目录
34 关系: 双周期函数,安德魯·懷爾斯,上半平面,希爾伯特模形式,庞加莱半平面模型,形式,志村簇,圓周率,函数列表,算术,狄利克雷η函数,表示论,西格爾模形式,詹姆斯·维特布莱德·李·格莱舍,魏爾斯特拉斯橢圓函數,谷山-志村定理,费马大定理,黑格纳数,阿贝尔奖,自守形式,艾森斯坦級數,Θ函數,Ε-猜想,L函數,模空间,模曲線,歐拉函數 (複變函數),朗蘭茲綱領,戴德金η函數,斯里尼瓦瑟·拉马努金,数论,數學之美,數論主題列表,怪兽月光理论。
双周期函数
双周期函数是数学中对一类定义在复平面上的函数(复变量函数)的称呼,是在复平面的两个不同“方向”上都有周期性变化的函数。直观上可以理解为平面上“网格状”变化的函数。双周期函数是定义域为实数的周期函数在复变量函数中的推广。在复变量函数中,只有一个周期的函数称为单周期函数,如指数函数,周期是2。.
查看 模形式和双周期函数
安德魯·懷爾斯
安德魯·約翰·懷爾斯爵士,KBE,FRS(Sir Andrew John Wiles,,),英國數學家,居於美國。因證明費馬最後定理,獲得2016年阿貝爾獎。.
查看 模形式和安德魯·懷爾斯
上半平面
上半平面(upper half-plane)H是一数学名詞,是指由虛部為正的复数組成的集合: 此詞語的由來是因為虛數x + iy常視為是在笛卡儿坐标系下,平面中的點(x,y),若垂直方向為Y軸時,其上半平面對應X軸以上的區域,因此也對應y > 0區域的複數。 上半平面是許多複分析中重要函數的定義域,特別是模形式。y n,最大对称,單連通,截面曲率為-1的n維黎曼流形。此表示方式下,上半平面為H2因為其實維度為2。 数论中的希爾伯特模形式和一些函數在許多上半平面組成的空間Hn有關。另一個數論研究者感興趣的空間是Hn,是西格爾模形式的定義域。.
查看 模形式和上半平面
希爾伯特模形式
在數學中,希爾伯特模形式是一類自守形式,對應於全實域 K 及相應的群 \mathrm_ GL(2)_K。這可以視作模形式的一種多變元推廣。當 K.
查看 模形式和希爾伯特模形式
庞加莱半平面模型
在非欧几里得几何中,庞加莱半平面模型(Poincaré half-plane model)是赋有庞加莱度量的上半平面,这是二维双曲几何的一个模型。 它以昂利·庞加莱命名,但最初是贝尔特拉米(Eugenio Beltrami)发现的,他用这个模型与克莱因模型以及庞加莱圆盘模型(属于黎曼)证明了双曲几何与欧几里得几何的相容性等价(equiconsistent)。圆盘模型与半平面模型在共形映射下是等价的。.
查看 模形式和庞加莱半平面模型
形式
形式可以指:.
查看 模形式和形式
志村簇
在數學中的代數幾何與數論領域,志村簇是一類特殊的代數簇,可視之為模曲線在高維度的類推。粗略地說,志村簇乃是埃爾米特對稱空間對某個代數群之同餘子群的商;最簡單的例子是上半平面對 \mathrm_2(\Z) 的商。一維的志村簇有時也被稱為志村曲線。 志村五郎在1960年代研究了上述商空間的緊化,其目的在推廣複乘法理論及互逆律;在此需要的基本結果是 Baily-Borel 定理(1966)。此後,人們也發現志村簇是某類霍奇結構的模空間。.
