徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

根 (数学)

指数 根 (数学)

數學上,函數f的一個根(或稱零點)是f的定義域D中適合f(x).

31 关系: 劳斯–赫尔维茨稳定性判据域扩张双倒数图射影线性群不稳定性三次函數康威十三进制函数二分法 (數學)二次函数代数代数基本定理伽羅瓦理論弗罗贝尼乌斯自同态圓周率分裂域因式分解四元數秦九韶特征值和特征向量盈不足术超越數重覆度零点ΔZ轉換根 (消歧義)正交多項式最小相位方程组拉盖尔多项式

劳斯–赫尔维茨稳定性判据

劳斯–赫尔维茨稳定性判据(Routh–Hurwitz stability criterion)是控制理论中的一個數學測試,是線性时不变系统(LTI)穩定的充份必要條件。劳斯測試是由英國數學家在1876年提出的快速演算法,可以判斷一線性系統其特徵多項式的根是否都有負的實部。德國數學家阿道夫·赫維茲在1895年獨立的提出將多項式的係數放到一個方陣中(此方陣稱為赫維茲矩陣),證明多項式穩定若且唯若赫維茲矩陣的主要子矩陣其行列式形成的數列均為正值。二個程序是等價的,而劳斯測試提供一個有效計算赫維茲行列式的方法。滿足劳斯–赫尔维茨稳定性判据的多項式稱為赫爾維茨多項式。 此稳定性判据之所以重要,是因為若線性系統之特徵方程式的根p均有負的實部,表示其解ept為穩定的(BIBO穩定)。因此稳定性判据提供了方式,可以在不求解線性系統的运动方程的情形下,判斷其是否只有穩定解。對於離散系統,對應穩定性的測試可以由Schur–Cohn判据、及來判斷。隨著電腦的進步,此稳定性判据變的較少使用,另一種判斷的方式則是用數值方法直接求解多項式,得到其解的近似值。 劳斯測試可以由輾轉相除法以及在計算時用施图姆定理來。赫尔维茨利用另一種方式來推導其稳定性判据。.

新!!: 根 (数学)和劳斯–赫尔维茨稳定性判据 · 查看更多 »

域扩张

域扩张(field extensions)是数学分支抽象代数之域论中的主要研究对象,基本想法是从一个基域开始以某种方式构造包含它的“更大”的域。域扩张可以推广为环扩张。.

新!!: 根 (数学)和域扩张 · 查看更多 »

双倒数图

双倒数图也稱為莱恩威弗-伯克作图,是生物化學用来描述酶动力学的莱恩威弗-伯克方程的圖示法,由和于1934年提出。.

新!!: 根 (数学)和双倒数图 · 查看更多 »

射影线性群

射影线性群是代数学里群论中的一类群的称呼。射影线性群也叫射影一般线性群(一般记作 PGL),是某个系数域为\mathbb的向量空间V上的一般线性群在射影空间 P(V) 上诱导的群作用。具体来说,射影线性群是商群: 其中的\mathcal(V)是V上的一般线性群,而\mathbb(V)是由V上的所有数乘变换构成的\mathcal(V)的子群。之所以在\mathcal(V)中约去\mathbb(V),是因为它们在射影空间上的作用是平凡的(所以构成群作用的核)。\mathbb(V) 有时也被记作 \mathcal(V),因为它是一般线性群的中心。 与射影线性群类似的还有射影特殊线性群,一般记作PSL。它的定义与射影线性群相似,只不过不是在一般线性群而是在特殊线性群上。 其中的\mathcal(V)是V上的特殊线性群,而\mathcal(V)是\mathbb(V)在\mathcal(V)中的子群(即行列式等于1的数乘变换构成的子群)。显然 \mathcal(V) 是 \mathcal(V) 的中心。若V.

新!!: 根 (数学)和射影线性群 · 查看更多 »

不稳定性

在許多領域中,不穩定是指一個可由其輸出或內在狀態描述的系統,其狀態可能會不受限制的成長(有時會稱為發散)。另一個對應的詞是,穩定有許多種定義,其中一種定義是指對系統施加一個小型的外擾,使系統離開一平衡狀態,外擾去除後,系統會回到原來的平衡狀態。 以右圖為例:.

