目录
29 关系: 夸克,宇宙暴脹,對聖經的質疑,康普頓波長,弦 (物理學),微米,光速,光速可變理論,因次分析,电子,物質波,貝肯斯坦上限,迴圈量子重力,自然单位制,電磁波譜,波粒二象性,温度,漸近自由,数量级 (体积),数量级 (长度),数量级 (数),普朗克密度,普朗克尺度,普朗克單位制,普朗克動量,普朗克粒子,普朗克能量,普朗克时期,普朗克時間。
夸克
夸克(quark,又譯“层子”或「虧子」)是一種基本粒子,也是構成物質的基本單元。夸克互相結合,形成一種複合粒子,叫強子,強子中最穩定的是質子和中子,它們是構成原子核的單元。由於一種叫“夸克禁閉”的現象,夸克不能夠直接被觀測到,或是被分離出來;只能夠在強子裏面找到夸克 。因為這個原因,人類對夸克的所知大都是來自對強子的觀測。 夸克有六種“味”,分別是上、下、-zh-tw:魅;zh-cn:粲-、奇、底及頂 。上及下夸克的質量是所有夸克中最低的。較重的夸克會通過一個叫粒子衰變的過程,來迅速地變成上或下夸克。粒子衰變是一個從高質量態變成低質量態的過程。就是因為這個原因,上及下夸克一般來說很穩定,所以它們在宇宙中很常見,而奇、--、頂及底則只能經由高能粒子的碰撞產生(例如宇宙射線及粒子加速器)。 夸克有着多種不同的內在特性,包括電荷、色荷、自旋及質量等。在標準模型中,夸克是唯一一種能經受全部四種基本相互作用的基本粒子,基本相互作用有時會被稱為“基本力”(電磁相互作用力、萬有引力、強相互作用力及弱相互作用力)。夸克同時是現時已知唯一一種基本電荷非整數的粒子。夸克每一種味都有一種對應的反粒子,叫反夸克,它跟夸克的不同之處,只在於它的一些特性跟夸克大小一樣但正負不同。 夸克模型分別由默里·蓋爾曼與喬治·茨威格於1964年獨立地提出 。引入夸克這一概念,是為了能更好地整理各種強子,而當時並沒有甚麼能證實夸克存在的物理證據,直到1968年SLAC開發出實驗為止 。夸克的六種味已經全部被加速器實驗所觀測到;而於1995年在費米實驗室被觀測到的頂夸克,是最後發現的一種。.
查看 普朗克長度和夸克
宇宙暴脹
在物理宇宙學中,宇宙暴脹,簡稱暴脹,是早期宇宙的一種空間膨脹呈加速度狀態的過程。 暴脹時期在大爆炸後10−36秒開始,持續到大爆炸後10−33至10−32秒之間。暴脹之後,宇宙繼續膨脹,但速度則低得多。 「暴脹」一詞可以指有關暴脹的假說、暴脹理論或者暴脹時期。這一假說以及「暴脹」一詞,最早於1980年由美國物理學家阿蘭·古斯提出。 在微觀暴脹時期的量子漲落,經過暴脹放大至宇宙級大小,成為宇宙結構成長的種子,這解釋了宇宙宏觀結構的形成。很多宇宙學者認為,暴脹解釋了一些尚未有合理答案的難題:為什麼宇宙在各個方向都顯得相同,即各向同性,為甚麼宇宙微波背景輻射會那麼均勻分佈,為甚麼宇宙空間是那麼平坦,為甚麼觀測不到任何磁單極子? 雖然造成暴脹的詳細粒子物理學機制還沒有被發現,但是基本繪景所作出了多項預測已經被觀測所證實。導致暴脹的假想粒子稱為暴脹子,其伴隨的場稱為暴脹場。 2014年3月17日,BICEP2科學家團隊宣佈在B模功率譜中可能探測到暴脹所產生的重力波。這為暴脹理論提供了強烈的證據,對於標準宇宙學來說是一項重要的發現 。可是,BICEP2團隊於6月19日在《物理評論快報》發佈的論文承認,觀測到的信號可能大部分是由銀河系塵埃的前景效應造成的,對於這結果的正確性持保留態度。必需要等到十月份普朗克衛星數據分析結果發佈之後,才可做定論。9月19日,在對普朗克衛星數據進行分析後,普朗克團隊發佈報告指出,銀河系內塵埃也可能會造成這樣的宇宙信號,但是並沒有排除測量到有意義的宇宙信號的可能性。 除了暴脹理論之外,還有非標準宇宙學理論,包括前大爆炸理論和旋量時空理論等。一般來說,暴脹在前大爆炸理論中並不是必須的。路易斯·貢薩雷斯-梅斯特雷斯(Luis Gonzalez-Mestres)在1996至1997年所提出的旋量時空理論中,每一個隨動觀測者都會產生一個特殊的空間方向,而宇宙微波背景中也會自然存在B模。普朗克衛星數據可能證實了這一特殊空間方向的存在。 (University of Texas Mathematical Physics Archive, paper 14-16).