查看 模形式和志村簇
圓周率
圓周率是一个数学常数,为一个圆的周长和其直径的比率,约等於3.14159。它在18世纪中期之后一般用希腊字母π指代,有时也拼写为“pi”()。 因为π是一个无理数,所以它不能用分数完全表示出来(即它的小数部分是一个无限不循环小数)。当然,它可以用像\frac般的有理数的近似值表示。π的数字序列被認為是随机分布的,有一种统计上特别的随机性,但至今未能证明。此外,π还是一个超越数——它不是任何有理数系数多项式的根。由於π的超越性质,因此不可能用尺规作图解化圆为方的问题。 几个文明古国在很早就需要计算出π的较精确的值以便于生产中的计算。公元5世纪时,南朝宋数学家祖冲之用几何方法将圆周率计算到小数点后7位数字。大约同一时间,印度的数学家也将圆周率计算到小数点后5位。历史上首个π的精确无穷级数公式(即π的莱布尼茨公式)直到约1000年后才由印度数学家发现。在20和21世纪,由于计算机技术的快速发展,借助计算机的计算使得π的精度急速提高。截至2015年,π的十进制精度已高达1013位。当前人类计算π的值的主要原因为打破记录、测试超级计算机的计算能力和高精度乘法算法,因为几乎所有的科学研究对π的精度要求都不会超过几百位。 因为π的定义中涉及圆,所以π在三角学和几何学的许多公式,特别是在圆形、椭球形或球形相關公式中广泛应用。由于用於特征值这一特殊作用,它也在一些数学和科学领域(例如数论和统计中计算数据的几何形状)中出现,也在宇宙学,热力学,力学和电磁学中有所出现。π的广泛应用使它成为科学界内外最广为人知的常数之一。人们已经出版了几本专门介绍π的书籍,圆周率日(3月14日)和π值计算突破记录也往往会成为报纸的新闻头条。此外,背诵π值的世界记录已经达到70,000位的精度。.
查看 模形式和圓周率
函数列表
数学中的许多函数或函数族是非常重要的,这些函数具有他们特定的名称。有大量关于特殊函数的理论是由统计学和数学物理发展而来的。.
查看 模形式和函数列表
算术
算術(arithmetic)是数学最古老且最簡單的一個分支,幾乎被每個人使用著,從日常生活上簡單的算數到高深的科学及工商业計算都會用到。一般而言,算術這一詞指的是記錄數字某些運算基本性質的数学分支。常用的运算有加法、減法、乘法、除法,有时候,更复杂的运算如指数和平方根,也包括在算术运算的范畴内。算术运算要按照特定规则来进行。 自然数、整数、有理数(以分數的形式)和实数(以十进制指数的形式)的运算主要是在小学和中学的时候学习。用百分比形式进行运算也主要是在这个时候学习。然而,在成人中,很多人使用计算器,计算机或者算盘来进行数学计算。 專業数学家有時會使用高等算術來指数论,但這不應該和初等算術相搞混。另外,算術也是初等代數的重要部份之一。.
查看 模形式和算术
狄利克雷η函数
在数学的解析数论领域,狄利克雷η函数定义为: 其中 ζ 是黎曼ζ函數。但η函数也用常来定义黎曼ζ函數。 对实部为正数的复数s,也可定义为狄利克雷级数表达式形式: 表达式仅当实部为正数时收敛。对任意复数,该表达式是一个阿贝尔和,可定义为一个整函数,并由此可知ζ函數是一个极点在s.
查看 模形式和狄利克雷η函数
表示论
表示論是數學中抽象代數的一支。旨在將抽象代数结构中的元素「表示」成向量空間上的線性變換,并研究这些代数结构上的模,藉以研究結構的性質。略言之,表示論將一代數對象表作較具體的矩陣,並使得原結構中的代数运算對應到矩陣加法和矩陣乘法。此法可施於群、結合代數及李代數等多種代數結構;其中肇源最早,用途也最廣的是群表示論。設G為群,其在域F(常取複數域F.
查看 模形式和表示论
西格爾模形式
在數學中,西格爾模形式是辛群上的自守形式。西格爾模形式是西格爾上半平面上的一類多變元全純函數,模形式是其特例。在模空間的意義下,若模形式對應到橢圓曲線,則西格爾模形式便對應更廣的阿貝爾簇。 卡爾·西格爾在1930年代引入這個概念,本意在以解析數論處理二次型的問題。西格爾模形式後來也用於代數幾何、橢圓上同調及某些物理學問題,例如共形場論。.