新!!: 根 (数学)和不稳定性 · 查看更多 »

三次函數

三次函數是以下形式的多項式函数 其中不為零。 若令,可以得到三次方程 此方程的解即為多項式的根。若所有的系数、、和,都是实数,則此方程至少會有一個實數根(這對所有奇數的多項式都成立)。三次函數的所有解都可以用代數函數來表示(這對二次函数、四次函數也都成立,但根據阿贝尔-鲁菲尼定理,更高次數的多項式一般來說沒有此特性)。利用三角函數也可以表示出函數的解。此方程的數值解可以用像牛顿法之類的求根算法求得。 三次函數的係數不一定要是複數。三次函數的許多特性,只要係數域的特征為0或是大於就會成立。三次方程的解不一定會和系數同一個域,例如有理系數三次方程的解可能是無理數、甚至是非實數的複數。.

新!!: 根 (数学)和三次函數 · 查看更多 »

康威十三进制函数

康威十三进制函数,或简称为康威函数,是由英国数学家约翰·康威构造的一个实函数(实变实值).

新!!: 根 (数学)和康威十三进制函数 · 查看更多 »

二分法 (數學)

二分法(Bisection method),是一種方程式根的近似值求法。.

新!!: 根 (数学)和二分法 (數學) · 查看更多 »

二次函数

在数学中,二次函数(英語:quadratic function)表示形为f(x).

新!!: 根 (数学)和二次函数 · 查看更多 »

代数

代数是一个较为基础的数学分支。它的研究对象有许多。诸如数、数量、代数式、關係、方程理论、代数结构等等都是代数学的研究对象。 初等代数一般在中學時讲授,介紹代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解變數的概念和如何建立多项式并找出它们的根。 代数的研究對象不僅是數字,还有各種抽象化的結構。例如整數集作為一個帶有加法、乘法和序關係的集合就是一個代數結構。在其中我們只關心各種關係及其性質,而對於「數本身是甚麼」這樣的問題並不關心。常見的代數結構類型有群、环、域、模、線性空間等。并且,代数是几何的总称,代数是还可以用任何字母代替的。 e.g.2-4+6-8+10-12+…-96+98-100+102.

新!!: 根 (数学)和代数 · 查看更多 »

代数基本定理

代数基本定理说明,任何一个一元複系数方程式都至少有一个複数根。也就是说,複数域是代数封闭的。 有时这个定理表述为:任何一个非零的一元n次複系数多项式,都正好有n个複数根。这似乎是一个更强的命题,但实际上是“至少有一个根”的直接结果,因为不断把多项式除以它的线性因子,即可从有一个根推出有n个根。 尽管这个定理被命名为“代数基本定理”,但它还没有纯粹的代数证明,许多数学家都相信这种证明不存在。另外,它也不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或複系数多项式方程,所以才被命名为代数基本定理。 高斯一生总共对这个定理给出了四个证明,其中第一个是在他22岁时(1799年)的博士论文中给出的。高斯给出的证明既有几何的,也有函数的,还有积分的方法。高斯关于这一命题的证明方法是去证明其根的存在性,开创了关于研究存在性命题的新途径。 同时,高次代数方程的求解仍然是一大难题。伽罗瓦理論指出,对于一般五次以上的方程,不存在一般的代数解。.

新!!: 根 (数学)和代数基本定理 · 查看更多 »

伽羅瓦理論

在数学中,特别是抽象代数理论中,由法國數學家埃瓦里斯特·伽罗瓦(Évariste Galois)得名的伽罗瓦理论提供了域论和群论之间的联系。应用伽罗瓦理论,域论中的一些问题可以化简为更简单易懂的群论问题。 伽罗瓦最初使用置换群来描述给定的多项式的根与根之间的关系。由戴德金(Julius Wilhelm Richard Dedekind)、利奥波德·克罗内克(Leopold Kronecker)、埃米爾·阿廷(Emil Artin)等人发展起来的现代伽罗瓦理论引入了关于域扩张及其自同构的研究。 伽罗瓦理论的进一步抽象为伽罗瓦连接理论。.

新!!: 根 (数学)和伽羅瓦理論 · 查看更多 »

弗罗贝尼乌斯自同态

在数学中,特别交换代数和域理论中,弗罗贝尼乌斯自同态(Frobenius,简称弗罗贝尼乌斯)是特征为素数p 的交换环中的一个特殊的自同态。这个自同态以德国数学家费迪南德·格奥尔格·弗罗贝尼乌斯命名。弗罗贝尼乌斯自同态将环中的每个元素射到它的p 次乘幂。 x \mapsto x^p 在一般情况下,弗罗贝尼乌斯并不总是自同构。.

