我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

极限 (数学)

指数 极限 (数学)

极限是现代数学特别是分析学中的基础概念之一。极限可以用来描述一个序列的指标愈来愈大时,序列中元素的性质变化的趋势。极限也可以描述函数的自变量接近某一个值的时候,相对应的函数值变化的趋势。作为微积分和数学分析的其他分支最基本的概念之一,连续和导数的概念都是通过极限来定义的。 “函数的极限”这个概念可以更一般地推广到网中,而“序列的极限”则与范畴论中的极限和有向极限的概念密切相关。.

目录

  1. 68 关系: AP微积分埃瓦尔德求和反常積分发散级数均差大样本统计孪生素数实变函数论实数完备性对数恒等式导数密着拓扑上极限和下极限不动点中值定理开集微积分学微积分学主题列表分布 (数学分析)哈根·克莱纳特内积空间矩阵的平方根积分移位法则科氏波魚紧空间级数绝对赋值用於數學、科學和工程的希臘字母無限猴子定理無限面體熵率狄利克雷定理 (傅里叶级数)狄利克雷函数E (数学常数)随机变量的收敛预科微积分魏尔斯特拉斯函数魏尔施特拉斯分解定理變數賦範向量空間距离函数连分数阿贝尔判别法闭集自反空间長直線艾禮富數P進數... 扩展索引 (18 更多) »

AP微积分

大学先修课程微积分 (又称AP微积分, AP Calc AB / AP Calc BC, 或 AP Calc)是美国大学理事会提供的两门大学先修课程中的微积分科目:AP微积分AB和AP微积分BC。.

查看 极限 (数学)和AP微积分

埃瓦尔德求和

埃瓦尔德求和(Ewald summation),是一种计算中长程力(如静电力)的方法,以德国物理学家保罗·彼得·埃瓦尔德命名。埃瓦尔德求和最初用于计算离子晶体的电势能,现在用于计算化学中计算长程力。埃瓦尔德求和是的特殊形式,用倒空间中的等效求和代替实空间中的总和。埃瓦尔德求和将分为短程力和无奇点的长程力两部分,短程力在实空间中计算,长程力用傅里叶变换计算。与直接求和相比,此方法的优势为能量能够快速收敛,这意味着此方法在计算长程力时具有较高的精度和合理的速度,是计算中长程力的标准方法。此方法需要分子系统的电中性,以准确计算总库仑力。.

查看 极限 (数学)和埃瓦尔德求和

反常積分

反常积分又叫广义积分(“广义积分”为较早教科书的称呼,现在中国大陆已弃用),是对普通定积分的推广,指含有无穷上限/下限,或者被积函数含有瑕点的积分,前者称为无穷限广义积分,后者称为瑕积分(又叫无界函数的反常积分)。.

查看 极限 (数学)和反常積分

发散级数

发散级数(Divergent Series)指(按柯西意义下)不收敛的级数。如级数1 + 2 + 3 + 4 + \cdots和1 - 1 + 1 - 1 + \cdots ,也就是说该级数的部分和序列没有一个有穷极限。 如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数 调和级数的发散性被中世纪数学家奥里斯姆所证明。.

查看 极限 (数学)和发散级数

均差

均差(Divided differences)是遞歸除法過程。在数值分析中,也称差商(),可用於計算牛頓多項式形式的多項式插值的係數。.

查看 极限 (数学)和均差

大样本统计

在统计学中,我们研究的是具体的随机变量的性质(“估计”),这也就是这些数据的作用。在渐近分析中,当样本大小变得任意大时,我们专注于描述这种估计性质。当给定一个相当大的数据集,在有限的样本与任意大小样本中,这种性质很相似。大样本统计()就是指当研究对象的统计量趋于无穷大时的统计方法,用该种方法得到的概率结果收敛于某一常数,即对象总体均值。 其数学表达为:以样本均值 \overline X_n.

