我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

欧拉数 (物理学)

指数 欧拉数 (物理学)

欧拉数是流體力學的一個無因次量,表示局部压強损失和單位體積動能之間的比例,常用來描述一流場損失的特性,一個理想的無滯性流其欧拉数為1。 欧拉数的定義如下 \mathrm.

目录

  1. 2 关系: 雷诺数欧拉数

雷诺数

流体力学中,雷诺数(Reynolds number)是流体惯性力\frac与黏性力\frac比值的量度,它是一个無量纲量。 雷諾數較小時,黏滯力對流場的影響大於慣性力,流場中流速的擾動會因黏滯力而衰減,流體流動穩定,為層流;反之,若雷諾數較大時,慣性力對流場的影響大於黏滯力,流體流動較不穩定,流速的微小變化容易發展、增強,形成紊亂、不規則的紊流流場。.

查看 欧拉数 (物理学)和雷诺数

欧拉数

歐拉數En是一個整數數列,由下列泰勒級數展開式定義: 奇數項的歐拉數皆為零,偶數項的歐拉數正負相間,開首為: 部份作者會把數列中的奇數項移除,只替偶數項編序,並且把負號轉為正號。这里依從上段所用的慣例。 歐拉數在正割sec x和雙曲正割sech x的泰勒級數出現。雙曲正割就是定義中使用的函數。組合數學也會用到歐拉數。此外,在关于自然数负幂的交错和中也涉及到欧拉数。 歐拉多項式是以歐拉數構造。 Euler.

查看 欧拉数 (物理学)和欧拉数