新!!: 根 (数学)和弗罗贝尼乌斯自同态 · 查看更多 »

圓周率

圓周率是一个数学常数,为一个圆的周长和其直径的比率,约等於3.14159。它在18世纪中期之后一般用希腊字母π指代,有时也拼写为“pi”()。 因为π是一个无理数,所以它不能用分数完全表示出来(即它的小数部分是一个无限不循环小数)。当然,它可以用像\frac般的有理数的近似值表示。π的数字序列被認為是随机分布的,有一种统计上特别的随机性,但至今未能证明。此外,π还是一个超越数——它不是任何有理数系数多项式的根。由於π的超越性质,因此不可能用尺规作图解化圆为方的问题。 几个文明古国在很早就需要计算出π的较精确的值以便于生产中的计算。公元5世纪时,南朝宋数学家祖冲之用几何方法将圆周率计算到小数点后7位数字。大约同一时间,印度的数学家也将圆周率计算到小数点后5位。历史上首个π的精确无穷级数公式(即π的莱布尼茨公式)直到约1000年后才由印度数学家发现。在20和21世纪,由于计算机技术的快速发展,借助计算机的计算使得π的精度急速提高。截至2015年,π的十进制精度已高达1013位。当前人类计算π的值的主要原因为打破记录、测试超级计算机的计算能力和高精度乘法算法,因为几乎所有的科学研究对π的精度要求都不会超过几百位。 因为π的定义中涉及圆,所以π在三角学和几何学的许多公式,特别是在圆形、椭球形或球形相關公式中广泛应用。由于用於特征值这一特殊作用,它也在一些数学和科学领域(例如数论和统计中计算数据的几何形状)中出现,也在宇宙学,热力学,力学和电磁学中有所出现。π的广泛应用使它成为科学界内外最广为人知的常数之一。人们已经出版了几本专门介绍π的书籍,圆周率日(3月14日)和π值计算突破记录也往往会成为报纸的新闻头条。此外,背诵π值的世界记录已经达到70,000位的精度。.

新!!: 根 (数学)和圓周率 · 查看更多 »

分裂域

在抽象代数中,一个系数域为\mathbb的多项式P(x)\,的分裂域(根域)是\mathbb的“最小”的一个扩域\mathbb,使得在其中P\,可以被分解为一次因式x-r_i\,的乘积,其中的r_i\,是\mathbb中元素。一个\mathbb上的多项式并不一定只有一个分裂域,但它所有的分裂域都是同构的:在同构意义上,\mathbb上的多项式的分裂域是唯一的。.

新!!: 根 (数学)和分裂域 · 查看更多 »

幂運算(Exponentiation),又稱指數運算,是一種數學運算,表示為 bn。其中,b 被稱為底數,而 n 被稱為指數,其結果為 b 自乘 n 次。同樣地,把 b^n 看作乘方的结果,稱為「 b 的 n 次幂」或「 b 的 n 次方」。 通常指數寫成上標,放在底數的右邊。當不能用上標時,例如在編程語言或電子郵件中,b^n通常寫成b^n或b**n,也可視為超運算,記為bn,亦可以用高德納箭號表示法,寫成b↑n,讀作“ b 的 n 次方”。 當指數為 1 時,通常不寫出來,因為運算出的值和底數的數值一樣;指數為 2 時,可以讀作“ b 的平方”;指數為 3 時,可以讀作“ b 的立方”。 bn 的意義亦可視為: 起始值 1(乘法的單位元)乘上底數(b)自乘指數(n)這麼多次。這樣定義了後,很易想到如何一般化指數 0 和負數的情況:除 0 外所有數的零次方都是 1 ;指數是負數時就等於重複除以底數(或底數的倒數自乘指數這麼多次),即: 以分數為指數的冪定義為b^.

新!!: 根 (数学)和冪 · 查看更多 »

因式分解

因式分解(factorization,factorisation,或factoring),在數學中一般理解為把一個多項式分解為兩個或多個的因式(因式亦為多項式)的過程。在這個過後會得出一堆較原式簡單的多項式的積。例如多項式x^2 -4可被因式分解為\left(x+2 \right) \left(x-2 \right)。.

