目录
101 关系: 单纯形法,双三次插值,均差,多项式插值,存在性定理,三线性插值,三角多项式,三角矩阵,三次函數,广义最小残量方法,乔治·埃夫斯塔希欧,交替方向隐式法,弧长,循环矩阵,微分方程,德卡斯特里奥算法,德布尔算法,保序回归,快速傅里叶变换,冯诺依曼稳定性分析,凝聚态物理学,克兰克-尼科尔森方法,割线法,图灵奖,B样条,Clenshaw递推公式,矩阵,矩阵分解,环境数学,王元 (院士),理查德森外推法,离散化,离散数学,稀疏矩阵,算法,算法分析,算法设计,约翰·伦奇,约翰·冯·诺伊曼,线性代数,线性方程组,维恩位移定律,無限差分法,特征值和特征向量,萊斯利·约翰·科姆里,非线性振动学,馬克士威方程組,解析解,马克斯·奥古斯特·佐恩,詹姆斯·哈迪·威尔金森,... 扩展索引 (51 更多) »
单纯形法
由George Dantzig发明的单纯形法(simplex algorithm)在数学优化领域中常用于线性规划问题的数值求解。 Nelder-Mead 法或称下山单纯形法,与单纯形法名称相似,但二者关联不大。该方法由Nelder和Mead于1965年发明,是用于优化多维无约束问题的一种数值方法,属于更普遍的搜索算法的类别。这两种方法都使用了单纯形的概念。单纯形是 N 维中的 N+1 个顶点的凸包,是一个多胞体:直线上的一个线段,平面上的一个三角形,三维空间中的一个四面体等等,都是单纯形。.
查看 数值分析和单纯形法
双三次插值
在数值分析这个数学分支中,双三次插值(Bicubic interpolation)是二维空间中最常用的插值方法。在这种方法中,函数 f 在点 (x, y) 的值可以通过矩形网格中最近的十六个采样点的加权平均得到,在这里需要使用两个多项式插值三次函数,每个方向使用一个。.
查看 数值分析和双三次插值
均差
均差(Divided differences)是遞歸除法過程。在数值分析中,也称差商(),可用於計算牛頓多項式形式的多項式插值的係數。.
查看 数值分析和均差
多项式插值
在数值分析这个数学分支中,多项式插值用多项式对一组给定数据进行插值的过程。换句话说就是,对于一组给定的数据(如来自于采样的数据),其目的就是寻找一个恰好通过这些数据点的多项式。.
查看 数值分析和多项式插值
存在性定理
在数学中,存在性定理是一类以“存在……”开头的定理的总称。有时前面也会加上一些限定,比如说“对于所有的……,存在……”。形式上来说,存在性定理是指在定理的命题叙述中涉及存在量词的定理。实际中,许多存在性定理并不会明确地用到“存在”这个字眼,比如说“正弦函数是连续的。”这个定理中并没有出现“存在”一词,但仍是一个存在性定理。因为“连续性”的定义是一个存在性的定义。 二十世纪初期曾经有过关于纯粹的存在性定理的争论。在数学结构主义的角度上,如果承认此种定理的存在,那么数学的实用性将会降低。而与之相反的观点认为抽象的手段可以达到数值分析所无法达到的目的。.
查看 数值分析和存在性定理
三线性插值
三线性插值是在三维离散采样数据的张量积网格上进行线性插值的方法。这个张量积网格可能在每一维度上都有任意不重叠的网格点,但并不是三角化的有限元分析网格。这种方法通过网格上数据点在局部的矩形棱柱上线性地近似计算点 (x, y, z) 的值。 三线性插值经常用于数值分析、数据分析以及计算机图形学等领域。.
查看 数值分析和三线性插值
三角多项式
在数学中,三角多项式是一类基于三角函数的函数的总称。三角多项式是可以表示成有限个正弦函数sin(nx) 和余弦函数cos(nx) 的和的函数,其中的x 是变量,而n 是一个自然数。三角多项式中每一项的系数可以是实数或者复数。如果系数是复数的话,那么这个三角多项式是一个傅里叶级数。 三角多项式在许多数学分支,如数学分析和数值分析中都有应用,例如在傅里叶分析中,三角多项式被用于傅里叶级数的表示,在三角插值法中,三角多项式被用于逼近周期性函数。 三角多项式一般可以写成.
