我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

有限域

指数 有限域

在数学中,有限域(finite field)或伽罗瓦域(Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 为素数时,整数对 取模。 有限域的元素个数称为它的序。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。.

目录

  1. 79 关系: AKS質數測試域 (數學)域論域扩张卢卡斯-莱默检验法可分多项式可分扩张同餘向量空间多项式环多项式码完滿群对称差尼姆数射影平面局部域不可约多项式三角函数一般线性群平展上同调亞阿貝爾群交换环代数数域代數閉域代數擴張仿射变换伯利坎普-韦尔奇算法伽羅瓦理論弗罗贝尼乌斯自同态弗拉基米爾·德林費爾德循环码循環冗餘校驗循環群德林費爾德模初等阿貝爾群几何学函數域典型群克莱因四元群四元群四色定理BCH码矩阵离散傅里叶变换素数绝对伽罗瓦群群表示論生成矩阵韦伊配对表示论... 扩展索引 (29 更多) »

AKS質數測試

AKS質數測試(又被稱為 Agrawal–Kayal–Saxena質數測試 和 Cyclotomic AKS test)是一個決定型質數測試演算法 ,由三個來自的計算機科學家,、和,在2002年8月6日發表於一篇題為質數屬於P的論文。Manindra Agrawal, Neeraj Kayal, Nitin Saxena, "", Annals of Mathematics 160 (2004), no.

查看 有限域和AKS質數測試

域 (數學)

在抽象代数中,域(Field)是一种可進行加、減、乘和除(除了除以零之外,「零」即加法單位元素)運算的代數結構。域的概念是数域以及四则运算的推广。 域是环的一种。域和一般的环的区别在于域要求它的元素(除零元素之外)可以进行除法运算,这等价于说每个非零的元素都要有乘法逆元。體中的運算关于乘法是可交换的。若乘法運算沒有要求可交換則稱為除環(division ring)或skew field。.

查看 有限域和域 (數學)

域論

論」(field theory)是抽象代數的分支,研究-zh-hans:域;zh-hant:體-的性質。.

查看 有限域和域論

域扩张

域扩张(field extensions)是数学分支抽象代数之域论中的主要研究对象,基本想法是从一个基域开始以某种方式构造包含它的“更大”的域。域扩张可以推广为环扩张。.

查看 有限域和域扩张

卢卡斯-莱默检验法

数学中,卢卡斯-莱默检验法(Lucas–Lehmer primality test)是检验梅森数的素性检验,是由爱德华·卢卡斯于1878年完善,随后于1930年代将其改进。 因特网梅森素数大搜索用这个检验法找到了不少很大的素数,最近几个最大的素数就是这个项目发现的。由于梅森数比随机选择的整数更有可能是素数,因此他们认为这是一个极有用的方法。.

查看 有限域和卢卡斯-莱默检验法

可分多项式

数学中,可分多项式在不同的作者的书下有两个略微不同的定义。 最常见的一个定义是:当在一个给定域K上的多项式P(X)在K的代数闭包中有不同的根时,称多项式为可分的。换言之它的互异根的数量需要等于多项式的次数。在多项式因式分解的观点下,这样的多项式是无平方多项式。 第二个定义,当P(X)在K中的每个不可约因子在K的代数闭包中的根互不相同,此时称P(X)是可分的。这意味着每个不可约因子是无平方项的。在这个定义中,可分性依赖于K,比如任何一个不可分的不可约多项式P在它的分裂域上都变成可分的了。并且在这个定义下,每个完美域上的多项式是可分的,这包含了0特征域和所有有限域。 两个定义对于K上不可约多项式是等价的,这个被用来定义域K的可分扩张。 在条目的余下部分我们只用第一个定义。 一个多项式可分当且仅当它与它的形式导数P'(X)互素。.

查看 有限域和可分多项式

可分扩张

可分扩张是抽象代数之域扩张理论中的概念。如果一个代数扩张满足:任何一个中元素在基域上的极小多项式都是可分多项式,那么这个扩张就称作可分扩张。由于特征为0的域(包括常见的有理数域\mathbb)以及有限域都是完美域,任何这些域上的代数扩张都是可分扩张,因此可分扩张在域论研究中十分重要。可分扩张还是伽罗瓦扩张的条件之一,因此它在伽罗瓦理论中也扮演了重要的角色。.

查看 有限域和可分扩张

同餘

数学上,同余(congruence modulo,符號:≡)是數論中的一種等價關係。當两个整数除以同一个正整数,若得相同-zh-hans:余数; zh-hant:餘數;-,则二整数同余。同餘是抽象代數中的同餘關係的原型。最先引用同余的概念与「≡」符号者为德國数学家高斯。.

查看 有限域和同餘

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

查看 有限域和向量空间

多项式环

在抽象代數中,多項式環推廣了初等數學中的多項式。一個環 R 上的多項式環是由係數在 R 中的多項式構成的環,其中的代數運算由多項式的乘法與加法定義。在範疇論的語言中,當 R 為交換環時,多項式環可以被刻劃為交換 R-代數範疇中的自由對象。.

查看 有限域和多项式环

多项式码

在编码理论中,多项式码(polynomial code)是有效集合是由多項式(通常是固定长度的多项式)可以被特定多项式(长度较短,称为生成多项式)整除的一种。.