新!!: 根 (数学)和因式分解 · 查看更多 »

四元數

四元數是由爱尔兰數學家威廉·盧雲·哈密頓在1843年创立出的數學概念。 從明確地角度而言,四元數是複數的不可交換延伸。如把四元數的集合考慮成多維實數空間的話,四元數就代表著一個四维空间,相對於複數為二维空间。 作为用于描述现实空间的坐标表示方式,人们在复数的基础上创造了四元数并以a+bi+cj+dk的形式说明空间点所在位置。 i、j、k作为一种特殊的虚数单位参与运算,并有以下运算规则:i0.

新!!: 根 (数学)和四元數 · 查看更多 »

秦九韶

九韶(),字道古,中国南宋数学家。著作有《数书九章》,其中的大衍求一术(一次同余方程组问题的解法,也就是现在所称的中国剩余定理的历史解法)和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献。.

新!!: 根 (数学)和秦九韶 · 查看更多 »

特征值和特征向量

在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.

新!!: 根 (数学)和特征值和特征向量 · 查看更多 »

盈不足术

不足术是中国古代数学的一种算术方法。西汉成书的算学经典《九章算術》的第七章即名为“盈不足”。狭义的盈不足术指典型的盈亏问题的算法。广义的盈不足术则指通过双假设法将其他数学问题转化为盈亏问题、再用机械化算法求解的方法。.

新!!: 根 (数学)和盈不足术 · 查看更多 »

超越數

在數論中,超越數是指任何一個不是代數數的无理数。只要它不是任何一個有理係數代數方程的根,它即是超越數。最著名的超越數是e以及π。.

新!!: 根 (数学)和超越數 · 查看更多 »

重覆度

重覆度(multiplicity)是一數學名詞,多重集中某一元素的重覆度是指此元素在多重集中出現的次數。例如代数方程中特定根出現的次數。 重覆度的標示可以方便多重集的計數,若元素考慮其重覆度計數,重覆度為1的會算為1個,重覆度為2的會算為2個。若不考慮重覆度,會以「計算相異元素個數」來說明。不過若是考慮非多重集的一般集合(每個元素最多只出現一次),沒有重覆度,計算元素個數時就不會特別強調「相異」。.

新!!: 根 (数学)和重覆度 · 查看更多 »

零点

对全纯函数f,称满足f(a).

新!!: 根 (数学)和零点 · 查看更多 »

Δ

Delta(大寫Δ,小寫δ,中文音译:德尔塔、德耳塔),是第四個希臘字母。.

新!!: 根 (数学)和Δ · 查看更多 »

Z轉換

在數學和信号处理中,Z轉換(Z-transform)把一連串離散的實數或複數訊號,從時域轉為复頻域表示。 可以把它认为是拉普拉斯变换的离散时间等价。在时标微积分中会探索它们的相似性.

新!!: 根 (数学)和Z轉換 · 查看更多 »

根 (消歧義)

根可以指:.

新!!: 根 (数学)和根 (消歧義) · 查看更多 »

正交多項式

函數W(x)若在區間(a,b)可積,且W(x) \ge 0,則可作為權函數。 對於一個多項式的序列和權函數W(x),定義內積: \langle f_m, f_n \rangle.

新!!: 根 (数学)和正交多項式 · 查看更多 »

最小相位

最小相位(minimum-phase)是控制理论及信號處理中有特殊性質的系統,對於线性时不变系统,若本身為因果系统且穩定,且其也是穩定的因果系统,此系統即為最小相位系統。 相反的,非最小相位(non-minimum phase)系統可以用最小相位系統串接,使部份的零點移到右半面。若有零點在右半面,表示其逆系統不穩定。全通濾波器加入了「額外的相位」(有些可能是传送迟延),這也是為何所得系統稱為非最小相位的原因。 例如一個離散系統,其有理傳遞函數若其所有的極點都在單位圓內,此系統為符合因果性的穩定系統。不過此系統的零點可以單位圓內或是圓外的任意位置。若離散系統的零點也都在單位圓內,則這個系統也是最小相位的系統。以下會說明為何這様的系統會稱為最小相位系統。.

新!!: 根 (数学)和最小相位 · 查看更多 »

方程组

方程组(--)又稱--(--),是两个或两个以上含有多个未知数的方程联立得到的集。未知数的值称为方程组的根,求方程组根的过程称为解方程组。一般在方程式的左边加大括号标注。.

新!!: 根 (数学)和方程组 · 查看更多 »

拉盖尔多项式

在数学中,以法国数学家命名的拉盖尔多项式定义为拉盖尔方程的标准解。 x\,y + (1 - x)\,y' + n\,y.

新!!: 根 (数学)和拉盖尔多项式 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »