徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

星系团

指数 星系团

星系团(Galaxy clusters、Cluster of galaxies)是由星系组成的自引力束缚体系,通常尺度在数百万秒差距,包含了数百到数千个星系。包含了少量星系的星系团叫做星系群。银河系所在的星系群叫做本星系群,成员星系大约为50个。距离本星系群较近的一个星系团是室女座星系团,包含了超过2500个星系。 许多星系团是明亮的X射线源,其中X射线辐射是由强引力势阱束缚住的高温气体发出的。星系团的气体质量可达发光星系总质量的3-5倍。研究星系团中物质的分布能够为暗物质的存在提供证据。 不同星系团中,各种类型的星系所占的比例很不一样。研究发现,椭圆星系的比例与星系团的形态密切相关,如果一个星系团中椭圆星系所占的比例很大,那么这个星系团的形状倾向于规则和对称,如果椭圆星系所占的比例很小,星系团一般显示出不规则的形状。.

52 关系: 劍魚座星系團埃德温·弗朗西斯·卡彭特半人馬座A南風車星系南极望远镜大尺度纖維狀結構大爆炸天体列表威尔金森微波各向异性探测器宇宙微波背景尼克·凯泽尘埃解巨型空洞不规则星系中微子乌呼鲁卫星乔治·阿贝尔交互作用星系康普頓散射伦琴卫星弗里茨·兹威基兹威基环形山矩尺座星系团玉夫座矮不規則星系空间望远镜列表空洞星系紅移爱因斯坦卫星物理宇宙学順行和逆行阿贝尔2199苏尼亚耶夫-泽尔多维奇效应雅可夫·泽尔多维奇耶日·内曼JKCS 041LAMOSTM81星系團M94 (螺旋星系)MACS J1149 Lensed Star 1NGC 4449SPT-CL J0546-5345SPT-CL J2106-5844X射线天文卫星X射线天文学暗物质椭圆星系本星系群朱雀卫星星系星系天文學...扬·奥尔特拉尼亚凯亚超星系团 扩展索引 (2 更多) »

劍魚座星系團

劍魚座星系團是一個鬆散的星系集團,不僅有螺旋星系也有橢圓星系。它通常被視為一個星系群,但已經接近星系團的大小,它的成員主要分布在劍魚座,並且是南半球最富有的星系群之一。在1975年,熱拉爾·佛科留斯最早確認這個星系群是在劍魚座的一大片複雜電離氫區域,並標示為G16。.

新!!: 星系团和劍魚座星系團 · 查看更多 »

埃德温·弗朗西斯·卡彭特

埃德温·弗朗西斯·卡彭特(Edwin Francis Carpenter )是一位美国天文学家。 埃德温·卡彭特1898年11月1日出生在马萨诸塞州波士顿,在哈佛大学取得学士和硕士学位,1925年在加州大学伯克利分校获博士学位。后进入亚利桑那大学担任讲师,1936年起开始在天文学系工作。1938年他受聘就任斯图尔德天文台台长,在这一职位上一直工作至1963年。他还担任过美国科学促进会天文学分会副会长和会长。 他的研究对象涉猎白矮星、超新星及银河系天文学。他发现了星系团密度与星系团大小间的一种关系:星系团越大、密度就越低。他提供的数据,让威廉·雅各·鲁坦发现了鯨魚座UV,首颗发现的耀星。 1963年2月11日在亚利桑那州图森去世,享年65岁,他与妻子埃塞尔(Ethel)生有二个孩子:罗杰和艾米丽。小行星1852 卡彭特就是以他的名字命名的,而月球上的卡彭特环形山则是以他和詹姆斯·卡彭特名字共同命名的。.

新!!: 星系团和埃德温·弗朗西斯·卡彭特 · 查看更多 »

半人馬座A

半人馬座A,也稱為NGC 5128,是位於半人馬座內距離大約1千4百萬光年遠的一個透鏡星系。它是最靠近地球的電波源之一,也是被專業天文學家廣泛研究的活躍星系核。這個星系也是全天第五亮的星系,所以即使這個星系只能在南半球和北半球的低緯度地區看見,它依然也還是業餘天文學家的理想目標。 相對論性噴流的能量被相信是從在星系核心的超大質量黑洞附近的空間喷射出來的,輻射出X射線和無線電波的波長。以十年的間隔對噴流的電波進行觀察,天文學家確定噴流內側部分的移動速度達到光速的一半。X射線則是噴流內的高能微粒在更遠處與周圍的氣體碰撞所產生的。 如同對其他的星爆星系所做的觀測,碰撞導致恆星的形成和引發強烈的爆炸。使用史匹哲太空望遠鏡,科學家證實了半人馬座 A是經由星系碰撞而被狼吞虎嚥的螺旋星系。.

新!!: 星系团和半人馬座A · 查看更多 »

南風車星系

梅西爾83(也稱為南風車星系或NGC 5236)位於長蛇座,是一個距離大約一千五百萬光年遠的棒旋星系。在天空中,這算是很近的距離,加上它明亮的光度,所以只要使用雙筒望遠鏡就能夠看見,在這個星系中已經發現6顆超新星: SN 1923A、SN 1945B、SN 1950B、SN 1957D、SN 1968L和SN 1983N。.

新!!: 星系团和南風車星系 · 查看更多 »

南极望远镜

南极望远镜(The South Pole Telescope,简称:SPT)是一个位于南极洲南极点阿蒙森-史考特南极站的10米(394英寸)直径的射电望远镜。它是一个微波/毫米波望远镜,观测的频率范围在70-300千兆赫兹(GHz)之间。南极望远镜的主要科学任务是调查南天球数千个星系团之间的联系,这些星系团可能约束暗能量的作用而处于平衡状态 。 这个望远镜由芝加哥大学、柏克莱加州大学、凯斯西储大学、伊利诺伊大学厄巴纳-香槟分校、史密松天体物理台、科罗拉多大学博尔德分校、麦吉尔大学和戴维斯加利福尼亚大学等八所大学或机构组成的工作小组共同运行,由美国国家科学基金会提供资金支持。.

