我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

最小作用量原理

指数 最小作用量原理

物理學中 最小作用量原理(least action principle),或更精確地,平穩作用量原理(stationary action principle),是一種變分原理,當應用於一個機械系統的作用量時,可以得到此機械系統的運動方程式。這原理的研究引導出經典力學的拉格朗日表述和哈密頓表述的發展。卡爾·雅可比特稱最小作用量原理為分析力學之母。 在現代物理學裏,這原理非常重要,在相對論、量子力學、量子場論裏,都有廣泛的用途。在現代數學裏,這原理是莫爾斯理論的研究焦點。本篇文章主要是在闡述最小作用量原理的歷史發展。關於數學描述、推導和實用方法,請參閱條目作用量。最小作用量原理有很多種例子,主要的例子是莫佩爾蒂原理(Maupertuis' principle)和哈密頓原理。 在最小作用量原理之前,有很多類似的點子出現於測量學和光學。古埃及的拉繩測量者(rope stretcher)在測量兩點之間的距離時,會將固定於這兩點的繩索拉緊,這樣,可以使間隔距離減少至最低值。托勒密在他的著作《地理學指南》(Geographia)第一册第二章裏強調,測量者必須對於直線路線的誤差做出適當的修正。古希臘數學家歐幾里得在《反射光學》(Catoptrica)裏表明,將光線照射於鏡子,則光線的反射路徑的入射角等於反射角。稍後,亞歷山卓的希羅證明這路徑的長度是最短的。.

目录

  1. 27 关系: 变分原理变分法奥卡姆剃刀廣義相對論的替代理論作用量哈密頓-雅可比方程式哈密頓原理哈密顿-雅可比-爱因斯坦方程光學史皮埃爾·莫佩爾蒂理查德·費曼等周定理经典场论物理学史物理定律狭义相对论发现史ECT理论-牛顿引力理论诺特定理費馬原理费曼物理学讲义路易·德布罗意薛定谔方程波函数最大簡約法斯涅尔定律拉格朗日力学拉格朗日量

变分原理

变分原理是物理学的一条基本原理,以变分法来表达。 根据科内利乌斯·兰佐斯的说法,任何可以用变分原理来表达的物理定律描述一种自伴的表示。这种表示也被说成是埃尔米特的,描述了在埃尔米特变换下的不变量。 菲利克斯·克莱因的爱尔兰根纲领试图鉴识这类在一组变换下的不变量。在物理学的诺特定理中,一组变换的庞加莱群(现在广义相对论中被称为规范群)定义了在一组依赖于变分原理的变换下的对称性,即作用原理。.

查看 最小作用量原理和变分原理

变分法

变分法是处理泛函的数学领域,和处理函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A到达不直接在它底下的一点B。在所有从A到B的曲线中必须极小化代表下降时间的表达式。 变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它不能分辨是找到了最大值或者最小值(或者都不是)。 变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用量原理在量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。它们也在材料学中研究材料平衡中大量使用。而在纯数学中的例子有,黎曼在调和函数中使用狄利克雷原理。 同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,莫尔斯理论,或者辛几何。变分一词用于所有极值泛函问题。微分几何中的测地线的研究是很显然的变分性质的领域。极小曲面(肥皂泡)上也有很多研究工作,称为普拉托问题。.

查看 最小作用量原理和变分法

奥卡姆剃刀

奥卡姆剃刀(Occam's Razor, Ockham's Razor),又称“奥坎的剃刀”,拉丁文为lex parsimoniae,意思是简约之法则,是由14世纪逻辑学家、圣方济各会修士奥卡姆的威廉(William of Occam,约1287年至1347年,奥卡姆(Ockham)位于英格兰的萨里郡)提出的一个解决问题的法则,他在《箴言书注》2卷15题说“切勿浪费较多东西,去做‘用较少的东西,同样可以做好的事情’。”换一种说法,如果关于同一个问题有许多种理论,每一种都能作出同样准确的预言,那么应该挑选其中使用假定最少的。尽管越复杂的方法通常能做出越好的预言,但是在不考虑预言能力(即結果大致相同)的情况下,假设越少越好。 所罗门诺夫的归纳推理理论是奥卡姆剃刀的数学公式化:Induction: From Kolmogorov and Solomonoff to De Finetti and Back to Kolmogorov JJ McCall - Metroeconomica, 2004 - Wiley Online Library.