查看 有限域和多项式码

完滿群

在數學的群論中,一個群稱為完滿群(又稱完全群,但完全群可以指另一種群),如果這個群等於其換位子群;或者等價地說,如果這個群的阿貝爾商群只有平凡群。.

查看 有限域和完滿群

对称差

数学上,两个集合的对称差是只属于其中一个集合,而不属于另一个集合的元素组成的集合。 集合论中的这个运算相当于布尔逻辑中的异或运算。 集合A和B的对称差通常表示为A\triangle B,对称差的符号在有些图论书籍中也使用\oplus符号来表示。例如:集合\和\的对称差为\。所有学生的集合和所有女性的集合的对称差为所有男性学生和所有女性学生组成的集合。.

查看 有限域和对称差

尼姆数

组合博弈论引入了一类数学对象,称为尼姆数,它们被定义为尼姆堆的值。但是由于斯普莱格–格隆第定理,它们可以用于一大类游戏的研究。事实上,尼姆数是在序数的真类上赋予尼姆加法和尼姆乘法的运算之后形成的概念。这些运算和通常施行于序数类上的加法和乘法并不相同。.

查看 有限域和尼姆数

射影平面

在數學裡,投影平面(projective plane)是一個延伸平面概念的幾何結構。在普通的歐氏平面裡,兩條線通常會相交於一點,但有些線(即平行線)不會相交。投影平面可被認為是個具有額外的「無窮遠點」之一般平面,平行線會於該點相交。因此,在投影平面上的兩條線會相交於一個且僅一個點。 文藝復興時期的藝術家在發展透視投影的技術中,為此一數學課題奠定了基礎。投影平面的典型範例為實投影平面,亦稱為「擴展歐氏平面」。此一範例在代數幾何、拓撲學及投影幾何內都很重要,在各領域內的形式均略有不同,可標計為 、RP2 或 P2(R) 等符號。還有許多其他的投影平面,包括無限(如複投影平面)與有限(如法諾平面)之類型。 投影平面是二維投影空間,但並不是所有投影平面都可以嵌入三維投影空間內。投影平面是否能嵌入三維投影空間取決於該平面是否為笛沙格平面。.

查看 有限域和射影平面

局部域

在數學上,局部域是一類特別的域,它有非平凡的絕對值,此絕對值賦予的拓撲是局部緊的。局部域可粗分為兩類:一種的絕對值滿足阿基米德性質(稱作阿基米德局部域),另一種的絕對值不滿足阿基米德性質(稱作非阿基米德局部域)。在數論中,數域的完備化給出局部域的典型例子。.

查看 有限域和局部域

不可约多项式

在數學裡,不可約多項式(irreducible polynomial)是指不可被分解成兩個非常數多項式之乘積的非常數多項式。不可約的性質取決於係數所屬於的體或環。例如,多項式在係數1與 -2被認為是整數時是不可約的,而在這些係數被認為是實數時可分解成(x-\sqrt)(x+\sqrt)。亦即,「多項式在整數上不可約,但在實數上不是不可約。」 不是不可約的多項式有時會被稱為可約。不過,「可約」這一詞可能被會用來指其他的概念,須小心使用。 不可約多項式於多項式分解與代數體擴張裡都會自然地出現。 將不可約多項式與質數相比會很有幫助:質數(與具相同大小之對應負數)為不可約的整數。質數具有的許多「不可約」這個概念之一般性質,同樣可適用於不可約多項式之上,如質數或不可約因式的唯一分解。.

查看 有限域和不可约多项式

三角函数

三角函数(Trigonometric functions)是数学中常见的一类关于角度的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数(\sin)、余弦函数(\cos)和正切函数(\tan或者\operatorname);在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。.

查看 有限域和三角函数

一般线性群

在數學中,n 次一般線性群是 n×n 可逆矩陣的集合,和與之一起的普通矩陣乘法運算。這形成了一個群,因為兩個可逆矩陣的乘積也是可逆矩陣,而可逆矩陣的逆元還是可逆矩陣。叫這個名字是因為可逆矩陣的縱列是線性無關的,因此它們定義的向量/點是在一般線性位置上的,而在一般線性群中的矩陣把在一般線性位置上的點變換成在一般線性位置上的點。 为了使定义更明确,必需規定哪類對象可以成為矩陣的元素。例如,在 R(實數集)上的一般線性群是實數的 n×n 可逆矩陣的群,并指示為 GLn(R)或 GL(n, R)。 更一般的說,在任何域 F(比如複數集)或環 R(比如整數集的環)上的 n 次一般線性群是帶有來自 F(或 R)的元素的 n×n 可逆矩陣的群,帶有矩陣乘法作為群運算。這裡的環被假定為符合結合律和有乘法單位元的。典型符號是 GLn(F)或 GL(n, F),如果域是自明的也可簡寫為 GL(n)。 更一般的說,向量空間的一般線性群 GL(V)仍是抽象自同構群,不必需寫為矩陣。 '''特殊線性群''',寫為 SL(n, F)或 SLn(F),是由行列式.