查看 极限 (数学)和大样本统计

孪生素数

孪生素数(也称为孪生--数、双生质数)是指一对素数,它们之间相差2。例如3和5,5和7,11和13,10016957和10016959等等都是孪生素数。 关于孪生素数有孪生素数猜想,即是否存在无穷多对孪生素数。这是数论中未解决的一个重要问题。是孪生素数猜想的一个增强形式,猜测孪生素数的分布与素数定理中描述的素数分布规律相类似。 与之相关的,两者相差为1的素数对只有 (2, 3);两者相差为3的素数对只有 (2, 5)。.

查看 极限 (数学)和孪生素数

实变函数论

實分析或實數分析是處理實數及實函數的數學分析。專門實數函數及數列的解析特性,包括實數數列的極限,實函數的微分及積分、連續性,光滑性以及其他相關性質。 實分析常以基礎集合論,函數概念定義等等開始。.

查看 极限 (数学)和实变函数论

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

查看 极限 (数学)和实数

完备性

在数学及其相关领域中,一个对象具有完备性,即它不需要添加任何其他元素,这个对象也可称为完备的或完全的。更精确地,可以从多个不同的角度来描述这个定义,同时可以引入完备化这个概念。但是在不同的领域中,“完备”也有不同的含义,特别是在某些领域中,“完备化”的过程并不称为“完备化”,另有其他的表述,请参考代数闭域、紧化或哥德尔不完备定理。.

查看 极限 (数学)和完备性

对数恒等式

在数学中,有许多对数恒等式。.

查看 极限 (数学)和对数恒等式

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

查看 极限 (数学)和导数

密着拓扑

在拓扑学中,带有密着拓扑(trivial topology)的拓扑空间是其中仅有的开集是空集和整个空间的空间。这种空间有时叫做不可分空间(indiscrete space),它的拓扑有时叫做不可分拓扑。在直觉上,这有着所有点都被“粘着在一起”而通过拓扑方式不可区分的推论。.

查看 极限 (数学)和密着拓扑

上极限和下极限

数学上,序列的上极限和下极限可以看为序列的极限上下界。函数的上极限和下极限可以用类似方式考虑。(参见函数的极限)。集合的上极限和下极限分别是这个集合的极限点的上确界和下确界。.

查看 极限 (数学)和上极限和下极限

不动点

在数学中,函数的不动点或定点是指被这个函数映射到其自身一个点。例如,定义在实数上的函数f, 则2是函数f的一个不动点,因为f(2).

查看 极限 (数学)和不动点

中值定理

在實分析中,中值定理(mean value theorem)描述了連續光滑曲線在兩點之間的光滑性: 中值定理包括微分中值定理和积分中值定理。.

查看 极限 (数学)和中值定理

开集

開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).

查看 极限 (数学)和开集

微积分学

微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.

查看 极限 (数学)和微积分学

微积分学主题列表

以下是一份微积分学主题列表:.

查看 极限 (数学)和微积分学主题列表

分布 (数学分析)

数学分析中的分布是广义函数的一种,由法国数学家洛朗·施瓦茨首先于二十世纪五十年代引入。分布推广了普通意义上的函数概念。对于普通意义上不可导甚至不连续的函数,可以具备分布意义上的导数。事实上,任意局部可积的函数都有分布意义上的弱导数。在偏微分方程的研究中,常常使用分布来表示方程的广义解函数,因为很多时候传统意义上的解函数不存在或难以求出。分布理论在物理学和工程学中都十分有用,因为在应用中常会出现解或初始条件是分布的微分方程,例如初始条件可能是一个狄拉克δ分布。 广义函数的概念最早由谢尔盖·索伯列夫在1935年提出。1940年代末,施瓦茨等人开始建立分布理论,首次提出了一个系统清晰的广义函数理论。.

查看 极限 (数学)和分布 (数学分析)

哈根·克莱纳特

哈根·克莱纳特(Hagen Kleinert, ),德国柏林自由大学理论物理学教授(自1968年),俄罗斯科学院荣誉院士。克莱纳特教授因其在粒子物理和固体物理方面的贡献被授予2008年奖章。他对于列夫·朗道百年诞辰纪念文集的贡献为他赢得了2008年奖章。.