新!!: 星系团和南极望远镜 · 查看更多 »

大尺度纖維狀結構

纖維狀結構是宇宙中目前已知的最大结构,一个典型的纖維結構的长度是70至150百万秒差距,这些纖維狀結構组成了宇宙中空洞的边界。纖維狀結構由星系构成,其中的一些星系又因为和其他众多星系组合的特别紧密而形成了超星系团。 在2006年7月,日本科學家宣布發現了由三條纖維狀結構組合的人類所知最大的結構,組成的星系密集得像一滴巨大的萊曼α斑點。日本国立天文台宣布,由日本东北大学、京都大学和国立天文台组成的研究小组利用位于夏威夷莫纳克亚山顶峰上的“昴”望远镜(Subaru)的大视角主焦点照相机,对距地球约120亿光年宇宙中星系密集的区域附近进行观察,发现这片区域是一个大尺度结构的一部分,这个大尺度结构最宽处约2亿光年,比此前所知的最大超星系团还要巨大,其中的星系密度比宇宙平均星系密度高3-4倍。目前已知的星系高密度区域只有0.5亿光年的规模。研究小组利用微光天体分光装置对大尺度结构内的星系进行了详细的立体观测,发现这一大尺度结构由三条纖維狀結構相互交错构成,在这一星系密集区域纖維构造的连接点,有两个已知的巨大气体天体,其中有一个的直径约为40万光年。研究小组利用“昴”望远镜沿着纖維构造,又发现了33个10万光年规模以上的新的巨大气体天体,这些天体有着巨大质量。.

新!!: 星系团和大尺度纖維狀結構 · 查看更多 »

大爆炸

--又稱大--靂(Big Bang),是描述宇宙的源起與演化的宇宙學模型,这一模型得到了当今科学研究和觀測最廣泛且最精確的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的。根据2015年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.99 ± 0.21亿年,并经过不断的到达今天的状态。 大爆炸这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如宇宙學原理假设空间的和各向同性)。1922年,苏联物理学家亚历山大·弗里德曼用广义相对论描述了流体,从而给出了这一模型的场方程。1929年,美国物理学家埃德温·哈勃通过观测发现,从地球到达遥远星系的距离正比于这些星系的红移,从而推导出宇宙膨胀的观点。1927年时勒梅特通过求解弗里德曼方程已经在理论上提出了同样的观点,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星系团在视線速度上都在远离我们这一观察点,并且距离越远退行视速度越大 。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去曾经距离很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个密度极高且温度极高的状态,大型粒子加速器在类似条件下所进行的实验结果则有力地支持了这一理论。然而,由于当前技术原因,粒子加速器所能达到的高能范围还十分有限,因而到目前为止,还没有证据能够直接或间接描述膨胀初始的极短时间内的宇宙状态。从而,大爆炸理论还无法对宇宙的初始状态作出任何描述和解释,事实上它所能描述并解释的是宇宙在初始状态之后的演化图景。当前所观测到的宇宙中氢元素的丰度,和理论所预言的宇宙早期快速膨胀并冷却过程中,最初的几分钟内通过核反应所形成的这些元素的理论丰度值非常接近,定性并定量描述宇宙早期形成的氢元素丰度的理论被称作太初核合成。 大爆炸一词首先是由英国天文学家弗雷德·霍伊尔所采用的。霍伊尔是与大爆炸对立的宇宙学模型——穩態學說的倡导者,他在1949年3月BBC的一次广播节目中将勒梅特等人的理论称作“这个大爆炸的观点”。虽然有很多通俗轶事记录霍伊尔这样讲是出于讽刺,但霍伊尔本人明确否认了这一点,他声称这只是为了着重说明这两个模型的显著不同之处。霍伊尔后来为恒星核合成的研究做出了重要贡献,这是恒星内部通过核反应利用氢元素制造出某些重元素的途径。1964年发现的宇宙微波背景辐射是支持大爆炸确实发生的重要证据,特别是当测得其频谱从而绘制出它的黑体辐射曲线之后,大多数科学家都开始相信大爆炸理论了。.

新!!: 星系团和大爆炸 · 查看更多 »

天体列表

天体(Astronomical object),又稱星体,指太空中的物体,更廣泛的解釋就是宇宙中的所有的個体。.

新!!: 星系团和天体列表 · 查看更多 »

威尔金森微波各向异性探测器

威爾金森微波各向異性探測器(Wilkinson Microwave Anisotropy Probe,簡稱WMAP)是美國國家航空暨太空總署的人造衛星,目的是探測宇宙中大爆炸後殘留的輻射熱,2001年6月30日,WMAP搭载德尔塔II型火箭在佛羅里達州卡纳维拉尔角的肯尼迪航天中心發射升空。 由於宇宙間殘存著大霹靂的熱輻射(即為宇宙微波背景輻射),而WMAP的目的就是測量這些熱輻射的極小差異。這計畫由查爾斯·本內特教授及約翰·霍普金斯大學所領導,與美國太空總署戈達德太空飛行中心及普林斯頓大學合作。WMAP太空船在2001六月30日七點46分46秒於佛羅里達升空,是COBE太空任務的繼承者之一,也是中級探索者系列衛星的一員。2003年,為了紀念曾為研究計畫一員的宇宙學家大衛·威爾金森,MAP更名為WMAP。WMAP在圍繞日-地系統的L2點運行,離地球1.5×106公里。2012年十二月20日,研究團隊發佈了WMAP九年數據及相關影像。 WMAP的測量在建立最近的宇宙標準模型(宇宙常數-冷暗物質模型,或稱ΛCDM模型)中扮演了關鍵的角色。宇宙常數-冷暗物質模型是是一種以宇宙常數型態表示的暗能量為主導的宇宙模型,這模型與WMAP數據及其他宇宙學數據吻合,並且緊密的相互趨近。在宇宙常數-冷暗物質模型中,宇宙年齡為137.72 ± 0.059億年。由金氏世界記錄鑑定,WMAP的任務使宇宙的年齡精確度優於1%。現在的宇宙膨脹速率(見哈伯常數)為69.32 ± 0.80 (公里/秒)/百萬秒差距。宇宙的組成中有 4.628 ± 0.093%的一般重子物質,有24.02+0.88−0.87%既不吸收也不放射光的的冷暗物質(CDM),有71.35+0.95−0.96% 使宇宙加速膨脹的的暗能量。而微中子在宇宙含量中佔不到1%,但WMAP的測量發現其存在。該團隊於2008年首次發現,證實了宇宙微中子背景輻射的存在,微中子的有效種類為3.26 ± 0.35。尤拉平面幾何的曲率(Ωk)為-0.0027+0.0039−0.0038。WMAP的測量在很多方面也支持宇宙是平坦的,包括平坦測量。 根據「科學」雜誌,WMAP在2003年有重大突破。這任務的成果論文榮登2003年後超熱門科學文章排行榜的第一及第二名。在 INSPIRE-HEP數據庫中,物理與天文學引用最多次的論文只有三篇是在2000年以後發表的,而這三篇皆由WMAP發佈。在2010年三月27日,貝內特、來曼、大衛榮獲2010年的邵逸夫獎,以褒揚他們WMAP對天文界的貢獻。 2010年十月,WMAP太空船經過九年的運作,終於功成身退,安息在日心軌道上。天文學及物理高級審查小組在2010年九月於美國太空總署核准了總共九年的WMAP作業,所有WMAP的數據都會仔細檢查並公諸於世。 有些宇宙標準模型的數據型態不同於一般的統計。例如極大角度的測量中,四極矩的數據可能小於模型所預測的,但此不一致性並不顯著。比較小的角度,如大的冷班點及其他數據特徵等,在統計數據上反而較為明顯,而研究將會繼續往這些方面進行。.