查看 数值分析和三角多项式
三角矩阵
在线性代数中,三角矩阵是方形矩阵的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。上三角矩阵的对角线左下方的系数全部为零,下三角矩阵的对角线右上方的系数全部为零。三角矩阵可以看做是一般方阵的一种简化情形。比如,由于带三角矩阵的矩阵方程容易求解,在解多元线性方程组时,总是将其系数矩阵通过初等变换化为三角矩阵来求解;又如三角矩阵的行列式就是其对角线上元素的乘积,很容易计算。有鉴于此,在数值分析等分支中三角矩阵十分重要。一个可逆矩阵A可以通过LU分解变成一个下三角矩阵L与一个上三角矩阵U的乘积。.
查看 数值分析和三角矩阵
三次函數
三次函數是以下形式的多項式函数 其中不為零。 若令,可以得到三次方程 此方程的解即為多項式的根。若所有的系数、、和,都是实数,則此方程至少會有一個實數根(這對所有奇數的多項式都成立)。三次函數的所有解都可以用代數函數來表示(這對二次函数、四次函數也都成立,但根據阿贝尔-鲁菲尼定理,更高次數的多項式一般來說沒有此特性)。利用三角函數也可以表示出函數的解。此方程的數值解可以用像牛顿法之類的求根算法求得。 三次函數的係數不一定要是複數。三次函數的許多特性,只要係數域的特征為0或是大於就會成立。三次方程的解不一定會和系數同一個域,例如有理系數三次方程的解可能是無理數、甚至是非實數的複數。.
查看 数值分析和三次函數
广义最小残量方法
在数学上,广义最小残量方法(一般简称GMRES)是一个求解线性方程组 数值解的迭代方法。这个方法利用在Krylov子空间中有着最小残量的向量来逼近解。Arnoldi迭代方法被用来求解这个向量。 GMRES方法由Yousef Saad和Martin H. Schultz在1986年提出。.
乔治·埃夫斯塔希欧
乔治·佩特罗斯·艾夫斯塔希欧,FRS (George Petros Efstathiou,,),希腊裔英国宇宙学家,康桥大学天体物理学教授。他曾担任过牛津大学的萨维尔天文学教授。他现在是剑桥大学科维理宇宙学研究所的所长。2014年邵逸夫天文学奖得主肖恩·科尔曾经是他的博士生 肖恩·科尔给邵逸夫奖基金会所撰写的个人自传。.
交替方向隐式法
数值分析中,交替方向隐式法(Alternating direction implicit method)是有限差分法的一种,用于求解抛物线型偏微分方程或椭圆型偏微分方程。特别适用于求解二维及更高维度的热传导方程与扩散方程。 求解热传导方程在传统上使用Crank-Nicolson方法,该方法较为耗时。ADI的优点在于,每一迭代步中,所求解的方程具有更为简单的结构,因此更易于求解。.
查看 数值分析和交替方向隐式法
弧长
曲线的弧长也称曲线的长度,是曲线的特征之一。不是所有的曲线都能定义长度,能够定义长度的曲线称为可求长曲线。最早研究的曲线弧长是圆弧的长度。为了计算圆周的长度,数学家发明了用直线段近似的方法,并应用到其他的曲线上。微积分出现后,数学家开始用积分的方式计算曲线的弧长,得出了许多特殊曲线的弧长的精确表达式。.
查看 数值分析和弧长
循环矩阵
在线性代数中,循环矩阵是一种特殊形式的 Toeplitz矩阵,它的行向量的每个元素都是前一个行向量各元素依次右移一个位置得到的结果。由于可以用离散傅立叶变换快速解循环矩阵,所以在数值分析中有重要的应用。.
查看 数值分析和循环矩阵
微分方程
微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.
查看 数值分析和微分方程
德卡斯特里奥算法
数学子领域数值分析中的德卡斯特里奥算法(De Casteljau's algorithm),以发明者保尔·德·卡斯特里奥命名,是计算伯恩斯坦形式的多项式或貝茲曲線的递归方法。 虽然对于大部分的体系结构,该算法和直接方法相比较慢,但它在数值上更为稳定。.
德布尔算法
数学的子领域数值分析中,De Boor算法是快速而且数值上稳定的算法,用于计算B样条形式的样条曲线。这是用于貝茲曲線的de Casteljau算法的一个推广。.
查看 数值分析和德布尔算法
保序回归
保序回归(英文:Isotonic regression)在数值分析中指的是在保序约束下搜索一个加权 w 的最小二乘 y 以拟合变量 x,它是一个二次规划问题: \min \sum_^n w_i (x_i - y_i)^2 subject to x_i \ge x_j \iff y_i \ge y_j (这个条件有错误) 保序回归应用于统计推理、多维标度等研究中。 Category:统计学.