查看 普朗克長度和宇宙暴脹
對聖經的質疑
《聖經》經常被聖經無誤論者認為是沒有錯誤。不過,由於《聖經》始終是多本由兩千年間不同人物書寫的經典而且用不同的文字書寫,這中間的內容或多或少都會有所差異。對於這差異,不同的基督教宗派、神學觀點有不同的見解。.
查看 普朗克長度和對聖經的質疑
康普頓波長
阿瑟·康普頓。 粒子的康普頓波長(Compton wavelength)λ,其關係式如下: 式中的變數符號 定義約化康普頓波長 \bar為 根據CODATA 2014的數值,電子的康普頓波長是2.4263102367(11)×10-12 m。 不同的粒子,有不同的康普頓波長.
查看 普朗克長度和康普頓波長
弦 (物理學)
物理學中,弦是弦論與相關理論中的物理實體。不同於零維或點狀的基本粒子,弦是一維的實體。以弦為基礎實體的理論會自動產生許多基礎理論中成立的特性。更特別的是:依照量子力學規則演化與交互作用的弦自動包括了量子重力的描述。 弦論中,弦可以是開弦(形成有兩端點的線段)或閉弦(形成一個環),並可擁有其他特性。在1995年之前,共有五種能含有超對稱概念的弦理論,彼此間的差異在於弦的類別以及其他面向考量。而今這些弦理論被視為一個單一理論的極限情形,此單一理論稱作M理論。 在以弦論為基礎的粒子物理中,理論的特徵長度為普朗克長度;在這尺度下,據信量子重力效應會變得顯著。在比較大的尺度比如實驗室尺度,弦與點粒子就無法明顯區分,而弦的振動狀態則變成粒子的類別。弦有時也出現在核物理領域,被用來建構流量管的模型。 當弦在時空中穿越時,弦行經而掃出的二維表面稱為-世界-面,類比於點粒子所掃出的世界線。弦物理可由與世界面相關的二維共形場論來描述;在弦理論以外,二維共形場論也應用在凝態物理、純數學部份領域。 Category:弦理論.
微米
微米(Micrometer、㎛)是长度单位,符号µm。1微米相当于1米的一百萬分之一(10-6,此即為「微」的字義)。此外,在ISO 2955的国际标准中,“u”已经被接纳为一个代替“μ”来代表10-6的国际单位制符号。微米是红外线波长、细胞大小、细菌大小等的数量级。.
查看 普朗克長度和微米
光速
光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.
查看 普朗克長度和光速
光速可變理論
光速可變理論認爲光速(以c表示)是時空的函數,因此不是確定的數值。在經典物理學中,真空中的光速是一個常數,在國際單位制中被定義為c.
查看 普朗克長度和光速可變理論
因次分析
物理量的量綱可以用來分析或檢核幾個物理量之間的關係,這方法稱為量綱分析(dimensional analysis)。通常,一個物理量的量綱是由像質量、長度、時間、電荷量、溫度一類的基礎物理量綱結合而成。例如,速度的量綱為長度每單位時間,而計量單位為公尺每秒、英里每小時或其它單位。量綱分析所根據的重要原理是,物理定律必需跟其計量物理量的單位無關。任何有意義的方程式,其左手邊與右手邊的量綱必需相同。檢查有否遵循這規則是做量綱分析最基本的步驟。 推導獲得的方程式或計算結果是否基本上合理,慣常可以用量綱分析來檢察。對於較複雜的物理狀況,量綱分析也可以用來構築合理假定(參見關聯模型),然後,做嚴格的實驗加以測試,或用已發展成功的理論仔細檢試。量綱分析能夠按照各種物理量的量綱,將它們詳細分類。.
查看 普朗克長度和因次分析
电子
电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.
查看 普朗克長度和电子
物質波
物理学中,物質波(即德布羅意波)係指所有物質的波(见波粒二象性)。 德布羅意說明了波長和動量成反比;頻率和總能成正比之關係,是路易·德布羅意於1923年在他的博士論文提出的。 第一德布羅意方程指出,粒子波長λ(亦稱「德布羅意波長」)和動量p的關係:(下式中普朗克常數h、粒子靜質量m、粒子速度v、勞侖茲因子γ和真空光速c) 第二德布羅意方程指出頻率ν和總能E的關係: 這兩個式子通常寫作.
查看 普朗克長度和物質波
貝肯斯坦上限
在物理學中, 貝肯斯坦上限(Bekenstein bound)是在一具有有限能量之有限空間內熵S或資訊I的上限。反過來說,該上限是要精確描述一物理系統至量子層級的最大需要資訊量Jacob D. Bekenstein,, Physical Review D, Vol.