新!!: 星系团和威尔金森微波各向异性探测器 · 查看更多 »

宇宙微波背景

宇宙微波背景(英语:Cosmic Microwave Background,简称CMB,又稱3K背景輻射)是宇宙學中“大爆炸”遺留下來的熱輻射。在早期的文獻中,「宇宙微波背景」稱為「宇宙微波背景輻射」(CMBR)或「遺留輻射」,是一種充滿整個宇宙的電磁輻射。特徵和絕對溫標2.725K的黑體輻射相同。頻率屬於微波範圍。宇宙微波背景是宇宙背景輻射之一,為觀測宇宙學的基礎,因其為宇宙中最古老的光,可追溯至再復合時期。利用傳統的光學望遠鏡,恆星和星系之間的空間(背景)是一片漆黑。然而,利用靈敏的輻射望遠鏡可發現微弱的背景輝光,且在各個方向上幾乎一模一樣,與任何恆星,星系或其他對象都毫無關係。這種光的電磁波譜在微波區域最強。1964年美國射電天文學家阿諾·彭齊亞斯和羅伯特·威爾遜偶然發現宇宙微波背景 ,这一发现是基于於1940年代開始的研究,並於1978年獲得諾貝爾獎。 宇宙微波背景很好地解釋了宇宙早期發展所遺留下來的輻射,它的發現被認為是一個檢測大爆炸宇宙模型的里程碑。宇宙在年輕時期,恆星和行星尚未形成之前,含有緻密,高溫,充滿著白熱化的氫氣雲霧電漿。電漿與輻射充滿著整個宇宙,隨著宇宙的膨脹而逐漸冷卻。當宇宙冷卻到某個溫度時,質子和電子結合形成中性原子。這些原子不再吸收熱輻射,因此宇宙逐漸明朗,不再是不透明的雲霧。宇宙學家提出中性原子在「再復合」時期形成,緊接在「光子脫耦」之後,即光子開始自由穿越整個空間,而非在電子與質子所組成的電漿中緊密的碰撞。光子在脫耦之後開始傳播,但由於空間膨脹,導致波長隨著時間的推移而增加(根據普朗克定律,波長與能量成反比),光線越來越微弱,能量也較低。這就是別稱「遺留輻射」的來源。「最後散射面」是指我們由光子脫耦時的放射源接收到光子的來源點在空間中的集合。 因為任何建議的宇宙模型都必須解釋這種輻射,因此宇宙微波背景是精確測量宇​​宙學的關鍵。宇宙微波背景在黑體輻射光譜的溫度為 K。光譜輻射dEν/dν的峰值為60.2 GHz,在微波頻率的範圍內。(若光譜輻射的定義為dEλ/dλ,則峰值波長為1.063公釐。) 該光輝在所有方向中幾乎一致,但細微的殘留變化展現出各向異性,與預期的一樣,分佈相當均勻的熾熱氣體已經擴大到目前的宇宙大小。特別的是,在天空中不同角度的光譜輻射包含相同的各向異性,或不規則性,隨區域大小變化。它們已被詳細測量,若有因物質在極小空間的量子微擾而起的微小溫度變化,且膨脹到今日可觀測的宇宙大小,應該會與之吻合。這是一個非常活躍的研究領域,科學家同時尋求更好的數據(例如,普郎克衛星)和更好的宇宙膨脹初始條件。雖然許多不同的過程都可產生黑體輻射的一般形式,但沒有比大霹靂模型更能解釋漲落。因此,大多數宇宙學家認為,宇宙大霹靂模型最能解釋宇宙微波背景。 在整個可視宇宙中有高度的一致性,黯淡卻已測得的各向異性非常廣泛的支持大霹靂模型,尤其是ΛCDM模型。此外,威爾金森微波各向異性探測器及宇宙泛星系偏振背景成像實驗觀測相距大於再復合時期之宇宙視界角尺度上漲落間的相關性。此相關可能為非因果的微調,或因宇宙暴脹產生。.

新!!: 星系团和宇宙微波背景 · 查看更多 »

尼克·凯泽

尼古拉斯“尼克”·凯泽,FRS(Nicholas "Nick" Kaiser,),英国宇宙学家。.