查看 极限 (数学)和哈根·克莱纳特

内积空间

内积空间是数学中的线性代数裡的基本概念,是增添了一个额外的结构的向量空间。这个额外的结构叫做内积或标量积。内积将一对向量与一个标量连接起来,允许我们严格地谈论向量的“夹角”和“长度”,并进一步谈论向量的正交性。内积空间由欧几里得空间抽象而来(内积是点积的抽象),这是泛函分析讨论的课题。 内积空间有时也叫做准希尔伯特空间(pre-Hilbert space),因为由内积定义的距离完备化之后就会得到一个希尔伯特空间。 在早期的著作中,内积空间被称作--空间,但这个词现在已经被淘汰了。在将内积空间称为--空间的著作中,“内积空间”常指任意维(可数或不可数)的欧几里德空间。.

查看 极限 (数学)和内积空间

矩阵的平方根

在数学中,矩阵的平方根是算术中的平方根概念的推广。对一个矩阵A,如果矩阵B满足 那么矩阵B就是A的一个平方根。.

查看 极限 (数学)和矩阵的平方根

积分

积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.

查看 极限 (数学)和积分

移位法则

移位法则 是关于序列和级数的一个数学法则。 以下讨论的 n 和 N 都是自然数。 对于序列,这条法则称,如果 (a_) 是一个序列,那么它收敛当且仅当 (a_) 收敛,并且此时这两个序列总是收敛到相同的值。 对于级数,这条法则称, \sum\limits_^\infty a_ 收敛到某个数,当且仅当 \sum\limits_^\infty a_ 收敛。.

查看 极限 (数学)和移位法则

科氏波魚

科氏波魚(学名:Rasbora kottelati)為輻鰭魚綱鯉形目鯉科的一個種,分布於亞洲婆羅洲西北部,體長可達7公分,棲息在低地溪流及沼澤。.

查看 极限 (数学)和科氏波魚

紧空间

在数学中,如果欧几里得空间Rn的子集是闭合的并且是有界的,那么称它是--的。例如,在R中,闭合单位区间是紧致的,但整数集合Z不是(它不是有界的),半开区间.

查看 极限 (数学)和紧空间

级数

在数学中,一个有穷或无穷的序列u_0,u_1,u_2 \cdots的元素的形式和S称为级数。序列u_0,u_1,u_2 \cdots中的项称作级数的通项。级数的通项可以是实数、矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括等差数列和等比数列的级数。 有穷数列的级数一般通过初等代数的方法就可以求得。如果序列是无穷序列,其和则称为无穷级数,有时也简称為级数。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才會有一个和;发散的无穷级数在一般意义上没有和,但可以用一些别的方式来定义。 无穷级数的研究更多的需要数学分析的方法来解决。无穷级数一般写作\textstyle a_1 + a_2 +a_3+ \cdots、\textstyle \sum a_n或者\textstyle \sum_^\infty a_n,级数收敛时,其和通常被表示为\textstyle \sum_^\infty a_n。.

查看 极限 (数学)和级数

绝对赋值

绝对赋值是Hensel引进p进数后发展出的一个概念,常用于单变量代数函数论或者类域论方面的研究。 确切的说,绝对赋值是一个函数,是整环或域的元素的“大小”的度量。更确切地说,对整环D,一个绝对赋值环D是任何元素从D到实数R的映射x| x |满足下列条件:.

查看 极限 (数学)和绝对赋值

用於數學、科學和工程的希臘字母

希臘字母被用於數學、科學、工程和其他方面。在數學方面,希臘字母通常用於常數、特殊函數和特定的變數,而且通常大寫和小寫都有分別,而且互不相關。有一些希臘字母和拉丁字母一樣,而且不被使用:A, B, E, H, I, K, M, N, O, P, T, X, Y, Z。除此之外,由於小寫的ι(iota),ο(omicron)和υ(upsilon)跟拉丁字母i,o和u相似,所以很少被使用。有時,希臘字母的字體變種在數學數有特定的意思,例如φ(phi)和π(pi)。 在金融數學中,有些會用來表示投資風險的變數。 母語為英語的數學家在讀希臘字母時,他們不會用現在的或古時的發音,但用傳統的英語發音。例如θ,數學家會讀成/ˈθeɪtə/。(古時:,現在:).