查看 有限域和一般线性群

平展上同调

在数学中,一个代数簇或概形的平展上同调(Étale cohomology)是一个与一般拓扑空间的有限系数上同调群类似的代数结构。这一概念作为证明的工具由亚历山大·格罗滕迪克引入。平展上同调的理论可以用于构建ℓ进上同调,后者则是代数几何中的一个例子。这一理论有着众多的应用,包括Weil猜想的证明以及的构造。.

查看 有限域和平展上同调

亞阿貝爾群

群論中,亞阿貝爾群是指其換位子群是阿貝爾群的一種群,也就是說,一個群G是亞阿貝爾群當且僅當G有阿貝爾的正規子群A,使得G/A也是阿貝爾群。 亞阿貝爾群的子群,及亞阿貝爾群在群同態下的像,也都是亞阿貝爾群。 亞阿貝爾群正是其導出列長不大於2的可解群。.

查看 有限域和亞阿貝爾群

交换环

在抽象代数之分支环论中,一个交换环(commutative ring)是乘法运算满足交换律的环。对交换环的研究称为交换代数学。 某些特定的交换环在下列类包含链中:.

查看 有限域和交换环

代数数域

代数数域是数学中代数数论的基本概念,数域的一类,有时也被简称为数域,指有理数域\mathbb的有限扩张形成的扩域。任何代数数域都可以视作\mathbb上的有限维向量空间。 对代数数域的研究,或者更一般地说,对有理数域的代数扩张的研究,是代数数论的中心主题。.

查看 有限域和代数数域

代數閉域

在數學上,一個域F被稱作代數閉--,若且唯若任何係數属于F且次數大於零的單變數多項式在F裡至少有一個根。.

查看 有限域和代數閉域

代數擴張

代数扩张是抽象代數中域扩张的一类。一個域擴張被稱作代數擴張,若且唯若中的每个元素都是某个以中元素为系数的非零多項式的根。反之則稱之为超越擴張。最簡單的代數擴張例子有:\mathbb/\mathbb、\mathbb(\sqrt)/\mathbb。.

查看 有限域和代數擴張

仿射变换

仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。 一個對向量 \vec 平移 \vec ,與旋轉放大縮小 A的仿射映射為 \vec.

查看 有限域和仿射变换

伯利坎普-韦尔奇算法

伯利坎普-韦尔奇算法(Berlekamp-Welch algorithm)是一種用於高效地解碼BCH碼與里德-所羅門碼的演算法,其名取自埃尔温·伯利坎普與勞埃德·韋爾奇。伯利坎普-韦尔奇算法的優點在於這一演算法僅需利用矩陣運算。.

查看 有限域和伯利坎普-韦尔奇算法

伽羅瓦理論

在数学中,特别是抽象代数理论中,由法國數學家埃瓦里斯特·伽罗瓦(Évariste Galois)得名的伽罗瓦理论提供了域论和群论之间的联系。应用伽罗瓦理论,域论中的一些问题可以化简为更简单易懂的群论问题。 伽罗瓦最初使用置换群来描述给定的多项式的根与根之间的关系。由戴德金(Julius Wilhelm Richard Dedekind)、利奥波德·克罗内克(Leopold Kronecker)、埃米爾·阿廷(Emil Artin)等人发展起来的现代伽罗瓦理论引入了关于域扩张及其自同构的研究。 伽罗瓦理论的进一步抽象为伽罗瓦连接理论。.

查看 有限域和伽羅瓦理論

弗罗贝尼乌斯自同态

在数学中,特别交换代数和域理论中,弗罗贝尼乌斯自同态(Frobenius,简称弗罗贝尼乌斯)是特征为素数p 的交换环中的一个特殊的自同态。这个自同态以德国数学家费迪南德·格奥尔格·弗罗贝尼乌斯命名。弗罗贝尼乌斯自同态将环中的每个元素射到它的p 次乘幂。 x \mapsto x^p 在一般情况下,弗罗贝尼乌斯并不总是自同构。.

查看 有限域和弗罗贝尼乌斯自同态

弗拉基米爾·德林費爾德

弗拉基米爾·格爾紹諾維奇·德林費爾德(Vladimir Gershonovich Drinfel'd,),烏克蘭數學家,出生於哈爾科夫 。 1986年,柏克萊國際數學家大會一席開創性演講中,德林費爾德在霍普夫代數的基礎上引進量子群 (單李代數的量子形變(quantum deformation))一概念,並連係其到楊—巴克斯特方程(Yang-Baxter equation)(統計力學模型可解的必要條件)的研究。他又推廣霍普夫代數成 半霍普夫代數, 引進了德林費爾德模一概念,其應用包括分解對應於半三角霍普夫代數之楊-巴克斯特方程解的 R矩陣。 德林費爾德亦以數論、代數幾何、表示理論及其它領域上的工作為人所知,尤其是幾何化郎蘭茲綱領:他證明了有限域上的代數曲線函數域上關於GL2的郎蘭茲猜想。 這是首個整體域上郎蘭茲猜想的非交換例子。.

查看 有限域和弗拉基米爾·德林費爾德

循环码

在编码理论中,循环码(cyclic code)是一种分組碼,每个码字循环移位会得到同样属于该码的另一个码字。它们是拥有便于误差检测与校正的纠错码。.