查看 最小作用量原理和奥卡姆剃刀

廣義相對論的替代理論

廣義相對論的替代理論是與愛因斯坦廣義相對論競爭,嘗試要描述重力現象的物理理論。 對於建構一個理想重力理論,至今已有許多不同的嘗試。這些嘗試可以分為下面四個大類:.

查看 最小作用量原理和廣義相對論的替代理論

作用量

在物理學裏,作用量(英语:action)是一個很特別、很抽象的物理量。它表示著一個動力物理系統內在的演化趨向。雖然與微分方程式方法大不相同,作用量也可以被用來分析物理系統的運動,所得到的答案是相同的。只需要設定系統在兩個點的狀態,初始狀態與最終狀態,然後,經過求解作用量的平穩值,就可以得到系統在兩個點之間每個點的狀態。.

查看 最小作用量原理和作用量

哈密頓-雅可比方程式

在物理學裏,哈密頓-雅可比方程 (Hamilton-Jacobi equation,HJE) 是經典力學的一種表述。哈密顿-雅可比方程、牛頓力學、拉格朗日力學、哈密頓力學,這幾個表述是互相全等的。而哈密顿-雅可比方程在辨明守恆的物理量方面,特別有用處。有時候,雖然物理問題的本身無法完全解析,哈密顿-雅可比方程仍舊能夠正確的辨明守恆的物理量。 HJE 是经典哈密顿量一个正则变换,经过该变换得到的结果是一个一阶非线性偏微分方程,方程式之解描述了系统的行为。与哈密顿运动方程的不同之处在于 HJE 是一个偏微分方程,每个变量对应于一个坐标,而哈密顿方程是一个一阶线性方程组,每两个方程对应于一个坐标。HJE 可以漂亮地解析一些重要问题,例如开普勒问题。 HJE 是唯一能夠將粒子運動表達為波動的一種力學表述。因此,HJE 滿足了一個長久以來理論物理的研究目標(早至 18 世紀,約翰·白努利和他的學生皮埃爾·莫佩爾蒂的年代);那就是,尋找波傳播與粒子運動的相似之處。力學系統的波動方程式與薛丁格方程式很相似;但並不相同。稍後會有詳細說明。HJE 被認為是從經典力學進入量子力學最近的門階。.

查看 最小作用量原理和哈密頓-雅可比方程式

哈密頓原理

在物理學裏,哈密頓原理(Hamilton's principle)是愛爾蘭物理學家威廉·哈密頓於1833年發表的關於平穩作用量原理的表述。哈密頓原理闡明,一個物理系統的拉格朗日函數,所構成的泛函的變分問題解答,可以表達這物理系統的動力行為。拉格朗日函數又稱為拉格朗日量,包含了這物理系統所有的物理內涵。這泛函稱為作用量。哈密頓原理提供了一種新的方法來表述物理系統的運動。不同於牛頓運動定律的微分方程式方法,這方法以積分方程式來設定系統的作用量,在作用量平穩的要求下,使用變分法來計算整個系統的運動方程式。 雖然哈密頓原理本來是用來表述經典力學,這原理也可以應用於經典場,像電磁場或重力場,甚至可以延伸至量子場論等等。.

查看 最小作用量原理和哈密頓原理

哈密顿-雅可比-爱因斯坦方程

在廣義相對論中,哈密頓-雅可比-爱因斯坦方程(Hamilton–Jacobi–Einstein equation,簡稱HJEE)是一道哈密頓形式、描述超空間中的幾何力學的方程。創於「幾何力學年代」,這方程由亚瑟·佩雷斯(Asher Peres)在1960給出,目的是更正廣義相對論以令其成為量子理論的半古典近似,就像量子力學與古典力學一樣對應關係。 這方程包含了全部10道愛因斯坦場方程式(EFEs),亦是古典力學中哈密頓-雅可比方程式(HJE)的修正,並可以從ADM形式中的愛因斯坦-希爾伯特作用量,以最小作用量原理推導。.

