目录
失踪的正方形
失蹤的正方形谜题是一種數學上的視錯覺,有助於學生對幾何圖形的思考。它描述兩種面積板塊形狀組合,每個看似都構成一個13X5直角三角形,不過其中一個裡頭有個1x1的孔。.
查看 斜邊和失踪的正方形
三角学
三角学是數學的一個分支,主要研究三角形,以及三角形中边与角之间的关系。三角学定義了三角函數,可以描述三角形边与角的关系,而且都是周期函数,可以用來描述周期性的現象。三角学在西元前三世紀時開始發展,最早是幾何學的一個分支,廣泛的用在天文量測中,三角学也是測量學的基礎。 三角学的基礎是平面三角学,研究平面上的三角形中边与角之间的关系,分为角的度量、三角函数与反三角函数、诱导公式、和与差的公式、倍角、半角公式、和差化积与积化和差公式、解三角形等内容,可能會是單獨的一個科目或是在预科微积分教授,三角函數在純數學及應用數學中的許多領域中出現,例如傅立葉分析及波函數等,是許多科技領域的基礎。 三角学也包括球面三角學,研究球面上,由大圓的弧所包圍成的球面三角形,位在曲率為正值常數的曲面上,是橢圓幾何的一部份,球面三角學是天文學及航海的基礎,也在测量学、制图学、结晶学、仪器学等方面有广泛的应用。負曲率曲面上的三角学則是雙曲幾何中的一部份。.
查看 斜邊和三角学
三角形
三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.
查看 斜邊和三角形
畢達哥拉斯質數
達哥拉斯質數是指可以表示為4n + 1形式的質數,若直角三角形的三邊均為整數,斜邊為質數,其斜邊的邊長即為畢達哥拉斯質數。 前幾個畢達哥拉斯質數為 費馬平方和定理陳述,畢達哥拉斯質數可以表示為二個平方數的和,其他質數除了2以外(2.
查看 斜邊和畢達哥拉斯質數
直角邊
對於一個直角三角形,直角邊(源自希臘字Κάθετος,複數Κάθετοι);而英文的複數是catheti,是取自拉丁文cathetus的複數,常用的解釋是"leg" ,即一個直角三角形中,形成90度的兩條相鄰的邊。而餘下的一條邊,與直角相對,稱為斜邊。又因為畢氏定理在中文常被稱為勾股定理或勾股弦定理,故在中文裡,直角邊常常被稱為股,此乃延續中國古代的稱呼。"leg"這種表達方式在多數情況之下並不常用,一般都用直角邊或一個更迂迴的說法:"位於直角的一邊"。當提及到斜邊,直角邊一般被理解為餘下的兩邊。 直角邊的比例是三角函數中正切(tan)或餘切(cot)的定義(視乎參考那一隻角)。在直角三角形中,直角邊的長度亦等於斜邊的總長度與由直角用垂線分割斜邊的線段的幾何平均數。 對於一個不等腰的直角三角形,即一個任意的直角三角形,因為它的直角邊有不同的長度,所以英文可以用"major"同"minor"來分辨。 對於等腰直角三角形,它的直角邊便是其兩腰。 根據畢氏定理(又稱勾股定理,畢達哥拉斯定理或勾股弦定理),兩條直角邊的平方之和是等於斜邊的平方。同等地,以直角邊為邊長(見右圖)所形成的正方形(a同b),它們的平方總和等於以斜邊為邊長所形成的正方形(c)之平方和。.
查看 斜邊和直角邊
象限角
象限角,又称象限(英文:Quadrant意思是一圓之四分一等份),是直角坐標系(笛卡爾坐標系)中,主要應用於三角學和複數的阿根圖(複平面)中的座標系。.
查看 斜邊和象限角
5的算術平方根
5的算術平方根是一个正的实数,為无理数,一般称为“根号5”,记为 \sqrt。\sqrt乘以它本身的值为5。 \sqrt和黃金比值有關。5的算术平方根數值为: 2.23606 79774 99789 69640 91736 68731 27623 54406 18359 61152 57242 7089...
查看 斜邊和5的算術平方根