查看 数值分析和保序回归
快速傅里叶变换
快速傅里叶变换(Fast Fourier Transform, FFT),是快速计算序列的离散傅里叶变换(DFT)或其逆变换的方法。傅里叶分析将信号从原始域(通常是时间或空间)转换到頻域的表示或者逆过来转换。FFT会通过把DFT矩阵分解为稀疏(大多为零)因子之积来快速计算此类变换。 因此,它能够将计算DFT的复杂度从只用DFT定义计算需要的 O(n^2),降低到 O(n \log n),其中 n 为数据大小。 快速傅里叶变换广泛的应用于工程、科学和数学领域。这里的基本思想在1965年才得到普及,但早在1805年就已推导出来。 1994年美國數學家把FFT描述为“我们一生中最重要的数值算法”,它还被IEEE科学与工程计算期刊列入20世纪十大算法。.
查看 数值分析和快速傅里叶变换
冯诺依曼稳定性分析
数值分析中, 冯诺依曼稳定性分析 (亦作傅立叶稳定性分析) 用于验证计算线性偏微分方程时使用特定有限差分法的数值稳定性,该分析方法基于对数值误差的傅立叶分解。1947年英国研究人员 John Crank 和 Phyllis Nicolson 在文章中对该方法进行了简要介绍, 尔后又出现在冯诺依曼合作的文章中 。 洛斯阿拉莫斯国家实验室对该方法进行了进一步发展。.
凝聚态物理学
凝聚态物理学專門研究物质凝聚相的物理性质。该领域的研究者力图通过物理学定律来解释凝聚相物质的行为。其中,量子力学、电磁学以及统计力学的相关定律对于该领域尤为重要。 固相以及液相是人们最为熟悉的凝聚相。除了这两种相之外,凝聚相还包括一些特定的物质在低温条件下的超导相、自旋有关的铁磁相及反铁磁相、超低温原子系统的玻色-爱因斯坦凝聚相等等。对于凝聚态的研究包括通过实验手段测定物质的各种性质,以及利用理论方法发展数学模型以深入理解这些物质的物理行为。 由于尚有大量的系统及现象亟待研究,凝聚态物理学成为了目前物理学最为活跃的领域之一。仅在美国,该领域的研究者就占到该国物理学者整体的近三分之一,凝聚态物理学部也是美国物理学会最大的部门。此外,该领域还与化学,材料科学以及纳米技术等学科领域交叉,并与原子物理学以及生物物理学等物理学分支紧密相关。该领域研究者在理论研究中所采用的一些概念与方法也适用于粒子物理学及核物理学等领域。 晶体学、冶金学、弹性力学以及磁学等等起初是各自独立的学科领域。这些学科在二十世纪四十年代被物理学家统合为固体物理学。时间进入二十世纪六十年代后,有关液体物理性质的研究也被纳入其中,形成凝聚态物理学这一新学科。据物理学家菲利普·安德森所述,术语“凝聚态物理学”是他和首创。1967年,他们把位于卡文迪许实验室的研究组名称由“固体理论”改为“凝聚态理论”。二人觉得原来的名称并没有涵盖液体及等方面研究。但是,“凝聚态”这一术语此前已在欧洲学界出现,只是由他们普及而已。较为著名的例子是施普林格公司于1963年创建的期刊《凝聚态物理学》(Physics of Condensed Matter)。二十世纪六、七十年代的资金环境以及各国政府采取的冷战政策促使相关领域物理学家接纳了“凝聚态物理学”这一术语。他们认为这一术语相对于“固体物理学”而言更为突出了固体、液体、等离子体以及其他复杂物质研究之间的共通性。这些研究与金属和半导体在工业上的应用息息相关。贝尔实验室是最早开展凝聚态物理学研究项目的研究机构之一。 “凝聚态”这一术语在更早的文献中即已出现。例如,在1947年出版的由雅科夫·弗伦克尔撰写的专著《液体动力学理论》(Kinetic theory of liquids)的绪论中,他提出:“液体动力学理论日后也将发展为固体动力学理论的推广与延伸。实际上,更为正确的做法或许是将液体与固体统归为‘--’。”.