查看 最小作用量原理和哈密顿-雅可比-爱因斯坦方程

光學史

人类对光學(optics)的研究开始于古代。最晚于公元前700年,古埃及人與美索不達米亞人便开始磨製與使用透鏡;之后前6~5世纪时古希臘哲學家與古印度哲學家提出了很多關於視覺與光線的理論;在,幾何光學開始萌芽。光学「optics」一词源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 中世紀時,穆斯林世界對早期光學做出许多貢獻,在幾何光學與生理光學(physiological optics)方面都有很大的進展。在文藝復興時期與科學革命時期,光學開始出現戲劇性的突破,以衍射光学的出现为标志。這些與之前發展出的光學被稱為「經典光學」。二十世紀发展的光學研究領域,如光譜學與量子光學,一般被稱為「現代光學」。.

查看 最小作用量原理和光學史

皮埃爾·莫佩爾蒂

埃爾·路易·莫佩爾蒂(Pierre Louis Moreau de Maupertuis,)是一位法國數學家、物理學家、哲學家。他是最先确定地球形狀為近扁球形的科學家。他也擁有首先提出最小作用量原理之榮譽。.

查看 最小作用量原理和皮埃爾·莫佩爾蒂

理查德·費曼

查德·菲利普斯·費曼(Richard Phillips Feynman,),美國理论物理學家,量子电动力学创始人之一,纳米技术之父。由費曼提出或完善的费曼图、费曼规则(Feynman rules)和重整化计算方法是研究量子电动力学和粒子物理学的重要工具。费曼个性十足,爱出风头,平易近人且喜爱搞怪,有很多逸闻流传于世。在1999年英國雜誌《》对全球130名領先物理學家的民意調查中,他被評為有史以來10位最偉大的物理學家之一。費曼父母皆為立陶宛猶太人,來自白俄羅斯,然而費曼本人是無神論者。 费曼业余爱好广泛,如打邦哥鼓、破译玛雅文明的象形文字、研究如何撬開保险櫃的鎖及逛脱衣舞厅等。他自己搜罗了不少这类故事,整理成了自传《别闹了,费曼先生!》。该书后來成为畅销大众读物。费曼是少数几个在大众心目中形象生动鲜活的前沿科学家之一。.

查看 最小作用量原理和理查德·費曼

等周定理

等周定理,又稱等周不等式,是一个几何中的不等式定理,说明了欧几里得平面上的封闭图形的周长以及其面积之间的关系。其中的“等周”指的是周界的长度相等。等周定理說明在周界长度相等的封闭几何形狀之中,以圓形的面積最大;另一個說法是面積相等的几何形狀之中,以圓形的周界长度最小。這兩種說法是等價的。它可以以不等式表達:若P為封闭曲線的周界长,A為曲線所包圍的區域面積,4 \pi A \le P^2。 虽然等周定理的结论早已为人所知,但要严格的证明这一点并不容易。首个严谨的数学证明直到19世纪才出现。之后,数学家们陆续给出了不同的证明,其中有不少是非常简单的。等周问题有许多不同的推广,例如在各种曲面而不是平面上的等周问题,以及在高维的空间中给定的“表面”或区域的最大“边界长度”问题等。 在物理中,等周问题和跟所谓的最小作用量原理有關。一个直观的表现就是水珠的形状。在没有外力的情况下(例如失重的太空舱里),水珠的形状是完全对称的球体。这是因为当水珠体积一定时,表面张力会迫使水珠的表面积达到最小值。根据等周定理,最小值是在水珠形状为球状时达到。.

查看 最小作用量原理和等周定理

经典场论

经典场论是描述物理场和物质相互作用的研究的物理理论。 一个物理场可以视为在空间和时间的某一点赋予一个物理量(通常是以一种连续的方式)。例如,在气象预报中,某一天一个国家的风速可以用在空间的每一点赋予一个向量来表述(通过移动代表该日的风速的箭头)。经典场论一词通常是指表述两类基本自然力的物理理论:电磁力和重力。 这些场的表述在相对论之前就给出了,在相对论之下作了相应的改动。因此,经典理论可以归类为非相对论性和相对论性的。.

查看 最小作用量原理和经典场论

物理学史

物理学主要是研究物质、能量及它們彼此之間的關係。它是最早形成的自然科学学科之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理學》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比伦和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。 在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德的学说以及其后的经院哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自於这些哲学传统,并在中世纪时由当时的哲学家、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。.

查看 最小作用量原理和物理学史

物理定律

物理定律或科學定律是一種理論陳述。這個陳述由特定的事實推理得出,適用於一個確定的群體或一類現象,並且可以透過陳述表明:在某些條件下,總是會發生某個特定的現象。物理定律通常是經過多年重複科學實驗與觀察得出的結論,並且被在科學界被普遍接受。科學的一個基本目標,便是以這種定律的形式對環境進行總結描述。.

查看 最小作用量原理和物理定律

狭义相对论发现史

狭义相对论发现史讲述的是狭义相对论从无到逐渐确立的过程。在其发现过程中,包括了阿尔伯特·迈克耳孙、洛伦兹、庞加莱等先辈的研究发展许多理论成果和实证研究结果的过程,这些成果在爱因斯坦提出狭义相对论时达到了顶峰。此外,还包括了普朗克和闵可夫斯基等人的后续的工作。.

查看 最小作用量原理和狭义相对论发现史

ECT理论-牛顿引力理论

返回 在牛顿引力场中,粒子运动的拉格朗日量为:.

查看 最小作用量原理和ECT理论-牛顿引力理论

诺特定理

诺特定理是理论物理的中心结果之一,它表达了连续对称性和守恒定律的一一对应。例如,物理定律不随着时间而改变,这表示它们有关于时间的某种对称性。如果我们想象一下,譬如重力的强度每天都有所改变,我们就会违反能量守恒定律,因为我们可以在重力弱的那天把重物举起,然后在重力强的时候放下来,这样就得到了比我们开始输入的能量更多的能量。 诺特定理对于所有基于作用量原理的物理定律是成立的。它得名于20世纪初的数学家埃米·诺特。诺特定理和量子力学深刻相关,因为它仅用经典力学的原理就可以认出和海森堡测不准原理相关的物理量(譬如位置和动量)。.

查看 最小作用量原理和诺特定理

費馬原理

費馬原理(Fermat principle)最早由法国科学家皮埃爾·德·費馬在1662年提出:光传播的路径是光程取极值的路径。这个极值可能是最大值、最小值,甚至是函数的拐点。 最初提出时,又名「最短時間原理」:光線傳播的路徑是需時最少的路徑。 費馬原理更正確的稱謂應是「平穩時間原理」:光沿着所需时间为平稳的路径传播。所谓的平稳是数学上的微分概念,可以理解为一阶导数为零,它可以是极大值、极小值甚至是拐点。 費馬原理是几何光学的基本定理。用微分或变分法可以从費馬原理导出以下三个几何光学定律:.

查看 最小作用量原理和費馬原理

费曼物理学讲义

英語精裝版的《費曼物理學講義》,夹带有《费曼物理学诀窍》。 《费曼物理学讲义》(The Feynman Lectures on Physics)又译《费恩曼物理学讲义》,由理查德·費曼、羅伯·雷頓及馬修·山德士合著,被認為是费曼最易理解的专业作品,适用于任何对物理有兴趣的读者。该书今天已成为对现代物理的經典介绍,包括数学、电磁学、经典力学、量子物理学及物理学同其它学科的关系等。该书分为3卷。第1卷主要讲力学、光学、电磁辐射和热力学;第2卷主要讲电磁学和电动力学;第3卷主要讲量子力学。.

查看 最小作用量原理和费曼物理学讲义

路易·德布罗意

路易·维克多·德布罗意,第七代布罗意公爵(Louis Victor de Broglie, prince, puis duc de Broglie,),简称路易·德布罗意(Louis de Broglie),法國物理學家,法國外交和政治世家布羅意公爵家族的後代。从1928年到1962年在索邦大學擔任理論物理學教授,1929年因發現了電子的波動性,以及他對量子理論的研究而獲諾貝爾物理學獎。1952年獲聯合國教科文組織頒發的。 於1944年,德布羅意膺選為法蘭西學術院第一席位的院士,是第十六位得到此殊榮的人士。他也是法國科學院的永久秘書。.

查看 最小作用量原理和路易·德布罗意

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

查看 最小作用量原理和薛定谔方程

波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

查看 最小作用量原理和波函数

最大簡約法

最大簡約法(Maximum parsimony)是一種常使用於系統發生學計算的方式,可用來根據分子序列的變異程度,來分析生物之間的演化關係,進而建構出演化樹。 「簡約」一般有「經濟的」或「儉省的」之義,但在生物學中,「簡約法」是屬於無母數統計的一種統計方法以估計親緣關係。以最大簡約法建構的親緣關係樹是以演化過程具有最少次變化為前提,表示現存資料在過去的演化過程應由最少次步驟所形成。這項概念由Walter M.

查看 最小作用量原理和最大簡約法

斯涅尔定律

光波從一種介質傳播到另一種具有不同折射率的介質時,會發生折射現象,其入射角與折射角之間的關係,可以用斯涅尔定律(Snell's Law)來描述。斯涅尔定律是因荷兰物理学家威理博·斯涅尔而命名,又稱為「折射定律」。 在光學裏,光線跟蹤科技應用斯涅尔定律來計算入射角與折射角。在實驗光學與寶石學裏,這定律被應用來計算物質的折射率。對於具有負折射率的负折射率超材料(metamaterial),這定律也成立,允許光波因負折射角而朝後折射。 斯涅尔定律表明,當光波從介質1傳播到介质2時,假若兩種介質的折射率不同,則会发生折射現像,其入射光和折射光都處於同一平面,稱為「入射平面」,并且与界面法线的夹角满足如下关系: 其中,n_1、n_2分别是两種介质的折射率,\theta_1和\theta_2分别是入射光、折射光与界面法线的夹角,分别叫做「入射角」、「折射角」。 這公式稱為「斯涅尔公式」。 斯涅尔定律可以從費馬原理推導出來,也可以從惠更斯原理、平移對稱性或馬克士威方程組推導出來。.

查看 最小作用量原理和斯涅尔定律

拉格朗日力学

拉格朗日力学(Lagrangian mechanics)是分析力学中的一种,于1788年由約瑟夫·拉格朗日所创立。拉格朗日力学是对经典力学的一种的新的理论表述,着重于数学解析的方法,並運用最小作用量原理,是分析力学的重要组成部分。 经典力学最初的表述形式由牛顿建立,它着重於分析位移,速度,加速度,力等矢量间的关系,又称为矢量力学。拉格朗日引入了广义坐标的概念,又运用达朗贝尔原理,求得与牛顿第二定律等价的拉格朗日方程。不仅如此,拉格朗日方程具有更普遍的意义,适用范围更广泛。还有,选取恰当的广义坐标,可以大大地简化拉格朗日方程的求解过程。.

查看 最小作用量原理和拉格朗日力学

拉格朗日量

在分析力學裏,一个动力系统的拉格朗日量(Lagrangian),又稱為拉格朗日函數,是描述整个物理系统的动力状态的函数,對於一般經典物理系統,通常定義為動能減去勢能,以方程式表示為 其中,\mathcal為拉格朗日量,T為動能,V為勢能。 在分析力学裡,假設已知一个系统的拉格朗日量,则可以将拉格朗日量直接代入拉格朗日方程式,稍加运算,即可求得此系统的运动方程式。 拉格朗日量是因數學家和天文學家約瑟夫·拉格朗日而命名。.

查看 最小作用量原理和拉格朗日量