查看 模形式和西格爾模形式
詹姆斯·维特布莱德·李·格莱舍
詹姆斯·维特布莱德·李·格莱舍(James Whitbread Lee Glaisher,),英国数学家,氣象學家和天文学家。詹姆斯生于英国倫敦的路厄斯罕自治市,於1928年於剑桥去世,終年歲。.
魏爾斯特拉斯橢圓函數
在數學中,魏爾斯特拉斯橢圓函數又稱\wp函數,是格外簡單的一類橢圓函數,也是雅可比橢圓函數的特殊形式。卡爾·魏爾斯特拉斯首先研究了這些函數。 魏爾斯特拉斯p函數的符號.
谷山-志村定理
谷山-志村定理(Taniyama-Shimura theorem)建立了椭圆曲线(代数几何的对象)和模形式(数论中用到的某种周期性全纯函数)之间的重要联系。定理的证明由英國數學家安德鲁·怀尔斯(Andrew John Wiles)、理查·泰勒(Richard Taylor)、法國數學家克里斯多福·布勒伊(Christophe Breuil)、美國數學家布萊恩·康萊德(Brian Conrad)和佛瑞德·戴蒙德(Fred Diamond)所完成。 若p是一个质数而E是一个Q(有理数域)上的一个椭圆曲线,我们可以简化定义E的方程模p;除了有限个p值,我们会得到有np个元素的有限域Fp上的一个椭圆曲线。然后考虑如下序列 这是椭圆曲线E的重要的不变量。从傅里叶变换,每个模形式也会产生一个数列。一个其序列和从模形式得到的序列相同的椭圆曲线叫做模的。谷山-志村定理说:.
查看 模形式和谷山-志村定理
费马大定理
费马大定理,也称費馬最後定理(Le dernier théorème de Fermat);(Fermat's Last Theorem),其概要為: 以上陳述由17世纪法国数学家费马提出,一直被稱為「费马猜想」,直到英國數學家安德魯·懷爾斯(Andrew John Wiles)及其學生理查·泰勒(Richard Taylor)於1995年將他們的證明出版後,才稱為「費馬大定理」。這個猜想最初出現費馬的《頁邊筆記》中。儘管費馬表明他已找到一個精妙的證明而頁邊没有足夠的空位寫下,但仍然經過數學家們三個多世紀的努力,猜想才變成了定理。在衝擊這個数论世紀难题的過程中,無論是不完全的還是最後完整的證明,都給數學界帶來很大的影響;很多的數學結果、甚至數學分支在這個過程中誕生了,包括代數幾何中的橢圓曲線和模形式,以及伽羅瓦理論和赫克代數等。這也令人懷疑當初費馬是否真的找到了正確證明。而安德魯·懷爾斯由於成功證明此定理,獲得了包括邵逸夫獎在内的数十个奖项。.
查看 模形式和费马大定理
黑格纳数
黑格纳数(Heegner number)指滿足以下性質,非平方數的正整數:其虚二次域Q(√−d)的類数为1,亦即其整數環為唯一分解整環Q(√−d)的整數環為唯一分解整環,也就表示Q(√−d)的數字都只有一種因數分解方式,例如Q(√−5)的整數環不是唯一分解整環,因為6可以以兩種方式在 \mathbb 中表成整數乘積:2\times 3 和 (1+\sqrt)(1-\sqrt)。。 黑格纳数--有以下九個: 1, 2, 3, 7, 11, 19, 43, 67, 163。 高斯曾猜測符合上述特性的數只有九個,但未提出證明,1952年提出不完整的證明,後來由哈羅德·斯塔克提出完整的證明,即為。.