查看 有限域和循环码

循環冗餘校驗

循環冗餘校驗(Cyclic redundancy check,通稱「CRC」)是一種根據網路數據封包或電腦檔案等數據產生簡短固定位數驗證碼的一種散列函數,主要用來檢測或校驗數據傳輸或者保存後可能出現的錯誤。生成的數字在傳輸或者儲存之前計算出來並且附加到數據後面,然後接收方進行檢驗確定數據是否發生變化。一般來說,循環冗餘校驗的值都是32位的整數。由於本函數易於用二進制的電腦硬件使用、容易進行數學分析並且尤其善於檢測傳輸通道干擾引起的錯誤,因此獲得廣泛應用。此方法是由於1961年發表 。.

查看 有限域和循環冗餘校驗

循環群

在群論中,循環群(英文:cyclic group),是指能由單個元素所生成的群。有限循环群同构于整数同余加法群 Z/nZ,无限循环群则同构于整数加法群。每個循環群都是阿贝尔群,亦即其運算是可交換的。在群论中,循环群的性质已经被研究的较为透彻,是更为复杂的代数研究中常用到的基础工具。.

查看 有限域和循環群

德林費爾德模

在數學領域,德林費爾德模或橢圓模是一種特別的模,佈於有限域上的代數曲線的坐標環上。粗略地說,德林費爾德模是複橢圓曲線的複乘法理論之函數域版本。 俄文單詞 штука(英語拼音:shtuka 或 chtouca,源於德文的 Stück,意指物件或東西),又稱F-層,是德林費爾德模的一種延伸,由曲線上的向量叢和其它關乎弗羅貝尼烏斯映射的資料組成。 弗拉基米爾·德林費爾德在1973年發明了德林費爾德模,隨後推廣到 штука,以證明函數域上的 \mathrm(2) 郎蘭茲猜想。洛朗·拉福格藉由研究 n秩 штука的模疊與跡公式,在2002年證出 \mathrm(n) 的情形。.

查看 有限域和德林費爾德模

初等阿貝爾群

在群論中,初等阿貝爾群是有限阿貝爾群,這里的所有非平凡元素都有 p 階而 p 是素數。 通過有限生成阿貝爾群的分類,所有初等阿貝爾群必定有如下形式 對于非負整數 n。這里的 Z/pZ 指示 p 階的循環群(或等價的整數模以 p),而冪符號表示意味著 n 元笛卡爾積。.

查看 有限域和初等阿貝爾群

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

查看 有限域和几何学

函數域

在代數幾何中,一個整概形 X 的函數域 K_X 由 X 上的有理函數組成;對於一般的概形,相應的對象是有理函數層。雙有理幾何研究的便是由 K_X 所決定的幾何性質。.

查看 有限域和函數域

典型群

在数学中,典型群(classical group)指与欧几里得空间的对称密切相关的四族无穷多李群。术语“--”的使用取决于语境,有一定的灵活性。这个用法可能源于赫尔曼·外尔,他的专著 以“典型群”为题。在菲利克斯·克莱因爱尔兰根纲领的观点下,也许反映了它们和“--”几何(classical geometry)的关系。 有时在紧群的限制下讨论典型群,这样容易处理它们的表示论和代数拓扑。但是这把一般线性群排除在外,当前都认为一般线性群是最典型的群 。 和典型李群相对的是例外李群,具有一样的抽象性质,但不属于同一类。.

查看 有限域和典型群

克莱因四元群

数学上,克莱因(Klein)四元群,得名自菲利克斯·克莱因,是最小的非循环群。它有4个元素,除单位元外其阶均为2。 克莱因四元群通常以V表示(来自德文的四元群Vierergruppe)。它是阿贝尔群,同构于\mathbb Z/2\mathbb Z\times \mathbb Z/2\mathbb Z,就是2阶的循环群与自身的直积。它也同构于4阶的二面体群。.

查看 有限域和克莱因四元群

四元群

在群論裡,四元群是指一個8目的不可換群。它常被標示為Q,且被寫成乘法的形式,以下列的8個元素 這裡,1是單位元素,(−1)2.

查看 有限域和四元群

四色定理

四色定理是一个著名的数学定理:如果在平面上劃出一些邻接的有限区域,那么可以用四种颜色来给这些区域染色,使得每两个邻接区域染的颜色都不一样;另一个通俗的说法是:每个无外飞地的地图都可以用不多於四种颜色来染色,而且不會有两个邻接的区域颜色相同。被称为邻接的两个区域是指它们有一段公共的边界,而不仅仅是一个公共的交点。例如右图左下角的圆形中,红色部分和绿色部分是邻接的区域,而黄色部分和红色部分则不是邻接区域。 “是否只用四种颜色就能为所有地图染色”的问题最早是由一位英国制图员在1852年提出的,被称为“四色问题”或“四色猜想”。人们发现,要证明宽松一点的“五色定理”(即“只用五种颜色就能为所有地图染色”)很容易,但四色问题却出人意料地异常困难。曾经有许多人发表四色问题的证明或反例,但都被证实是错误的。 1976年,数学家凱尼斯·阿佩爾和沃夫冈·哈肯借助电子计算机首次得到一个完全的证明,四色问题也终于成为四色定理。这是首个主要借助计算机证明的定理。这个证明一开始并不为许多数学家接受,因为不少人认为这个证明无法用人手直接验证。尽管随着计算机的普及,数学界对计算机辅助证明更能接受,但仍有数学家希望能够找到更简洁或不借助计算机的证明。.

查看 有限域和四色定理

BCH码

BCH码(BCH codes、Bose–Chaudhuri–Hocquenghem codes)為取自Bose、Ray-Chaudhuri与Hocquenghem的缩写,是编码理论尤其是纠错码中研究得比较多的一种编码方法。用术语来说,BCH码是用于校正多个随机错误模式的多级、循环、错误校正、变长数字编码。BCH码也可以用于质数级或者质数的幂级的多级相移键控。11级的BCH码已经用于表示10进制数外加一个符号位。.

查看 有限域和BCH码

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

查看 有限域和矩阵

离散傅里叶变换

离散傅里叶变换(Discrete Fourier Transform,缩写为DFT),是傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其DTFT的频域采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作其周期延拓的变换。在实际应用中通常采用快速傅里叶变换计算DFT。.

查看 有限域和离散傅里叶变换

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

查看 有限域和素数

绝对伽罗瓦群

在数学中,一个 域 K 的 绝对伽罗瓦群 GK ,是 Ksep 在 K 上的 伽罗瓦群。其中,Ksep 是 K 的 可分闭包。当 K 是 完美域,即 K 的特征为0,或者 K 是一个 有限域 的时候,Ksep.

查看 有限域和绝对伽罗瓦群

群表示論

在群論中,群表示論(group representation theory)是一个非常重要的理論。它包含了(局部)緊緻群、李群、李代數及群概形的表示等種種分支,近來無限維表示理論也漸露頭角。表示理論在量子物理與數學的各領域中均有重要應用。.

查看 有限域和群表示論

生成矩阵

在编码理论中,生成矩阵(generator matrix)是一个矩阵,该矩阵的行是的一组基。所有码字都是该矩阵的行的线性组合,也就是说,线性码是其生成矩阵的行空间。.

查看 有限域和生成矩阵

韦伊配对

韋伊配對(英語:Weil pairing),簡單的說,Weil對可將橢圓曲線之撓群(torsion group)上的兩個點,映射到一個特殊有限域之乘法子群上,藉此可將橢圓曲線離散對數問題(ECDLP)投射到一般的離散對數問題(DLP)。 Weil對被用在數論以及代數幾何上,以及橢圓曲線密碼學的 ID-based cryptography 上。 對於更高維度的阿貝爾簇,相應的理論依然成立。 Category:橢圓曲線.

查看 有限域和韦伊配对

表示论

表示論是數學中抽象代數的一支。旨在將抽象代数结构中的元素「表示」成向量空間上的線性變換,并研究这些代数结构上的模,藉以研究結構的性質。略言之,表示論將一代數對象表作較具體的矩陣,並使得原結構中的代数运算對應到矩陣加法和矩陣乘法。此法可施於群、結合代數及李代數等多種代數結構;其中肇源最早,用途也最廣的是群表示論。設G為群,其在域F(常取複數域F.

查看 有限域和表示论

高级加密标准

進階加密标准(Advanced Encryption Standard,缩写:AES),在密码学中又称Rijndael加密法,是美国联邦政府采用的一種區塊加密标准。这个标准用来替代原先的DES,已經被多方分析且廣為全世界所使用。經過五年的甄選流程,進階加密標準由美國國家標準與技術研究院(NIST)於2001年11月26日發佈於FIPS PUB 197,並在2002年5月26日成為有效的標準。2006年,進階加密标准已然成為对称密钥加密中最流行的演算法之一。 该演算法為比利时密码学家Joan Daemen和Vincent Rijmen所設計,結合兩位作者的名字,以Rijndael為名投稿進階加密標準的甄選流程。(Rijndael的發音近於"Rhine doll").

查看 有限域和高级加密标准

高斯二项式系数

斯二项式系数 (也称作 高斯系数, 高斯多项式, 或 q-二项式系数)在数学里是指二项式系数的q-模拟。.

查看 有限域和高斯二项式系数

谷山-志村定理

谷山-志村定理(Taniyama-Shimura theorem)建立了椭圆曲线(代数几何的对象)和模形式(数论中用到的某种周期性全纯函数)之间的重要联系。定理的证明由英國數學家安德鲁·怀尔斯(Andrew John Wiles)、理查·泰勒(Richard Taylor)、法國數學家克里斯多福·布勒伊(Christophe Breuil)、美國數學家布萊恩·康萊德(Brian Conrad)和佛瑞德·戴蒙德(Fred Diamond)所完成。 若p是一个质数而E是一个Q(有理数域)上的一个椭圆曲线,我们可以简化定义E的方程模p;除了有限个p值,我们会得到有np个元素的有限域Fp上的一个椭圆曲线。然后考虑如下序列 这是椭圆曲线E的重要的不变量。从傅里叶变换,每个模形式也会产生一个数列。一个其序列和从模形式得到的序列相同的椭圆曲线叫做模的。谷山-志村定理说:.

查看 有限域和谷山-志村定理

輾轉相除法

在数学中,辗转相除法,又称欧几里得算法(Euclidean algorithm),是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。 两个整数的最大公约数是能够同时整除它们的最大的正整数。辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的差的最大公约数。例如,252和105的最大公约数是21();因为,所以147和105的最大公约数也是21。在这个过程中,较大的数缩小了,所以继续进行同样的计算可以不断缩小这两个数直至其中一个变成零。这时,所剩下的还没有变成零的数就是两数的最大公约数。由辗转相除法也可以推出,两数的最大公约数可以用两数的整数倍相加来表示,如。这个重要的結論叫做貝祖定理。 辗转相除法最早出现在欧几里得的《几何原本》中(大约公元前300年),所以它是现行的算法中歷史最悠久的。这个算法原先只用来处理自然数和几何长度(相當於正實數),但在19世纪,辗转相除法被推广至其他类型的數學對象,如高斯整数和一元多项式。由此,引申出欧几里得整环等等的一些现代抽象代数概念。后来,辗转相除法又扩展至其他数学领域,如纽结理论和多元多项式。 辗转相除法有很多应用,它甚至可以用来生成全世界不同文化中的传统音乐节奏。在现代密码学方面,它是RSA算法(一种在电子商务中广泛使用的公钥加密算法)的重要部分。它还被用来解丢番图方程,比如寻找满足中国剩余定理的数,或者求有限域中元素的逆。辗转相除法还可以用来构造连分数,在施图姆定理和一些整数分解算法中也有应用。辗转相除法是现代数论中的基本工具。 辗转相除法处理大数时非常高效,如果用除法而不是减法实现,它需要的步骤不会超过较小数的位数(十进制下)的五倍。拉梅于1844年证明了这点,同時這也標誌著计算复杂性理论的開端。.

查看 有限域和輾轉相除法

齐次坐标

在數學裡,齊次坐標(homogeneous coordinates),或投影坐標(projective coordinates)是指一個用於投影幾何裡的坐標系統,如同用於歐氏幾何裡的笛卡兒坐標一般。該詞由奧古斯特·費迪南德·莫比烏斯於1827年在其著作《Der barycentrische Calcul》一書內引入。齊次坐標可讓包括無窮遠點的點坐標以有限坐標表示。使用齊次坐標的公式通常會比用笛卡兒坐標表示更為簡單,且更為對稱。齊次坐標有著廣泛的應用,包括電腦圖形及3D電腦視覺。使用齊次坐標可讓電腦進行仿射變換,並通常,其投影變換能簡單地使用矩陣來表示。 如一個點的齊次坐標乘上一個非零純量,則所得之坐標會表示同一個點。因為齊次坐標也用來表示無窮遠點,為此一擴展而需用來標示坐標之數值比投影空間之維度多一。例如,在齊次坐標裡,需要兩個值來表示在投影線上的一點,需要三個值來表示投影平面上的一點。.

查看 有限域和齐次坐标

迷向二次型

在数学中,一个域 F 上的二次型称为迷向(isotropic)的如果在一个非零向量上取值为零。不然称为非迷向(anisotropic)的。更具体地,如果 q 是域 F 上向量空间 V 上一个二次型,则 V 中一个非零向量 v 称为迷向的如果 q(v).

查看 有限域和迷向二次型

近域

在代数结构中,近域在概念上类似除环,但两个分配律只满足一个。另外,近域和近环的区别为近域一定有一个乘法单位元,而且每一个非零元素都有乘法逆元。.

查看 有限域和近域

部分分式分解

部分分式分解或部分分式展開,是將有理函數分解成許多次數較低有理函數和的形式,來降低分子或分母多項式的次數。分解後的分式需滿足以下條件:.

查看 有限域和部分分式分解

阿达马矩阵

在数学中,阿达马矩阵是一个方阵,每个元素都是 +1 或 −1,每行都是互相正交的。阿达马矩阵常用于纠错码,如Reed-Muller码。阿达马矩阵的命名来自于法国数学家雅克·阿达马。.

查看 有限域和阿达马矩阵

里德-所罗门码

里德-所罗门码(又稱里所码,Reed-solomon codes,簡稱RS codes)是一种前向錯誤更正的信道编码,对由校正过采样数据所产生的有效多项式。编码过程首先在多个点上对这些多项式求冗余,然后将其传输或者存储。对多项式的这种超出必要值得采样使得多项式超定(过限定)。当接收器正确的收到足够的点后,它就可以恢复原来的多项式,即使接收到的多项式上有很多点被噪声干扰失真。 里德-所罗门码被广泛的应用于各种商业用途,最显著的是在CD、DVD和蓝光光盘上的使用;在数据传输中,它也被用于DSL和WiMAX;广播系统中DVB和ATSC也闪现着它的身影;在计算机科学里,它是RAID 6标准的重要成员。.

查看 有限域和里德-所罗门码

雷奧那德·尤金·迪克遜

雷奧那德·尤金·迪克遜(Leonard Eugene Dickson,又译“L.E.迪克森”,) 是一位美國數學家。迪克遜是美國第一位涉足抽象代數領域的研究學者。迪克遜專精於有限域理論以及典型群。迪克遜所著的三卷《數論史》至今仍是數論史方面的重要書籍。.

查看 有限域和雷奧那德·尤金·迪克遜

P進數

进数是数论中的概念,也称作局部数域,是有理数域拓展成的完备数域的一种。这种拓展与常见的有理数域\mathbb到实数域\mathbb、复数域\mathbb的数系拓展不同,其具体在于所定义的“距离”概念。进数的距离概念建立在整数的整除性质上。给定素数,若两个数之差被的高次幂整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使进数理论成为了数论研究中的有力工具。例如安德鲁·怀尔斯对费马大定理的证明中就用到了进数理论。 进数的概念首先由库尔特·亨泽尔于1897年构思并刻画,其发展动机主要是试图将幂级数方法引入到数论中,但现今进数的影响已远不止于此。例如可以在进数上建立p进数分析,将数论和分析的工具结合起来。此外进数在量子物理学、认知科学、计算机科学等领域都有应用。.

查看 有限域和P進數

Q-模拟

在数学里,尤其是组合数学和特殊函数领域,一个定理、等式或者表达式的q-模拟是指在引入一个新的参数q后当q→1时原定理、等式或表达式的极限。最早地研究得较为深入的q-模拟是 19世纪被引入的基本超几何级数。 q-模拟在包括分形、多重分形, 混沌动力系统的熵表达在内的多个研究领域都有应用。另外,在量子群 和 q-变形 代数的研究中也有应用。 "经典" q-模拟开始于莱昂哈德·欧拉的研究工作,后来由F.

查看 有限域和Q-模拟

RAID

--(RAID, Redundant Array of Independent Disks),舊稱--(Redundant Array of Inexpensive Disks),簡稱磁盘阵列。其基本思想就是把多個相對便宜的硬碟組合起來,成為一個硬碟陣列組,使性能達到甚至超過一個價格昂貴、容量巨大的硬碟。根據選擇的版本不同,RAID比單顆硬碟有以下一個或多個方面的好處:增強資料整合度,增強容錯功能,增加處理量或容量。另外,磁碟陣列對於電腦來說,看起來就像一個單獨的硬碟或邏輯存儲單元。分為RAID-0,RAID-1,RAID-5,RAID-6,RAID-7,RAID-01,RAID-10,RAID-50,RAID-60。 簡單來說,RAID把多個硬碟組合成為一個邏輯磁區,因此,作業系統只會把它當作一個硬碟。RAID常被用在伺服器電腦上,並且常使用完全相同的硬碟作為組合。由於硬碟價格的不斷下降與RAID功能更加有效地與主機板整合,它也成為普通用户的一個選擇,特別是需要大容量儲存空間的工作,如:視訊與音訊製作。 最初的RAID分成不同的等級,每種等級都有其理論上的優缺點,不同的等級在兩個目標間取得平衡,分別是增加資料可靠性以及增加存储器(群)读写效能。這些年來,出現對於RAID觀念不同的應用。.

查看 有限域和RAID

SHARK

在密碼學裡,SHARK被認為是一種Rijndael加密法(高級加密標準)前身的區塊加密。 SHARK有64位元區塊大小與128位元密鑰長度。它是個6迴圈SP網路,利用線性與非線性轉換層輪換密鑰混合階段。線性轉換使用MDS矩陣代表Reed-Solomon錯誤糾正代碼以保證適度散亂。非線性層是以8個來自函數F(x).

查看 有限域和SHARK

插值攻擊

在密碼學裡,插值攻擊是一種用來對付分組密碼的密碼分析手法。 插值攻擊使用一個代數函數來代表一個S-Box,此函數可以用已知明文攻擊法取得樣本點,再用拉格朗日插值法產生。這個代數函數可能是在有限體上的二次函數、多項式函數或有理函數。也可以用選擇明文攻擊法取得樣本點,如此一來可以簡化所使用的代數函數,讓攻擊更有效率。 Thomas Jakobsen更進一步將機率的概念引入了插值攻擊法,用Madhu Sudan演算法來改善其對Reed-Solomon糾錯碼的解譯能力。如此一來插值攻擊在明文與密文的內容僅有極少的代數關係時也有效。.

查看 有限域和插值攻擊

椭圆曲线密码学

椭圆曲线密码学(Elliptic curve cryptography,缩写为 ECC),一種建立公开密钥加密的演算法,基于椭圆曲线数学。椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的。 ECC的主要优势是在某些情况下它比其他的方法使用更小的密钥——比如RSA加密算法——提供相当的或更高等级的安全。ECC的另一个优势是可以定义群之间的双线性映射,基于Weil对或是Tate对;双线性映射已经在密码学中发现了大量的应用,例如基于身份的加密。不过一个缺点是加密和解密操作的实现比其他机制花费的时间长。.

查看 有限域和椭圆曲线密码学

模算數

模算數(modular arithmetic)是一個整数的算术系統,其中數字超過一定值後(稱為模)後會「捲回」到較小的數值,模算數最早是出現在卡爾·弗里德里希·高斯在1801年出版的《算术研究》一書中。 模算數常見的應用是在十二小時制,將一天分為二個以十二小時計算的單位。假設現在七點,八小時後會是三點。用一般的算術加法,會得到,但在十二小時制中,超過十二小時會歸零,不存在「十五點」。類似的情形,若時鐘目前是十二時,二十一小時後會是九點,而不是三十三點。小時數超過十二後會再回到一,為模12的模算數系統。依照上述的定義,12和12本身同餘,也和0同餘,因此12:00的時間也可以稱為是0:00,因為模12時,12和0同餘。.

查看 有限域和模算數

標準模型 (密碼學)

在密碼學中,標準模型(Standard model) 是建立在對手使用有限的時間與運算力前提下的計算模型,也可稱作裸模型或普通模型。 密碼方案通常基於複雜度假設,其中提出了一些問題,如因式分解,無法在多項式時間內解決。僅僅在複雜度假設下可證明安全的方案,被稱作在標準模型下安全,眾所周知安全性證明在標準模型下非常困難,因此很多情況下,密碼算法會被理論化版本替代。這種技術,最常見的例子為隨機預言模型,其中採用一個真正的隨機函數替換原有的密碼散列函數。另一個例子為通用群模型,其中對手被給予一個隨機選擇的編碼組訪問權,在實踐中被有限域或橢圓曲線群代替。.

查看 有限域和標準模型 (密碼學)

正交群

数学上,数域F上的n阶正交群,记作O(n,F),是F上的n×n 正交矩阵在矩阵乘法下构成的群。它是一般线性群GL(n,F)的子群,由 这里QT是Q的转置。实数域上的经典正交群通常就记为O(n)。 更一般地,F上一个非奇异二次型的正交群是保持二次型不变的矩阵构成的群。嘉当-迪奥多内定理描述了这个正交群的结构。 每个正交矩阵的行列式为1或−1。行列式为1的n×n正交矩阵组成一个O(n,F)的正规子群,称为特殊正交群SO(n,F)。如果F的特征为2,那么1.

查看 有限域和正交群

本原多项式

在不同的分支数学,本原多项式有不同的含义:.

查看 有限域和本原多项式

本原元定理

在数学中,本原元定理精确刻画了什么时候对于一个域扩张E/F,E可以表示为F(\alpha)的形式,即E可以由单个元素生成。.

查看 有限域和本原元定理

有理簇

在數學中的代數幾何領域,域 K 上的有理簇是一個雙有理等價於射影空間 \mathbb_K^n(n \in \N)的代數簇。有理性僅依賴於其函數域,更明確地說,代數簇 X 是有理簇若且唯若 K(X) \simeq K(T_1, \ldots, T_n) \;(n \in \N),其中 T_1, \ldots, T_n 是獨立的變元。.

查看 有限域和有理簇

有限域算术

在数学之中,有限域算术是一种在有限域之内的算术,因为域仅包括有限数量的元素,而有限域算术则相对于无限域算术,后者是包括无限数量的元素的算术(如在有理数之下的算术)。 由于并没有任何有限域是无限的,因此存在着无限多个不同的有限域。它们的势需要是能够在pn的形式下,这其中的p是一则素数,而n则是一则正整数,同时两个持有等量的有限域可以构成同构。素数p被称之为有限域的特征,而正整数n则被称之为有限域的向量空间的维数,凌驾于它的最初域之上,最初域为最小的包括1F的子域。 有限域应用于各种领域,这其中包括在线性分组码之内的编码理论,譬如BCH码和里德-所罗门码,还有在密码学之中的演算法,比如Rijndael加密法之下的加密算法。.

查看 有限域和有限域算术

有限环

在数学,特别是抽象代数,有限环(Finite ring)是一个环(不一定有乘法的单位元)元素的数量有限的环。每一个有限域是有限环的一个特例,每一个有限环的加法群,是一个有限阿贝尔群,有限环的概念是比较新的。 1964年在《美国数学月刊》上,大衛·辛馬斯特(David Singmaster)提出了以下问题:「(1)不是域的非平凡有单位元环有何种结构,已经找出两个这种四阶环,还有不同的四阶环吗?(2)四阶环有多少?」 一个解决方案由D.M.

查看 有限域和有限环

有限群

在數學裡,有限群是有著有限多個元素的群。有限群理論中的某些部份在20世紀有著很深的研究,尤其是在局部分析和可解群與冪零群的理論中。期望有個完整的理論是太過火了:其複雜性會隨著群變得越大時而變得壓倒性地巨大。 較少壓倒性地,但仍然很有趣的是在有限域上的一些較小一般線性群。群論學家曾寫過:「有限群的典型例子為GL(n,q)-在q個元素的域上的n維一般線性群。學生在學此領域時,若以其他的例子來做介紹,則可能會被完全地誤導。(Bulletin (New Series) of the American Mathematical Society, 10 (1984) 121)此類型最小的群GL(2,3)的討論,見。 有限群和對稱有直接地關接,當其被限制在有限個轉變時。 其證明為,連續對稱,如李群中的,也會導致有限群,如外爾群。在此一方面,有限群和其性質將能夠用在如理論物理問題的重要地方,即使其用途在一開始並不顯著。 每一質數階的有限群都是循環群。.

查看 有限域和有限群

数论

數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.

查看 有限域和数论

整體域

整體域是代數數論研究的主要對象,分成兩類:.

查看 有限域和整體域

186

186是185與187之間的自然數。.

查看 有限域和186

亦称为 伽罗瓦域。

高级加密标准高斯二项式系数谷山-志村定理輾轉相除法齐次坐标迷向二次型近域部分分式分解阿达马矩阵里德-所罗门码雷奧那德·尤金·迪克遜P進數Q-模拟RAIDSHARK插值攻擊椭圆曲线密码学模算數標準模型 (密碼學)正交群本原多项式本原元定理有理簇有限域算术有限环有限群数论整體域186