新!!: 星系团和尼克·凯泽 · 查看更多 »

尘埃解

在广义相对论中,尘埃解(英文:dust solution)是爱因斯坦场方程的一个精确解。这一解所对应的引力场完全由质量、动量和拥有正的密度但压强为零的理想流体的应力密度所产生。尘埃解是广义相对论的流体解中最为重要的特殊情形。 尘埃解中零压强的理想流体可以理解成一组互相之间只有引力相互作用的尘埃粒子的模型。因此,尘埃解常被用于宇宙学中的一些理想宇宙模型中,在其中尘埃粒子可作为星系、星系团和超星系团的高度理想化模型。在天体物理学中,尘埃解被用于引力坍缩的模型。此外,如果将恒星抽象成真空中的一个流体球,则尘埃解可以用于描述大质量物体周围的吸积盘。.

新!!: 星系团和尘埃解 · 查看更多 »

巨型空洞

巨型空洞(也称猎犬座空洞或AR-Lp 36)是位于猎犬座内一片极大星系低密度区域。巨型空洞在已确认的空洞中是第二大的,直径约为300—400百万秒差距(10—13亿光年)Kopylov A. I.; Kopylova, F. G." (2002) (PDF) Astronomy and Astrophysics, v.382, p.389-396 距地球15亿光年(z.

新!!: 星系团和巨型空洞 · 查看更多 »

不规则星系

不規則星系起初並未被列入哈伯序列中,它們雖然也是星系,但既沒有旋渦的結構,也沒有橢圓的形態。她們的外觀通常是混亂的,沒有球狀突起的核心,也沒有任何類似旋渦結構的蹤影。她們被認為佔星系總數的四分之一。多數的不規則星系可能曾經是旋渦星系或橢圓星系,但是因為重力的作用受到破壞而變形。 不規則星系有兩種主要的類型:.

新!!: 星系团和不规则星系 · 查看更多 »

中微子

中微子(Neutrino,其字面上的意義為「微小的電中性粒子」,又譯作--)是一种电中性的基本粒子,自旋量子數為½,以希腊字母ν标记。现在已经有证据表明其具有质量。但其质量即使相比于其他亚原子粒子也是非常微小的。它可能是现在唯一一种已探测到的暗物质,是一种热暗物质。 中微子与电子、μ子以及τ子同属轻子,有三种“味”:电中微子()、μ中微子()以及τ中微子()。每种味的中微子都相应存在一种同样电中性且自旋量子數為½的反中微子。在标准模型中,中微子的产生过程遵循轻子数守恒定律。 由于中微子是电中性的,同时还是一种轻子,因而其并不参与电磁相互作用以及强相互作用。其只参与弱相互作用以及引力相互作用。 由于弱相互作用作用距离非常短,而引力相互作用在亚原子尺度下又是十分微弱的,因而中微子在穿过一般物质时不会受到太多阻碍,且难以检测。 中微子可以通过放射性衰变以及核反应等多种方式产生。由于太阳内部时时刻刻都在发生着核反应,而超新星产生等过程也会伴随着剧烈的核反应,因而在宇宙射线中可以检测到中微子的存在。地球附近所检测到的中微子大多来源于太阳。事实上,地球面向太阳的区域每秒钟在每平方厘米上都会穿过大约650亿个来自太阳的中微子。 人们现在认识到中微子在飞行过程中会在不同味间振荡,比如β衰变中产生的电中微子可能在检测时会变为μ中微子或τ中微子。这一现象表明中微子具有质量,且不同味的中微子的质量也是不同的。依据现在宇宙学探测的数据,三种味的中微子质量之和小于电子质量的百万分之一。.

新!!: 星系团和中微子 · 查看更多 »

乌呼鲁卫星

乌呼鲁卫星(Uhuru),原名“X射线探测卫星”、“探险者42号”或“小型天文卫星1号”(SAS-1),是人类历史上第一颗X射线天文卫星,由美国于1970年12月12日在肯尼亚发射升空。发射当天正值肯尼亚独立7周年纪念日,因此得名Uhuru(兹瓦西里语意为“自由”)。乌呼鲁卫星的运行轨道近地点为520公里,远地点560公里,轨道倾角3度,周期96分钟。卫星上安装了两个相互反向的X射线正比计数器,能段范围为2-20keV,每个探测器接收面积为840平方厘米,用机械准直的方法分别构成0.5°×0.5°、5°×5°的视场,利用卫星周期为10分钟的自转对天空进行了扫描,确定了339个X射线源,包括X射线双星、超新星遗迹、星系团、塞弗特星系等等,还有第一个黑洞候选天体——天鹅座X-1。它还发现了星系团的弥散X射线辐射源。乌呼鲁卫星于1973年3月停止工作。这颗卫星取得了极大的成功,被认为是X射线天文学发展史上的一座里程碑。.

新!!: 星系团和乌呼鲁卫星 · 查看更多 »

乔治·阿贝尔

喬治·奧格登·阿貝爾 (George Ogden Abell,),美国洛杉矶加利福尼亚大学天文学家,同时也是一名教师和科普畅销书作者。阿贝尔在加州理工学院先后获得学士(1951年)、硕士(1952年)和博士(1957年)学位,他在洛杉矶格里菲斯天文台的一次游历后开始他的天文学研究生涯。.

新!!: 星系团和乔治·阿贝尔 · 查看更多 »

交互作用星系

交互作用星系是互相之间交互作用的星系。假如两个或者多个星系碰撞或者靠近得太近,它们之间会发生交互作用。其结果可能是交互作用的星系合并或者形成特殊的形状和排列。 一般星系合并(尤其是原星系的合并)发生在宇宙中星系比较密集,它们之间的相互速度比较慢的地方。假如相撞的两个星系之间的速度比较高的话它们往往会互相之间穿过对方。有时星系也会在近距离交错而过。椭圆星系往往是盘状星系(尤其是螺旋星系)合并形成的。 今天的星系当中只有1-2%的星系还在合并过程中。观察似乎证明在大爆炸后约十亿年后当时很多矮星系互相之间合并。 所有交互作用星系的共同特征是它们之间的交互作用激发星系内的活动,以及本来星系内部的自转抵消引力导致的收缩的平衡受到交互作用的干扰。.