查看 模形式和黑格纳数
阿贝尔奖
阿贝尔奖(Abelprisen,Abel Prize)是數學的國際獎項,每年颁发一次,獲譽為數學界最高榮譽之一。2001年,为了纪念2002年挪威著名数学家尼尔斯·亨利克·阿贝尔二百周年诞辰,挪威政府宣布将开始向杰出数学家颁发此种奖金。 自2003年起,由挪威自然科学与文学院的五名数学家院士组成的委员会负责宣布获奖人。奖金的数额大致与诺贝尔奖相近。设立此奖的原因也是因为诺贝尔奖没有数学奖项。2001年挪威政府拨款2亿挪威克朗作为启动资金。扩大数学的影响,吸引年轻人从事数学研究是设立阿贝尔奖的主要目的。 2003年3月23日,第一个获奖人名宣布,六月奖金第一次正式颁发。2004年三月第二届获奖人名单宣布,此次有两人分享奖金。 阿貝爾獎最初是索菲斯·李在1899年建議設立,因為他得悉阿爾弗雷德·諾貝爾計劃中的獎項不包括數學獎。可是索菲斯·李不久後逝世,打斷了設立阿貝爾獎的工作。國王奧斯卡二世在1902年嘗試設立阿貝爾獎也不成功,而三年後瑞典-挪威聯盟的解散,使第一次的設立阿貝爾獎的努力以失敗告終。.
查看 模形式和阿贝尔奖
自守形式
數學上所謂的自守形式,是一類特別的複變數函數,並在某個離散變換群下滿足由自守因子描述之變換規律。模形式與馬斯形式是其特例。由自守形式可定義自守表示,嚴格言之,自守表示並非尋常意義下的群表示,而是整體赫克代數上的模。 龐加萊在1880年代曾研究過自守形式,他稱之為富克斯函數。郎蘭茲綱領探討自守表示與數論的深入聯繫。.
查看 模形式和自守形式
艾森斯坦級數
在數學中,艾森斯坦級數是一類可直接表成級數的模形式,由費迪南·艾森斯坦首創。對於一般的約化群,-zh-cn:罗伯特;zh-tw:勞勃;zh-hant:羅伯特;zh-hk:羅拔;-·朗蘭茲也發展了相應的理論。.
查看 模形式和艾森斯坦級數
Θ函數
數學中,Θ函數是一種多複變特殊函數。其應用包括阿貝爾簇與模空間、二次形式、孤立子理論;其格拉斯曼代數推廣亦出現於量子場論,尤其於超弦與D-膜理論。 Θ函數最常見於椭圓函數理論。相對於其「z」 變量,Θ函數是拟周期函数(quasiperiodic function),具有「擬周期性」。在一般下降理論(descent theory)中,此來自線叢條件。.
查看 模形式和Θ函數
Ε-猜想
-- 在数学中,Ribet定理(Ribet's theorem,以前稱為ε猜想)是數論中關於與模形式相關的性質的陳述。它由讓-皮埃爾·塞爾提出並由肯尼斯·阿蘭·黎貝證明。ε估計的證明是證明費馬大定理的重要一步。如Serre和Ribet所示,谷山-志村定理(當時未解決的狀態)和ε猜想意味著費馬大定理是正確的。 在數學術語中,Ribet定理表明,如果與橢圓曲線相關的伽羅瓦表示具有某些特性,那麼該曲線不能是模形式的(在不存在產生相同伽羅瓦表示的模形式的意義上)。.
查看 模形式和Ε-猜想
L函數
在當代數論中,L函數是一類重要的複變數函數,蘊含重要的數論、算術代數幾何或表示理論信息,目前仍有大量待解的猜想。L函數是黎曼ζ函數的推廣,最簡單的例子是狄利克雷L函數,狄利克雷藉此研究等差數列中的素數密度。 許多L函數也有p進數版本。 L函數通常以無窮級數表示,有時也稱為L級數;這種級數通常只對虛部夠大的參數 s 方收斂。一如黎曼ζ函數,L級數往往能延拓為整個複數平面上的亞純函數或全純函數,並具備乘積表法及函數方程。.
查看 模形式和L函數
模空间
在代数几何上,模问题用于描述代数簇所依赖的参数。对于这样一个参数使用模这一词和模形式相似:一个模形式通常是模空间(也即,其坐标为模的空间)上的某种微分形式(或者张量密度),因为这些形式通常有一个權重)。 在椭圆曲线的情况,有一个模,所以模空间是代数曲线。这是在雅可比的椭圆函数理论中称为k的一个量,他将椭圆积分归约为如下形式.