查看 普朗克長度和貝肯斯坦上限
迴圈量子重力
迴圈量子重力論(loop quantum gravity,LQG),又譯--,英文別名圈引力(loop gravity)、量子幾何學(quantum geometry);由阿貝·阿希提卡、、卡洛·羅威利等人發展出來的量子引力理論,与弦理论同是當今將重力量子化最成功的理論。 利用量子场论的微扰理論来实现引力论的量子化的理论是不能被重整化的。如果主張时空只有四维而從廣義相對論下手,结果可以把廣義相對論转变成类似規範場論的理論,基本正則變量为而非度规张量,再以联络定义的平移算子(holonomy)以及为基本變量來實現量子化。 在此理論下,時空描述是呈背景獨立,由關係性迴圈織出的自旋網路鋪成時空幾何。網絡中每條邊的長度為普朗克長度。迴圈並不存在於時空中,而是以迴圈扭結的方式定義時空幾何。在普朗克尺度下,時空幾何充滿隨機的量子漲落,因此自旋網絡又稱為自旋泡沫。在此理論下,時空是離散的。.
查看 普朗克長度和迴圈量子重力
自然单位制
在物理學裏,自然單位制(natural unit)是一種建立於基礎物理常數的計量單位制度。例如,電荷的自然單位是單位電荷 e 、速度的自然單位是光速 c ,都是基礎物理常數。純自然單位制必定會在其定義中,將某些基礎物理常數歸一化,即將這些常數的數值規定為整數1。.
查看 普朗克長度和自然单位制
電磁波譜
在電磁學裏,電磁波譜包括電磁輻射所有可能的頻率。一個物體的電磁波譜專指的是這物體所發射或吸收的電磁輻射(又稱電磁波)的特徵頻率分佈。 电磁波谱频率从低到高分別列为无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。可见光只是电磁波谱中一个很小的部分。電磁波譜波長有長到數千公里,也有短到只有原子的一小段。短波長的極限被認為,幾乎等於普朗克長度,長波長的極限被認為,等於整個宇宙的大小,雖然原則上,電磁波譜是無限的,而且連續的。.
查看 普朗克長度和電磁波譜
波粒二象性
波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。.
查看 普朗克長度和波粒二象性
温度
温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(Atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。.
查看 普朗克長度和温度
漸近自由
在物理學中,漸近自由是某些規範場論的性質,在能量尺度變得任意大的時候,或等效地,距離尺度變得任意小(即最近距離)的時候,漸近自由會使得粒子間的相互作用變得任意地弱。 漸近自由是量子色動力學的一項特性,量子色動力學乃描述夸克和膠子間的核相互作用,而這兩種粒子是組成核物質的基本構成部份。在高能量時,夸克與夸克之間的相互作用非常微弱,因此可以通過粒子物理學中的,深度非線性散射的截面DGLAP方程(描述QCD的演化方程),來進行微擾計算;低能量時會進行強相互作用,來防止重子(由三個夸克組成,如質子及中子)或介子(由兩個夸克組成,如π介子)分體,這些都是核物質內的複合粒子。 漸近自由的發現者為弗朗克·韋爾切克、戴維·格婁斯和休·波利策,他們在2004年因這項發現而獲得了諾貝爾物理學獎。.
查看 普朗克長度和漸近自由
数量级 (体积)
以下表示體積的數量級。.
数量级 (长度)
本頁公尺為單位,按長度大小列出一些例子,以幫助理解不同長度的概念。.
数量级 (数)
这个列表罗列了部分正数的数量级,包括事物的数量、无量大数和概率。.
普朗克密度
在物理學裏,普朗克密度是普朗克單位制的密度單位,標記為 \rho_p\,\! 。用方程式表達,普朗克密度是 其中,m_p\,\! 是普朗克質量,l_p\,\! 是普朗克長度,c\,\! 是光速,\hbar\,\! 是約化普朗克常數,G\,\! 是萬有引力常數。 1 普朗克密度大約等於 10^\,\! 個太陽擠壓入一個原子核的空間的密度。所以,這個單位非常大。在宇宙大爆炸後 1 單位普朗克時間後(10^\,\!秒),宇宙的密度大約為1 單位普朗克密度。 P.
查看 普朗克長度和普朗克密度
普朗克尺度
在粒子物理與物理宇宙學等領域中,普朗克尺度(紀念馬克斯·普朗克)是指約1.22 × 1019GeV量級的能量尺度;依照質能等價原理,其相當於普朗克質量2.17645 × 10−8公斤。在這樣的尺度重力的量子效應變得重要,而目前描述次原子粒子的量子場論變得不適用,而重力的不可重整化成了問題。透過自然單位制的連結,普朗克尺度也可指長度或時間尺度。 在普朗克尺度,重力的強度變得與其他基本作用力相當,理論物理學家也認為所有的基本作用力在此統合,雖然詳細的機制仍不清楚。普朗克尺度因此是量子重力效應不可忽略的尺度。待發展的量子重力理論則變得必要,目前的研究方案包括弦論、M理論、迴圈量子重力、非交換幾何、因果集以及p-adic數學物理。.
查看 普朗克長度和普朗克尺度
普朗克單位制
普朗克單位制是一種計量單位制度,由德國物理學家馬克斯·普朗克最先提出,因此命名為普朗克單位制。這種單位制是自然單位制的一個實例,經過特別設計,使得某些基礎物理常數的值能夠簡化為1,這些基礎物理常數是.
查看 普朗克長度和普朗克單位制
普朗克動量
在物理學裏,普朗克動量是普朗克單位制的動量單位,標記為 m_P c\,\! 。用方程式表達,普朗克動量是 其中,\hbar\,\! 是約化普朗克常數,\,\! 是普朗克長度,c\,\! 是光速,G\,\! 是萬有引力常數。 與大多數其它普朗克單位不同,普朗克動量發生於人尺寸的狀況。例如,一個 70\,\mathrm\mathrm\,\! 的人,以 1\,\mathrm/\mathrm\,\! 的平均速度走路,他的動量大約為 10.7\,m_P c\,\! 。.
查看 普朗克長度和普朗克動量
普朗克粒子
普朗克粒子是一種假設的粒子,定義為約化康普頓波長等於半個史瓦西半徑的微黑洞。用方程式表達,約化康普頓波長\bar\,\!與史瓦西半徑r_s\,\!分別為 其中,\hbar\,\!是約化普朗克常數,m\,\!是普朗克粒子的質量,c\,\!是光速,G\,\!是萬有引力常數。 使兩個方程式相等,可以得到普朗克粒子的質量: 所以,普朗克粒子的質量與普朗克質量m_P.
查看 普朗克長度和普朗克粒子
普朗克能量
在物理學裏,普朗克能量是普朗克單位制的能量單位,標記為 E_p\,\! 。用方程式表達,普朗克能量是 其中,c\,\! 是光速,\hbar\,\! 是約化普朗克常數,G\,\! 萬有引力常數。 一個等價的定義是: 其中, \ t_P\,\! 是普朗克時間。 1991 年觀察到的超能量宇宙射線的能量大約為 50\,\! 焦耳。或 10^\times E_p\,\! 。大多數的普朗克單位都是很小的數量。可是E_p\,\! 的確是一個相當大的數量,大約是一個閃電所需要的能量。 雖然如此,在粒子物理學裏,E_p\,\! 仍舊是一個很有用的物理量,特別是當我們需要包括重力效應的計算在內的時候。普朗克能量是偵測普朗克長度的尺寸所需的能量,可以說是在那區域內能容納的最大的能量。假若一個直徑為 1 普朗克長度的圓球,包含有 1 普朗克能量,則這圓球會變成一個小黑洞。 採用普朗克單位制,物理常數 \hbar\,\! ,G\,\! ,與c\,\! 的數值都會等於 1 。因此,質能方程式簡化為 E.
查看 普朗克長度和普朗克能量
普朗克时期
普朗克時期(Planck epoch, Planck era)是物理宇宙學中以馬克斯·普朗克為名的時期,是宇宙歷史中最早的時間階段,從0至大約10−43秒(大約是一個普朗克時間的間隔)。也可以說是時間最早的時刻,普朗克時間也許是最短的時間間隔單位,而且普朗克時期也僅僅持續了如此短暫的瞬間。人們相信,由于那時的宇宙規模極其微小,因此重力的量子效應支配著物理相互作用。在大約137.9億年以前的這個普朗克時期裏,萬有引力相信與其它的基本力一樣強大,並且所有的力可能都統一在一起。超高熱、超高密度,普朗克時期宇宙的狀態是不穩定的。隨著宇宙開始膨脹和冷却,通過一個所謂对称性破缺的過程,我們所熟悉的各種基本力開始顯現出來。 現代宇宙學目前認為,普朗克時期可能開創了一個大一統時期,然後对称性破缺迅速導致宇宙暴胀,亦即暴脹時期,其間,宇宙的規模在極短時間內急劇擴張。。.
查看 普朗克長度和普朗克时期
普朗克時間
在物理學的普朗克單位制裏,普朗克時間(Planck time)是時間的基本單位,是光波在真空裏傳播一個普朗克長度的距離所需的時間。普朗克單位制是一種自然單位制,因馬克斯·普朗克而得名;普朗克最先提出普朗克單位制的概念。 普朗克時間t_P以方程式定義為 其中,\hbar.
查看 普朗克長度和普朗克時間