新!!: 星系团和交互作用星系 · 查看更多 »

康普頓散射

在原子物理学中,康普顿散射,或称康普顿效应(Compton effect),是指当X射线或伽马射线的光子跟物质相互作用,因失去能量而导致波长变长的现象。相应的还存在逆康普顿效应——光子获得能量引起波长变短。这一波长变化的幅度被称为康普顿偏移。 康普顿效应通常指物质电子雲与光子的相互作用,但还有物质原子核与光子的相互作用——核康普顿效应存在。.

新!!: 星系团和康普頓散射 · 查看更多 »

伦琴卫星

伦琴卫星(Röntgensatellit,缩写为ROSAT)是德国、美国、英国联合研制的一颗X射线天文卫星,为纪念发现X射线的德国物理学家伦琴而命名。.

新!!: 星系团和伦琴卫星 · 查看更多 »

弗里茨·兹威基

弗里茨·兹威基(Fritz Zwicky,),瑞士天文学家,他的一生幾乎都在加州理工學院工作,在理論和觀測天文學上,包括超新星、星系团等方面做出了重要的贡献。.

新!!: 星系团和弗里茨·兹威基 · 查看更多 »

兹威基环形山

兹威基环形山(Zwicky)是月球背面一座古老的大型撞击坑,约形成于前酒海纪Lunar Impact Crater Database,其名称取自瑞士天文学家弗里茨·兹威基(1898年-1974年),1979年被国际天文联合会正式批准接受。.

新!!: 星系团和兹威基环形山 · 查看更多 »

矩尺座星系团

矩尺座星系團(ACO 3627 or Abell 3627)是一個隱藏在銀河系隱匿帶內,富含星系的星系集團,靠近巨引源所在的中心方向上。雖然他很接近又很明亮,但是他位於隱匿帶,也就是被銀河系的平面遮蔽的區域,因而有些星系在可見光的波段中會被星際塵埃遮蔽掉,使得光度暗淡或是消失不見(看不見)。他的總質量估計是1015太陽質量。.

新!!: 星系团和矩尺座星系团 · 查看更多 »

玉夫座矮不規則星系

玉夫座矮不規則星系(SDIG)是一個位於玉夫座的不規則星系,於1976年被發現。.

新!!: 星系团和玉夫座矮不規則星系 · 查看更多 »

空间望远镜列表

这是一个空间望远镜列表。这里列表是按电磁波谱的主要频段分类的,即自高频至低频分为伽玛射线区、X射线区、紫外线区、可见光区、红外线区、微波区和无线电区。有些望远镜工作在上述中的多个频段,它们会在每一个频段中都被列出。对于采集粒子(如宇宙射线原子核、电子等)的空间望远镜,以及探测引力波的空间望远镜(主要是LISA)也在这个表中列出。对于探测任务仅局限于太阳系,包括太阳、地球以及太阳系中其他行星的探测器则被排除在外,关于这些探测器请参见太阳系探测器列表。 当望远镜处在地心轨道上时,关于它的高度的两个参数会以千米为单位给出,分别为初始轨道的近地点和远地点,即望远镜与地球质心(准确说是望远镜与地球构成的两体系统的质心)距离的最大值和最小值。类似的,如果望远镜处在日心轨道上,这两个参数也会相应地给出,但此时的单位是天文单位(AU)。.

新!!: 星系团和空间望远镜列表 · 查看更多 »

空洞星系

洞星系是存在于宇宙空洞中的星系。 在空洞中的星系是很罕见的。大部分的星系都存在于包围着空洞和超空洞的纤维状结构中。许多空洞星系联合起来组成了,这是迷你版的常规星系纤维结构。这些结构比正常的星系结构简单,因为他们比较少受其他星系群的影响。这些结构甚至可以多到组成星系团。空洞星系被认为是研究原始星系演化的极佳的例子,因为他们很少受临近星系影响,并从单纯的星际气体中诞生。.

新!!: 星系团和空洞星系 · 查看更多 »

紅移

在物理學领域,紅移(Redshift)是指電磁輻射由於某种原因導致波长增加、頻率降低的现象,在可見光波段,表现为光谱的谱线朝紅端移動了一段距离。相反的,電磁輻射的波長变短、频率升高的现象则被稱為藍移。紅移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步加深,任何电磁辐射的波長增加都可以称为紅移。对於波长较短的γ射線、X-射線和紫外線等波段,波长变长确实是波谱向红光移动,“红移”的命名并无问题;而对於波长较长的紅外線、微波和無線電波等波段,尽管波长增加實際上是遠離红光波段,这种现象还是被称为“红移”。 當光源移動遠離觀測者时,观测者观察到的电磁波谱會發生紅移,这类似于聲波因为都卜勒效應造成的頻率變化。這樣的紅移现象在日常生活中有很多應用,例如都卜勒雷達、雷達槍,在天體光譜學裏,人们使用都卜勒紅移測量天體的物理行為 。 另一種紅移稱為宇宙學紅移,其機制為。這機制說明了在遙遠的星系、類星體,星系間的氣體雲的光谱中觀察到的红移现象,其紅移增加的比例與距離成正比。這種關係为宇宙膨脹的观点提供了有力的支持,比如大霹靂宇宙模型。 另一種形式的紅移是引力紅移,其為一種相對論性效應,當電磁輻射傳播遠離引力場時會觀測到這種效應;反過來說,當電磁輻射傳播接近引力場時會觀測到引力藍移,其波長變短、频率升高。 红移的大小由“红移值”衡量,红移值用Z表示,定义为: 这裡\lambda_0\,是谱线原先的波长,\lambda\,是观测到的波长,f_0\,是谱线原先的频率,f\,是观测到的频率。.

新!!: 星系团和紅移 · 查看更多 »

爱因斯坦卫星

爱因斯坦卫星是哈佛-史密松天体物理中心和美国宇航局研制的X射线天文卫星,于1978年11月13日发射升空,原名“高能天文台2号”(HEAO-2),为纪念著名物理学家爱因斯坦诞辰100周年而命名为“爱因斯坦卫星”。这颗卫星上面首次安装了能对X射线进行成像的大型掠射式望远镜,由4层套筒组成,口径0.6米,总接收面积为350平方厘米,分辨率能够达到3-5角秒。 截至1981年4月停止工作前,爱因斯坦卫星取得了丰富的成果,包括:首次获得了超新星遗迹的激波图像、星系团中高温气体的图像,精确测量了包括X射线双星、星系和类星体在内超过7000个X射线源的位置,发现了几乎所有当时已知的类星体都是X射线源,发现了一些的正常恒星也会发出很强的X射线辐射,还发现宇宙X射线背景辐射主要是由分立的X射线源,特别是活动星系核所贡献的。这些成果大大促进了X射线天文学的发展,爱因斯坦卫星也被认为是X射线天文学发展史上具有里程碑意义的一颗天文卫星。.

新!!: 星系团和爱因斯坦卫星 · 查看更多 »

物理宇宙学

物理宇宙学是天体物理学的分支,它是研究宇宙大尺度结构和宇宙形成及演化等基本问题的学科。宇宙学的研究对象是天体运动和它的第一起因,在人类历史的很长一段时期曾是形而上学的一部份。作为科学,宇宙学起源于哥白尼原则和牛顿力学,它们指出天体和地球上的物体遵守同样的物理原理并解释了天体的运动。现在这一分支被称为天体力学。一般认为,物理宇宙学起源于二十世纪的爱因斯坦广义相对论和对极远天体的天文观测。 二十世纪的科技进步使对宇宙起源的猜测成为可能。它也帮助建立了被绝大多数宇宙学家公认作理论和观测基础的大爆炸理论。(虽然职业宇宙学家认为大爆炸理论给观测以最好的解释,一些人至今仍在鼓吹另类宇宙学如等离子体宇宙学和稳恒态宇宙学。)大致来说,物理宇宙学处理的对象是宇宙中最大的物体(如星系,星系团,超星系团),最早形成的物体(如类星体)和几乎均匀的最早期宇宙(大爆炸,宇宙暴脹,微波背景辐射)。 宇宙学是比较特别的学科。它对粒子物理,场论有很强的关联。它的其他来源包括天体物理,广义相对论和等离子体物理的研究。.

新!!: 星系团和物理宇宙学 · 查看更多 »

順行和逆行

順行是行星這種天體與系統內其他相似的天體共同一致運動的方向;逆行是在相反方向上的運行。在天體的狀況下,這些運動都是真實的,由固有的自轉或軌道來定義;或是視覺上的,好比從地球上來觀看天空。 在英文中「direct」和「prograde」是同義詞,前者是在天文學上傳統的名詞,後者在1963年才在一篇與天文相關的專業文章(J.

新!!: 星系团和順行和逆行 · 查看更多 »

阿贝尔2199

阿贝尔2199是一个位于武仙座的星系团,其最亮团星系为cD型星系NGC 6166。 由于NGC 6166,阿贝尔2199也被定义为Bautz-Morgan I型星系。.

新!!: 星系团和阿贝尔2199 · 查看更多 »

苏尼亚耶夫-泽尔多维奇效应

苏尼亚耶夫-泽尔多维奇效应(Sunyaev-Zel'dovich effect,缩写为SZ效应)是宇宙微波背景辐射的光子与星系团等天体中的高能电子发生逆康普顿散射而导致观测到的温度分布产生变化的现象。经过逆康普顿散射,高能电子的一部分能量转移给了背景辐射中的低能光子,因而低能光子的数量减少,高能光子的数量增加,光子的总能量增加,背景辐射不再是理想的黑体輻射。 苏尼亚耶夫-泽尔多维奇效应是由苏联物理学家拉希德·苏尼亚耶夫和雅可夫·泽尔多维奇于1970年代初期提出的,并且已经在某些星系团中观测到,可以用于检测宇宙中的物质分布、确定哈伯常数的数值、星系团中热等离子体的质量等等。.

新!!: 星系团和苏尼亚耶夫-泽尔多维奇效应 · 查看更多 »

雅可夫·泽尔多维奇

雅可夫·鲍里索维奇·泽尔多维奇(Яков Борисович Зельдович,), 前苏联理论天体物理学家。.

新!!: 星系团和雅可夫·泽尔多维奇 · 查看更多 »

耶日·内曼

耶日·内曼 (Jerzy Spława-Neyman, )是一位波兰数学家和统计学家。.

新!!: 星系团和耶日·内曼 · 查看更多 »

JKCS 041

JKCS 041是由地面光学望远镜、美国宇航局的钱德拉X射线天文台和斯皮策空间望远镜联合发现的星系团。这个星系团红位移量为1.9,距离地球102亿光年,超过了2006年发现的XMMXCS 2215-1738,成为迄今为止发现的最遥远星系团。.

新!!: 星系团和JKCS 041 · 查看更多 »

LAMOST

大天区面积多目标光纤光谱天文望远镜(Large Sky Area Multi-Object Fiber Spectroscopy Telescope,LAMOST),是中国大陆在国家天文台兴隆观测站的一种大型天文望远镜,位于河北省承德市境内。LAMOST和传统天文望远镜的不同之处是,它可以对较大的天区范围(20平方度)内的4000个目标的光谱进行长时间的跟踪积分记录(积分时间可至1.5小时),在1.5小时曝光时间内以1纳米的光谱分辨率可以观测到20.5等的暗弱天体的光谱。 在2010年4月17日,大天区面积多目标光纤光谱天文望远镜被正式冠名为“郭守敬望远镜”。.

新!!: 星系团和LAMOST · 查看更多 »

M81星系團

M81星系團是位於大熊座,包含著名的M81、M82和其他依些視亮度較高星系在內的星系集團 ,而集團大概的質量中心距離地球約360萬秒差距,是距離本星系群最近的星系集團。估計 這個星系團的總值量約為(1.03 ± 0.17) M☉ 。 M81星系團、本星系群和其他依些鄰近的星系集團都屬於室女座超星系團(本超星系團)。.

新!!: 星系团和M81星系團 · 查看更多 »

M94 (螺旋星系)

梅西爾94(也稱為M94或NGC 4736)是位於獵犬座的一個螺旋星系 ,於1781年被皮埃爾·梅香發現,並被梅西爾編入其目錄中。雖然有些參考資料描述M94是一個棒旋星系,但棒狀的結構看起來比較像卵型。這個星系已因為有雙重的環狀結構而著名。.

新!!: 星系团和M94 (螺旋星系) · 查看更多 »

MACS J1149 Lensed Star 1

MACS J1149 Lensed Star 1是目前人类观测到的最遥远的恒星,距离地球约90亿光年(红移为z.

新!!: 星系团和MACS J1149 Lensed Star 1 · 查看更多 »

NGC 4449

NGC 4449,也稱為科德韋爾21,是位於獵犬座的一個不規則星系,距離大球大約1,200萬光年,屬於M94星系團 (獵犬座星系群) 的一部分。這是相對來說相當靠近本星系群,我們銀河系系所屬的星系群,的一個星系群。由於和大麥哲倫星系 (LMC) 的大小非常相似,因此被仔細的研究和拿來做為比較。NGC 4449有一般的棒型,也有LMC的特徵,散布著藍色的恆星和星團。靠近底部 (哈伯的照片) 是氫原子氣體發出的粉紅色光,這是大質量恆星形成區的洩蹤劑。與鄰近星系間的交互作用被認為對恆星的形成有所影響。.

新!!: 星系团和NGC 4449 · 查看更多 »

SPT-CL J0546-5345

SPT-CL J0546-5345 是一个距离地球约70亿光年的星系团,由南极望远镜利用苏尼亚耶夫-泽尔多维奇效应在2008年发现。它在发现时超越XMMU J2235.3-2557,成为当时已知质量最大的远星系团(红移>.

新!!: 星系团和SPT-CL J0546-5345 · 查看更多 »

SPT-CL J2106-5844

SPT-CLJ2106-5844是一个距离地球75亿光年的星系团,由南极望远镜在2011年发现。它是目前已知质量最大的远星系团(红移>.

新!!: 星系团和SPT-CL J2106-5844 · 查看更多 »

X射线天文卫星

X射线天文卫星是观测天体的X射线辐射为主要目的的人造卫星,是X射线天文学的主要研究设备。 第一颗X射线天文卫星是1970年12月12日美国在肯尼亚发射的乌呼鲁卫星,该卫星原名“探险者42号”,又名“小型天文卫星1号”(SAS-1),因发射当天正值肯尼亚独立7周年纪念日而得名Uhuru(兹瓦西里语意为“自由”)。卫星上装有两个相互反向的X射线探测器,利用卫星的旋转进行了系统的X射线巡天,确定了约350个X射线源,发现了许多银河系中的X射线双星、来自遥远星系团的X射线,以及第一个黑洞候选天体——天鹅座X-1。乌呼鲁卫星的观测取得了极大的成功,被认为是X射线天文学发展史上的一座里程碑。 除了乌呼鲁卫星以外,1970年代至1980年代,各国还相继发射了一系列X射线天文卫星,包括英国的羚羊5、荷兰天文卫星、美国的小型天文卫星3号、高能天文台1号(1977年)和高能天文台2号(又名“爱因斯坦卫星”)、欧洲的X射线天文卫星(EXOSAT)、日本的银河卫星等,其中1978年发射的爱因斯坦卫星首次采用了大型掠射式X射线望远镜,能够对X射线源进行成像,是1970年代取得成果最多的X射线卫星。 20世纪90年代,意大利和荷兰共同研制的BeppoSAX卫星发现了伽玛射线暴的X射线余辉。德国、美国、英国联合研制的伦琴卫星(ROSAT)首次在软X射线波段进行了巡天观测,在9年时间里新发现了7万多个X射线源,使X射线源的总数达到了12万个。1993年日本发射的ASCA卫星则首先将CCD设备用于X射线成像。美国的罗西X射线时变探测器(RXTE)虽然不能成像,但是能够探测X射线源的快速光变。1999年,两个重要的X射线天文卫星先后发射升空——美国的钱德拉X射线天文台和欧洲的XMM-牛顿卫星。前者具有极高的空间分辨率(小于1角秒)和较宽的能段(0.1-1keV),后者则具有非常高的谱分辨率。它们是21世纪初X射线天文学主要的观测设备,取得了一大批重要的研究成果。除此之外,1990年代升空的X射线望远镜还有俄罗斯发射的探测高能X射线的伽马1卫星、日本发射的用于观测太阳耀斑的阳光卫星等。 截止到2006年,正在工作的X射线天文卫星有欧洲的XMM-牛顿卫星、美国的罗西X射线时变探测器、钱德拉X射线天文台、日本的朱雀卫星(Astro-E2)、中国的硬X射线调制望远镜。此外,欧洲的国际伽玛射线天体物理实验室(INTEGRAL)和美国的雨燕卫星也安装有X射线观测设备。计划中的下一代X射线天文卫星有美国的Constellation-X、欧洲的XEUS(X-Ray Evolving Universe Spectroscopy)等。.

新!!: 星系团和X射线天文卫星 · 查看更多 »

X射线天文学

X射线天文学是以天体的X射线辐射为主要研究手段的天文学分支。X射线天文学中常以电子伏特(eV)表示光子的能量,观测对象为0.1keV到100keV的X射线。其中又将0.1keV-10keV的X射线称为软X射线,10keV-100keV称为硬X射线。由于X射线属于电磁波谱的高能端,因此X射线天文学与伽玛射线天文学同称为高能天体物理学。 宇宙中辐射X射线的天体包括X射线双星、脉冲星、伽玛射线暴、超新星遗迹、活动星系核、太阳活动区,以及星系团周围的高温气体等等。由于地球大气层对于X射线是不透明的,只能在高空或者大气层以外观测天体的X射线辐射,因此空间天文卫星是X射线天文学的主要工具。.