查看 模形式和模空间
模曲線
在代數幾何及數論領域,模曲線是一類緊黎曼曲面,同時也是定義於某數域上的射影代數曲線。模曲線是當代數論、表示理論及代數幾何中重要的課題。 「模曲線」一詞源於以下事實:模曲線參數化了一族橢圓曲線,因而是一種模空間。志村簇是模曲線在高維度的類比。.
查看 模形式和模曲線
歐拉函數 (複變函數)
在數學上,歐拉函數的定義如下 此函數得名由萊昂哈德·歐拉。歐拉函數是典型的q級數及模形式函數,也是描述组合数学及複分析之間關係的典型範例。.
朗蘭茲綱領
朗蘭茲綱領是數學中一系列影響深遠的構想,聯繫數論、代數幾何與约化群表示理論;綱領最初由羅伯特·朗蘭茲於1967年在一封給韦伊的中提出。.
查看 模形式和朗蘭茲綱領
戴德金η函數
戴德金η函數是定義在上半平面的全純函數,這是權1/2的模形式之一例。 對每個屬於上半平面的複數\tau,置q.
查看 模形式和戴德金η函數
斯里尼瓦瑟·拉马努金
斯里尼瓦瑟·拉马努金(ஸ்ரீனிவாஸ ராமானுஜன் ஐயங்கார்,ISO 15919轉寫:Srīṉivāsa Rāmāṉujan Aiyaṅkār,又译拉马努詹、羅摩奴詹,),泰米爾人,亞洲史上最著名数学家。沒受過正規的高等數學教育,沉迷数论,尤愛牽涉π、质数等数学常数的求和公式,以及整數分拆。慣以直覺(或跳步或稱之為數感)導出公式,不喜作证明,而在他的理論在事後往往被证明是對的。他所留下的尚未被証明之公式,引发了後來的大量研究。1997年,《拉马努金期刊》(Ramanujan Journal)创刊,用以发表有關「受到拉马努金影响的数学领域」的研究論文。 他自學成才並負笈劍橋的傳奇故事曾數次被拍成電影,包括了2015年的《-zh-cn:知无涯者; zh-tw:天才無限家; zh-hk:數造傳奇;-》。.
数论
數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.
查看 模形式和数论
數學之美
數學之美指的是從數學裡得出的美學。數學家形容數學是美麗的。有時,數學家會形容數學是一種藝術的形式,或是一個創造性的活動,通常與音樂和詩歌相比較。伯特蘭·羅素以下列文字形容他對數學之美的感覺: 数学,正确看待时,不仅具有真理,还具有至高的美-像雕塑一样冷酷而严肃,没有吸引到我们任何一種弱小本性,也没有绘画或音乐的华丽装饰,而是崇高地纯粹、絕對地完美,就如最伟大的艺术。数学中一定能找到最卓越的试金石——超越人類時之喜悦感,像寫诗時一样。 保羅·埃爾德什認為數學不可言說:「為何數字美麗呢?這就像是在問為何貝多芬第九號交響曲美麗。若你不知道為何,其他人也無法告訴你。我知道數字是美麗的。且若它們不是美麗的話,世上也沒有事物美麗了。.
查看 模形式和數學之美
數論主題列表
這是數論的主題列表。參照.
查看 模形式和數論主題列表
怪兽月光理论
在数学中,怪兽月光理论或月光理论是指在怪兽群M和模形式(j函数)之间的一种意外的联系。该名词于1979年由康威和西蒙・诺顿在1979年造出。 经过研究,我们现在知道怪兽月光理论的核心是一种被称为月光模的顶点算子代数。这一代数由伊戈尔・弗兰科尔,詹姆斯・雷保斯基和阿尔内・缪尔曼于1988年构造,其对称群为怪兽群。通常这个代数被视作一个共形场论的结构之一部分,因此可以看作物理在数学的两个分支之间建立了联系。康威和诺顿提出的猜想在1992年由理查德・博赫兹使用弦论中的no-ghost定理,以及顶点算子代数和泛卡茨-穆迪代数之理论得以证明。 Category:群论 Category:散在群.
查看 模形式和怪兽月光理论
亦称为 Q展開。