查看 极限 (数学)和用於數學、科學和工程的希臘字母

無限猴子定理

無限猴子定理的表述如下:让一只猴子在打字机上随机地按键,当按键时间达到无穷时,几乎必然能够打出任何给定的文字,比如莎士比亚的全套著作。 在这里,几乎必然是一个有特定含义的数学术语,“猴子”也不是一只真正意义上的猴子,它被用来比喻成一个可以产生无限随机字母序列的抽象设备。这个理论说明把一个很大但有限的数看成无限的推论是错误的。猴子精确地通过键盘敲打出一部完整的作品比如说莎士比亚的哈姆雷特,在宇宙的生命周期中发生的概率也是极其低的,但並不是零。 这个理论的变化形式包括多个甚至无限多个打字员,以及目标文本从一个完整的图书馆到一个简单的句子。这些表述可以追述到亚里士多德的《论产生和毁灭》和西塞罗的的《论神之本性》,经过布莱兹·帕斯卡和乔纳森·斯威夫特,最后到现在的形象的打字员的表述形式。在20世纪早期,埃米尔·博雷尔和亚瑟·爱丁顿运用这个理论在统计力学基础中阐述隐式时间标尺。.

查看 极限 (数学)和無限猴子定理

無限面體

無限面體(Apeirohedron),是多面體的一種,意指有無限個面、無限條邊和無限個頂點的多面體。一般是指所有的平面密鋪的集合。 在歐幾里得幾何中,無限面體是一個退化多面體,其面數是可數集的數量,其邊數與頂點數將符合V-E+F.

查看 极限 (数学)和無限面體

熵率

在概率的数学理论中,非正式地说,一个随机过程的熵率或信源信息率是在一个随机过程的平均信息的时间密度。对于一个索引可数的随机过程,熵率 Η(X) 是 n 个 Xk 过程作为成员的联合熵,在 n 趋向无穷时的极限: 前提是该极限存在。另一种相关量为: 对于强平稳随机过程, \Eta(X).

查看 极限 (数学)和熵率

狄利克雷定理 (傅里叶级数)

在数学分析中,狄利克雷定理(或若尔当—狄利克雷定理,狄利克雷条件)是关于傅里叶级数逐点收敛的一个结果。这个定理的最初版本是由德国科学家狄利克雷在公元1829年证明的。由于当时还没有出现适合的积分理论,狄利克雷的证明只能适用于足够规则的函数(除了在有限点以外都单调的函数)。 定理的推广版本则是由法国数学家卡米尔·若尔当在1881年的证明的,适用于所有局部有界变差函数。.

查看 极限 (数学)和狄利克雷定理 (傅里叶级数)

狄利克雷函数

利克雷函数(Dirichlet function)是一个定义在实数范围上、值域为的函数,是處處不連續函數。 当.

查看 极限 (数学)和狄利克雷函数

E (数学常数)

-- e,作为數學常數,是自然對數函數的底數。有時被稱為歐拉數(Euler's number),以瑞士數學家歐拉命名;還有個較少見的名字納皮爾常數,用來紀念蘇格蘭數學家約翰·納皮爾引進對數。它是一个无限不循环小数,數值約是(小數點後20位,):.

查看 极限 (数学)和E (数学常数)

随机变量的收敛

概率论中有若干关于随机变量收敛的定义。研究一列随机变量是否会收敛到某个极限随机变量是概率论中的重要内容,在统计概率和随机过程中都有应用。在更广泛的数学领域中,随机变量的收敛被称为随机收敛,表示一系列本质上随机不可预测的事件所发生的模式可以在样本数量足够大的时候得到合理可靠的预测。各种不同的收敛定义实际上是表示预测时不同的刻画方式。.

查看 极限 (数学)和随机变量的收敛

预科微积分

在数学教育中,预科微积分是在高中或大学阶段进行代数和三角学的教育,以对微积分的学习进行准备。学校经常将代数和三角作为两门独立的课程。 与预科代数和代数的关系不同,预科微积分中只提到一小部分的微积分概念,有时还会涉及到一些在之前的教育中没有提到的代数概念。预科微积分会提到圆锥曲线、向量、矩阵、幂函数以及其他一些微积分所需要的前置知识。.

查看 极限 (数学)和预科微积分

魏尔斯特拉斯函数

在数学中,魏尔斯特拉斯函数(Weierstrass function)是一类处处连续而处处不可导的实值函数。魏尔斯特拉斯函数是一种无法用笔画出任何一部分的函数,因为每一点的导数都不存在,画的人无法知道每一点该朝哪个方向画。魏尔斯特拉斯函数的每一点的斜率也是不存在的。魏尔斯特拉斯函数得名于十九世纪的德国数学家卡尔·魏尔斯特拉斯(Karl Theodor Wilhelm Weierstrass; 1815–1897)。 历史上,魏尔斯特拉斯函数是一个著名的数学反例。魏尔斯特拉斯之前,数学家们对函数的连续性认识并不深刻。许多数学家认为除了少数一些特殊的点以外,连续的函数曲线在每一点上总会有斜率。魏尔斯特拉斯函数的出现说明了所谓的“病态”函数的存在性,改变了当时数学家对连续函数的看法。.

查看 极限 (数学)和魏尔斯特拉斯函数

魏尔施特拉斯分解定理

魏尔施特拉斯分解定理是指任意整函数f(z)可以分解为如下无穷乘积的形式: f(z).

查看 极限 (数学)和魏尔施特拉斯分解定理

變數

在初等數學裡,變數或變元、元是一個用來表示值的符號,該值可以是隨意的,也可能是未指定或未定的。在代數運算時,將變數當作明確的數值代入運算中,可以於單次運算時解出多個問題。一個典型的例子為一元二次公式,該公式可以解出每個一元二次方程的值,只需要將方程的系數代入公式中的變數即可。 變數這個概念在微積分中非常重要。一般,一個函數y.

查看 极限 (数学)和變數

賦範向量空間

在数学中,赋范向量空间是具有“长度”概念的向量空间。是通常的欧几里得空间 Rn 的推广。Rn中的长度被更抽象的范数替代。“长度”概念的特征是:.

查看 极限 (数学)和賦範向量空間

距离函数

在数学中,度量(度規)或距离函数是個函數,定义了集合內每一對元素之间的距离。带有度量的集合叫做度量空间。度量能導出集合上的拓扑,但不是所有拓扑都可以由度量生成。当一个拓扑空间的拓扑可以由度量来描述的时候,則稱此一拓扑空间为可度量化的。 在微分几何中,“度量”一詞也用来称呼定义為由微分流形的切向量映射至純量之雙線性形式,讓沿著曲線的距離可透過積分來取得。此一概念有個更适合的术语,稱之為度量张量(或黎曼度量)。.

查看 极限 (数学)和距离函数

连分数

在数学中,连分数或繁分数即如下表达式: 这里的a_0是某个整数,而所有其他的数a_n都是正整数,可依樣定义出更长的表达式。如果部分分子(partial numerator)和部分分母(partial denominator)允许假定任意的值,在某些上下文中可以包含函数,则最終的表达式是广义连分数。在需要把上述标准形式與广义连分数相區別的时候,可稱它為简单或正规连分数,或称为是规范形式的。.

查看 极限 (数学)和连分数

阿贝尔判别法

阿贝尔判别法是一个用于判断无穷级数是否收敛的方法。阿贝尔判别法有两种不同的形式,一个是用来判断实数项级数的收敛,另一个是用来判断复数项级数的收敛。.

查看 极限 (数学)和阿贝尔判别法

闭集

在拓扑空间中,闭集是指其补集为开集的集合。在一个拓扑空间内,闭集可以定义为一个包含所有其极限点的集合。在完备度量空间中,一个闭集的极限运算是闭合的。.

查看 极限 (数学)和闭集

自反空间

自反空间是泛函分析中的概念。如果一个巴拿赫空间(或更一般地,一个局部凸拓扑向量空间)的连续对偶空间的连续对偶空间“是”其自身,就称这个空间为自反空间。其中的“是”表示两者无论作为线性向量空间还是作为拓扑空间都是等价的。自反的巴拿赫空间常常可以通过它们的集合特性来刻画。.

查看 极限 (数学)和自反空间

長直線

拓撲學中,長直線,或稱亞歷山德羅夫(Alexandroff)直線,是一個有點像實數線的拓撲空間,但是比實數線要「長」。長直線局部性質就如實數線,但整體性質不同,因此常用作拓撲學的基本反例。直觀地說,實數線有可數多個首尾相接的線段.

查看 极限 (数学)和長直線

艾禮富數

在集合論中,--,又稱--,是一連串超窮基數。其標記符號為(由希伯來字母(aleph)演變而來)加角標表示。 可數集(包括自然數)的勢標記為\aleph_0,下一個較大的勢為\aleph_1,再下一個是\aleph_2,以此類推。一直繼續下來,便可以對任一序數定義一個基數\aleph_\alpha。 這一概念來自於康托尔,他定義了勢,並认识到无穷集合是可以有不同的勢的。 阿列夫數与一般在代數與微積分中出現的無限 不同。阿列夫數用来衡量集合的大小,而無限只是在極限的寫法中出現,或是定義成擴展的實數軸上的端點。某些阿列夫數會大於另一些阿列夫數,而無限只是無限而已。.

查看 极限 (数学)和艾禮富數

P進數

进数是数论中的概念,也称作局部数域,是有理数域拓展成的完备数域的一种。这种拓展与常见的有理数域\mathbb到实数域\mathbb、复数域\mathbb的数系拓展不同,其具体在于所定义的“距离”概念。进数的距离概念建立在整数的整除性质上。给定素数,若两个数之差被的高次幂整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使进数理论成为了数论研究中的有力工具。例如安德鲁·怀尔斯对费马大定理的证明中就用到了进数理论。 进数的概念首先由库尔特·亨泽尔于1897年构思并刻画,其发展动机主要是试图将幂级数方法引入到数论中,但现今进数的影响已远不止于此。例如可以在进数上建立p进数分析,将数论和分析的工具结合起来。此外进数在量子物理学、认知科学、计算机科学等领域都有应用。.

查看 极限 (数学)和P進數

柯西主值

在微積分中,柯西主值是實數線上的某類瑕積分,為紀念柯西而得此名。 設 f 為實數域 \mathbb 上的函數,但在 b 點有奇異點。其柯西主值定義為以下之單邊極限(若其存在) 在此所考慮的函數(例如 f(t).

查看 极限 (数学)和柯西主值

柯西乘积

在数学上,以法国数学家奧古斯丁·路易·柯西命名的柯西乘积,是指两组数列a_n, b_n的离散卷积。 该数列乘积被认为是自然数R的半群环的元素。.

查看 极限 (数学)和柯西乘积

极限

极限可以指:.

查看 极限 (数学)和极限

欧米加常数

欧米加常数是一个数学常数,定义为: 它是W(1)的值,其中W是朗伯W函数。 Ω的值大约为0.5671432904097838729999686622 。它具有以下的性质: 或 我们可以用迭代的方法来计算Ω,从Ω0开始,用下面的数列进行迭代: 当n→∞时,这个数列收敛于Ω。.

查看 极限 (数学)和欧米加常数

泰勒级数

在数学中,泰勒级数(Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒级数是以于1715年发表了泰勒公式的英國数学家布魯克·泰勒(Sir Brook Taylor)来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做麦克劳林级数,以苏格兰数学家科林·麦克劳林的名字命名。 拉格朗日在1797年之前,最先提出帶有餘項的現在形式的泰勒定理。实际应用中,泰勒级数需要截断,只取有限项,可以用泰勒定理估算这种近似的误差。一个函数的有限项的泰勒级数叫做泰勒多项式。一个函数的泰勒级数是其泰勒多项式的极限(如果存在极限)。即使泰勒级数在每点都收敛,函数与其泰勒级数也可能不相等。开区间(或复平面开片)上,与自身泰勒级数相等的函数称为解析函数。.

查看 极限 (数学)和泰勒级数

滤子 (数学)

在数学中,滤子(英語:filter)是偏序集合的特殊子集。经常使用的特殊情况是:要考虑的有序集合只是某个集合的幂集,并用集合包含来排序。滤子出现在序理论和格理论中,还可以在它们所起源的拓扑学中找到。滤子的对偶概念是理想。 滤子是昂利·嘉当在1937年发明的并随后在尼古拉·布尔巴基的书《Topologie Générale》中作为对E.

查看 极限 (数学)和滤子 (数学)

未定式

在微積分和數學分析的其他分支中,未定式(又稱不定式)是指這樣一類極限,其在按極限的運算規則進行代入後,還未能得到足夠信息去確定極限值。这个术语最初由柯西的学生在19世紀中葉提出。常見的未定式有:\frac00,~\frac,~0\times\infty,~1^\infty,~\infty-\infty,~0^0\text~\infty^0。.

查看 极限 (数学)和未定式

有向集合

在数学中,有向集合(也叫有向预序或过滤集合),是一个具有预序关系(自反及传递之二元关系 ≤)的非空集合 A,而且每一對元素都會有個上界,亦即对于 A 中任意两个元素 a 和 b,存在着 A 中的一个元素 c(不必然不同于 a,b),使得 a ≤ c 和 b ≤ c(有向性)。 有向集合是非空全序集合的廣義化,亦即所有的全序集合都會是有向集合(偏序集合則不一定是有向的)。在拓撲學裡,有向集合被用來定義網,一種廣義化序列且統合用於數學分析中各式極限的概念。有向集合亦在抽象代數及(更一般的)範疇論中被用來產生有向極限這類的概念。.

查看 极限 (数学)和有向集合

斯特凡·巴拿赫

斯特凡·巴拿赫(Stefan Banach,),波兰数学家。.

查看 极限 (数学)和斯特凡·巴拿赫

无穷

無窮或無限,來自於拉丁文的「infinitas」,即「沒有邊界」的意思。其數學符號為∞。它在科學、神學、哲學、數學和日常生活中有著不同的概念。通常使用這個詞的時候並不涉及它的更加技術層面的定義。 在神學方面,根據書面記載無窮這個符號最早被用於某些秘密宗教,通常代表人類中的神性,而書寫此符號時兩圓的不對等代表人神間的差距,例如神學家邓斯·司各脱(Duns Scotus)的著作中,上帝的無限能量是運用在無約束上,而不是運用在無限量上。在哲學方面,無窮可以歸因於空間和時間。在神學和哲學兩方面,無窮又作為無限,很多文章都探討過無限、絕對、上帝和芝諾悖論等的問題。 在數學方面,無窮與下述的主題或概念相關:數學的極限、阿列夫數、集合論中的類、、羅素悖論、超實數、射影幾何、擴展的實數軸以及絕對無限。在一些主題或概念中,無窮被認為是一個超越邊界而增加的概念,而不是一個數。.

查看 极限 (数学)和无穷

无条件收敛

在数学中,一个级数\scriptstyle \sum_ a_i无条件收敛于一个特定值\beta,是指对任意小的差别\epsilon,都会存在\scriptstyle \mathcal中的一个子集\scriptstyle \mathcal,使得对所有的包含\scriptstyle \mathcal的集合\scriptstyle \mathcal,里面的元素加起来的和与\beta之间的差距都小于\epsilon。 \left| \sum_ a_i - \beta \right| \le \epsilon 当集合\scriptstyle \mathcal是可数集合的时候,无条件收敛等价于说“任意排列级数项的顺序都会收敛”,具体来说。一个级数 \sum_^\infty x_n无条件收敛于一个特定值\beta,当且仅当对任意的从自然数到自然数的置换\sigma,级数\sum_^\infty x_都收敛。 当\scriptstyle \mathcal是不可数的集合时,无条件收敛也称为网收敛。.

查看 极限 (数学)和无条件收敛

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

查看 极限 (数学)和数学

數學科延伸部分

數學科延伸部分,又称數學科延伸單元、數學科延伸课程、數延,是香港中學文憑試数学科的选修部分,分为單元一(微積分與統計)及單元二(代數與微積分)。文憑試考生可以选择不修读任何延伸部分、只修读單元一或只修读單元二,不可以同时修读單元一和單元二。數學科延伸部分不被视为獨立科目,但会被独立评定等級,一些大专课程会優先考慮修读了延伸部分的文憑試考生。數學科延伸部分在香港教育界備受爭議,香港科學院等批評者認為它对高中学生的吸引力不足,课程安排也有不当,令修读人数甚少,影响高中毕业生的数学水平。.