新!!: 星系团和X射线天文学 · 查看更多 »

暗物质

在宇宙学中,暗物质(Dark matter),是指無法通過电磁波的觀測進行研究,也就是不與电磁力產生作用的物质。人们目前只能透过重力产生的效应得知,而且已經發现宇宙中有大量暗物质的存在。 现代天文学經由引力透镜、宇宙中大尺度结构的形成、微波背景辐射等方法和理论来探测暗物质。而根据ΛCDM模型,由普朗克卫星探测的数据得到:整个宇宙的构成中,常規物質(即重子物質)占4.9%,而暗物质則占26.8%,还有68.3%是暗能量(质能等价)。暗物质的存在可以解决大爆炸理论中的不自洽性(inconsistency),对结构形成也非常关键。暗物质很有可能是一种(或几种)粒子物理标准模型以外的新粒子所構成。对暗物质(和暗能量)的研究是现代宇宙学和粒子物理的重要课题。 2015年11月,NASA噴射推進實驗室的科學家蓋瑞‧普里茲奧(Gary Prézeau)以ΛCDM模型模擬銀河系內暗物質流過地球與木星等行星的情形,發現這會使該暗物質流的密度明顯上升(地球:10^7倍、木星:10^8倍),並呈現毛髮狀的向外輻射分佈結構。.

新!!: 星系团和暗物质 · 查看更多 »

椭圆星系

橢圓星系(Elliptical galaxy)是哈伯星系分類中的一種類型,具有下列的物理特徵:.

新!!: 星系团和椭圆星系 · 查看更多 »

本星系群

本星系群(英文:Local Group;又常被誤稱為本星系團(Local Cluster):因該區域為星系群,並不是星系團,且不合語源,故屬積非成是的名詞),是包括地球所处之银河系在内的一群星系。这组星系群包含大约超过50个星系,其质心位于银河系和仙女座星系之間的某处。本星系群中的全部星系覆盖一块直径大约1000万光年的区域,本星系群的為61±8 km/s.

新!!: 星系团和本星系群 · 查看更多 »

朱雀卫星

朱雀卫星(Suzaku),原名Astro-E2,是日本宇宙航空研究开发机构联合日本多所大学,以及美国宇航局共同研制的一颗X射线天文卫星,是日本发射的第5颗X射线天文卫星,主要目的在于研究宇宙中发出X射线辐射的等离子体的性质、星系团的演化,以及活动星系核周围的物理过程等等。该卫星于2005年7月10日在鹿儿岛航天中心用M5火箭发射升空,用于替代2000年2月发射失败坠入太平洋的Astro-E卫星。 朱雀卫星重1680公斤,运行在高度约570公里的近圆形轨道。主要仪器为:.

新!!: 星系团和朱雀卫星 · 查看更多 »

星系

星系(galaxy),或譯為銀河,源自於希臘语的「γαλαξίας」(galaxias)。廣義上星系指無數的恆星系(當然包括恆星的自體)、塵埃(如星雲)組成的運行系統。參考我們的銀河系,是一個包含恆星、星團、星雲、氣體的星際物質、宇宙塵和暗物質,並且受到重力束縛的大質量系統,通常距離都在幾百萬光年以上。星系平均有數百億顆恆星,是構成宇宙的基本單位。。典型的星系,從只有數千萬(107)顆恆星的矮星系到上兆(1012)顆恆星的橢圓星系都有,全都環繞著質量中心運轉。除了單獨的恆星和稀薄的星際物質之外,大部分的星系都有數量龐大的多星系統、星團以及各種不同的星雲。 歷史上,星系是依據它們的形状分類的(通常指它們視覺上的形狀)。最普通的是橢圓星系,有橢圓形狀的明亮外觀;螺旋星系是圓盤的形狀,加上彎曲的塵埃旋渦臂;形狀不規則或異常的,通常都是受到鄰近其他星系影響的結果。鄰近星系間的交互作用,也許會導致星系的合併,或是造成恆星大量的產生,成為所謂的星爆星系。缺乏有條理結構的小星系則會被稱為不規則星系。 在可以看見的可觀測宇宙中,星系的總數可能超過一千億(1011)個以上。大部分的星系直徑介於1,000至100,000秒差距,彼此間相距的距離則是百萬秒差距的數量級。星系際空間(存在於星系之間的空間)充滿了極稀薄的電漿,平均密度小於每立方公尺一個原子。多數的星系會組織成更大的集團,成為星系群或團,它們又會聚集成更大的超星系團。這些更大的集團通常被稱為薄片或纖維,圍繞在宇宙中巨大的空洞週圍。 雖然我們對暗物質的了解很少,但在大部分的星系中它都佔有大約90%的質量。觀測的資料顯示超大質量黑洞存在於星系的核心,即使不是全部,也佔了絕大多數,它們被認為是造成一些星系有著活躍的核心的主因。銀河系,我們的地球和太陽系所在的星系,看起來在核心中至少也隱藏著一個這樣的物體。.

新!!: 星系团和星系 · 查看更多 »

星系天文學

星系天文學是天文學的一個分支,研究的對象是我們的銀河系以外的星系(研究所有不屬於銀河系天文學的天體),又稱河外天文學。 當工作的儀器獲得改善,就可以更詳細的研究現在只能審視的遙遠天體,因此這個分支可以再細分為更有效的近銀河系外天文學和遠銀河系外天文學。前者的成員與對象包括星系、本星系群,距離近得可以詳細研究內部的超新星遗迹、星協。後者遠得只是可以測量的對象和只有最明亮的部份可以描述或研究。 一些相關的主題如下:.

新!!: 星系团和星系天文學 · 查看更多 »

扬·奥尔特

扬-亨德里克·奥尔特(Jan Hendrik Oort,),荷兰天文学家,在銀河系結構和动力学、射电天文学方面做出了许多重要的贡献。.

新!!: 星系团和扬·奥尔特 · 查看更多 »

拉尼亚凯亚超星系团

拉尼亞凱亞超星系團(Laniakea),是银河系、太阳系和地球所处的超星系团。2014年9月,夏威夷大学的(Brent Tully)和法國的(Helene Courtois)所领导的团队发表了一种通过星系的视向速度来定义超星系团的新方法,并由此定义了拉尼亞凱亞。按照新的定義,以往我們所知的室女座超星系團只是拉尼亞凱亞的一部份而已。.

新!!: 星系团和拉尼亚凯亚超星系团 · 查看更多 »

重定向到这里:

星系集團

传出传入
嘿!我们在Facebook上吧! »