它是眾多由業餘天文學家發現的彗星當中,距離太陽最遠的(於木星軌道外被發現)。與哈雷彗星比較,若把兩顆彗星放在同一軌道上,海爾-博普彗星的亮度會超過前者千倍。 通常彗星在木星軌道外會比較不顯眼,但海爾-博普彗星則例外,該彗星過近日點時光度為-1.4等,縱使在城市中亦能以肉眼看見,是自1975年最亮的彗星,因此它成為了近二十年來最壯觀的彗星之一。根據哈勃太空望遠鏡的影像,海爾-博普彗星的直徑估計約40公里,屬於大型彗星。 海爾-博普彗星的出現也引起了一些恐慌。 直至2006年1月仍有日本天文愛好者在澳大利亞拍攝到該彗星的身影;經初步計算,海爾-博普彗星於二千多年後會回歸。.
查看 氘和海爾-博普彗星
海斯塔克天文台
海斯塔克天文台是隸屬於麻省理工學院的一所天文的觀測所,它座落於麻塞諸塞州波士頓西北方大約的威斯福特(美國)。海斯塔克天文台最初是麻省理工學院的林肯實驗室為美國空軍建立的微波研究機構,於1960年開始建造,天 線於1964年開始運作。在1970年,這些設施被轉移給麻省理工學院,然後成立了東北電波天文台公司(Northeast Radio Observatory Corporation ,NEROC),與其他的大學共同操作海斯塔克天文台。 ,總共有九個機構參加了NEROC。 海斯塔克天文台的位置也是研究大氣科學中心的磨盤山觀測所所在地。林肯實驗室繼續使用這個場所,並稱之為林肯太空監視綜合站(Lincoln Space Surveillance Complex,LSSC) 。麻省理工學院地球、大氣和行星科學中心的喬治華萊士物理天文台位在海斯塔克天文台圓頂的南方翰威斯福特圓頂的東方。屬性上是波士頓業餘望遠鏡製造者在麻省理工學院的會所也在此處。 在水星上的海斯塔克鍊串就是依據海斯塔克天文臺命名的。.
查看 氘和海斯塔克天文台
数量级 (能量)
本頁焦耳為單位,按能量大小列出一些例子,以幫助理解不同能量的概念。.
查看 氘和数量级 (能量)
慣性局限融合
慣性局限融合(Inertial confinement fusion,縮寫為ICF),也譯為侷限慣性核融合、慣性約束核融合、慣性限制氫融合、惯性--,是一種核融合的技術。这项技术利用雷射的衝擊波使得通常包含氘和氚的燃料球达到极高的温度和压力,來引發核融合反應。 惯性约束是实现可控核聚变的两大主流方案之一(另一个是磁约束)。美國的國家點火設施(NIF)是目前最大的惯性约束聚变装置,以環空器進行實作,於2013年成功一次核融合反應實驗,使燃料球放出比施加雷射還大的能量。法國一個類似的大型設備(Laser Mégajoule,LMJ)也在進行相關研究。.
查看 氘和慣性局限融合
普林斯顿等离子体物理实验室
普林斯顿等离子体物理实验室(Princeton Plasma Physics Laboratory,PPPL)是一个研究等离子体物理学与核聚变的美国能源部国家实验室。实验室主要的工作是研究聚变能作为能源的发展和应用。 普林斯顿等离子体物理实验室的建立源于一个控制热核反应的冷战最高机密计划——“马特洪计划(Project Matterhorn)”。1961年,在马特洪计划解密后,此计划相关的实验室被更名为普林斯顿等离子体物理实验室。 普林斯顿等离子体物理实验室实际上位于普林斯顿大学的 Forrestal 校园,与普林斯顿大学主校区有一定距离;但实验室仍然有一个位于普林斯顿的地址。.
亦称为 Deuterium,氫-2,重氫。