查看 极限 (数学)和數學科延伸部分

拓撲向量空間

拓撲向量空間是泛函分析研究中的一個基本結構。顧名思義就是要研究具有拓撲結構的向量空間。 拓撲向量空間主要都是函數空間,在上面定義的拓撲結構就是函數列收歛的條件。 希爾伯特空間及巴拿赫空間是典型的例子。.

查看 极限 (数学)和拓撲向量空間

拓扑空间

拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.

查看 极限 (数学)和拓扑空间

0.999…

在數學的完备实数系中,循环小数0.999…,也可写成0.\overline、0.\dot或0.(9),表示一个等於1的实数,即「0.999…」所表示的数与「1」相同。目前該等式已经有各式各样的證明式;它们各有不同的嚴謹性、背景假设,且都蕴含实数的实质条件,即阿基米德公理、历史文脉、以及目标受众。 这类展开式的非唯一性不仅限於十进制系统,相同的现象也出现在其它的整数进位制中,数学家们也列举出了一些1在非整数进位制中的写法,这种现象也不是仅仅限於1的:对於每一个非零的有限小数,都存在另一种含有无穷多个9的写法,由於简便的原因,我们几乎肯定使用有限小數的写法,这样就更加使人们误以为没有其它写法了,实际上,一旦我们允许使用无限小数,那么在所有的进位制中都有无穷多种替代的写法,例如,18.3287与18.3286999…、18.3287000…,以及许多其它的写法,都表示相同的数,这些各种各样的等式被用来更好地理解分數的小数展开式的规律,以及一个简单-zh:分形; zh-hans:分形; zh-hant:碎形-图形──康托尔集合的结构,它们也出现在一个对整个实数的无穷集合的--研究之中。 在过去數十年裡,許多数学教育的研究人员研究了大眾及学生们对该等式的接受程度,许多学生在學習开始時怀疑或拒絕该等式,而後許多学生被老師、教科书和如下章節的算術推論說服接受两者是相等的,儘管如此,許多人們仍常感到懷疑,而提出进一步的辯解,這經常是由於存在不少對數學实数錯誤的觀念等的背後因素(參見以下教育中遇到的懷疑一章節),例如認為每一个实数都有唯一的一个小数展开式,以及認為無限小(无穷小)不等於0,並且將0.999…视为一个不定值,即該值只是一直不斷無限的微微擴張變大,因此与1的差永遠是無限小而不是零,因此「永遠都差一點」。我们可以构造出符合這些直觀的數系,但是只能在用於初等数学或多數更高等數學中的标准实数系统之外进行,的確,某些設計含有「恰恰小於1」的数,不過,这些数一般与0.999…无关(因为与之相关的理论上和实践上都皆無實質用途),但在数学分析中引起了相当大的關注。.

查看 极限 (数学)和0.999…

1/2 − 1/4 + 1/8 − 1/16 + …

在数学中,“1/2 − 1/4 + 1/8 − 1/16 + · · ·”这个无穷级数是绝对收敛的交错级数中的一个较为简单的例子。 因为“1/2 − 1/4 + 1/8 − 1/16 + · · ·”是一个首项为1/2、公比为−1/2的几何级数,所以将它求和有:.

查看 极限 (数学)和1/2 − 1/4 + 1/8 − 1/16 + …

5040

5040是5039及5041之間的自然數,為7的階乘(7!)、、Colossally過剩數和置換數(10\times9\times8\times7.

查看 极限 (数学)和5040

亦称为 Lim,極限值,收敛,數學極限。

柯西主值柯西乘积极限欧米加常数泰勒级数滤子 (数学)未定式有向集合斯特凡·巴拿赫无穷无条件收敛数学數學科延伸部分拓撲向量空間拓扑空间0.999…1/2 − 1/4 + 1/8 − 1/16 + …5040