查看 数值分析和凝聚态物理学
克兰克-尼科尔森方法
克兰克-尼科尔森方法是一種数值分析的有限差分法,可用于数值求解热方程以及类似形式的偏微分方程。它在时间方向上是的二阶方法,可以寫成隐式的龍格-庫塔法,数值稳定。该方法诞生于20世纪,由与发展。 可以证明克兰克-尼科尔森方法对于扩散方程(以及许多其他方程)是无条件稳定。但是,如果时间步长Δ乘以熱擴散率,再除以空间步长平方Δ的值过大(根據馮諾依曼穩定性分析,以大于1/2為準),近似解中将存在虚假的振荡或衰减。基于这个原因,当要求大时间步或高空间分辨率的时候,往往会采用数值精确较差的进行计算,这样即可以保证稳定,又避免了解的伪振荡。.
割线法
在数值分析中,割线法是一个求根算法,该方法用一系列割线的根来近似代替函数f的根。.
查看 数值分析和割线法
图灵奖
图灵奖(ACM A.M. Turing Award),又譯杜林獎、A.M.图灵奖,是计算机协会(ACM)于1966年设立的獎項,专门奖励对计算机事业作出重要贡献的个人。其名称取自世界计算机科学的先驱、英国科学家、曼徹斯特大学教授艾伦·图灵(A.M.
查看 数值分析和图灵奖
B样条
在数学的子学科数值分析裡,B-样条是样条曲线一种特殊的表示形式。它是B-样条基曲线的线性组合。B-样条是貝茲曲線的一种一般化,可以进一步推广为非均匀有理B样条(NURBS),使得我们能给更多一般的几何体建造精确的模型。 De Boor算法是一个数值上稳定的计算B样条的方法。 术语 B样条是Isaac Jacob Schoenberg创造的,是基(basis)样条的缩略。.
查看 数值分析和B样条
Clenshaw递推公式
在数值分析中,Clenshaw递推公式 (由Charles William Clenshaw发现)是一个求切比雪夫多项式的值的递归方法。.
矩阵
數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.
查看 数值分析和矩阵
矩阵分解
矩阵分解(decomposition, factorization)是多半将矩阵拆解为数个三角形矩阵(triangular matrix),依使用目的的不同,可分为几类。.
查看 数值分析和矩阵分解
环境数学
數學為科學與工程學之基礎,且為研究工作與規劃設計上之有效工具。環境數學所涉及之數學技巧與工程數學之領域類似,為利用數學將實際環境問題模式化,進而求解與解釋模式預測之結果。.
查看 数值分析和环境数学
王元 (院士)
王元()中国著名数学家,中国科学院院士。.
查看 数值分析和王元 (院士)
理查德森外推法
数值分析中,理查德森外推法用以改善级数序列收敛效率,它是在20世纪前期由英国数学家,物理学家,气象学家Lewis Fry Richardson提出的。在数值分析领域,Richardson外推法有很多实际应用,如隆贝格积分方法,是在梯形公式的基础上应用Richardson外推法导出的;还有用于求解常微分方程的Bulirsch–Stoer算法。.
查看 数值分析和理查德森外推法
离散化
在数学中,离散化关注连续模型和等式转化为离散形式的过程。离散化通常是处理对象使其易于数值计算机进行数值评估和处理的第一步。为适合计算机处理,额外还需要名为量化的过程。.
查看 数值分析和离散化
离散数学
离散数学(Discrete mathematics)是数学的几个分支的总称,研究基于离散空间而不是连续的数学结构。与連續变化的实数不同,离散数学的研究对象——例如整数、图和数学逻辑中的命题——不是連續变化的,而是拥有不等、分立的值。因此离散数学不包含微积分和分析等「连续数学」的内容。离散对象经常可以用整数来枚举。更一般地,离散数学被视为处理可数集合(与整数子集基数相同的集合,包括有理数集但不包括实数集)的数学分支。 。但是,“离散数学”不存在准确且普遍认可的定义。实际上,离散数学经常被定义为不包含连续变化量及相关概念的数学,甚少被定义为包含什么内容的数学。 离散数学中的对象集合可以是有限或者是无限的。有限数学一词通常指代离散数学处理有限集合的那些部分,特别是在与商业相关的领域。 隨著電腦科學的飛速發展,離散數學的重要性則日益彰顯。它為許多資訊科學課程提供了數學基礎,包括資料結構、演算法、資料庫理論、形式語言與作業系統等。如果沒有離散數學的相關數學基礎,學生在學習上述課程中,便會遇到較多的困難。此外,離散數學也包含了解決作業研究、化學、工程學、生物學等眾多領域的數學背景。由於運算對象是離散的,所以電腦科學的數學基礎基本上也是離散的。我們可以說電腦科學的數學語言就是離散數學。人們會使用離散數學裡面的槪念和表示方法,來研究和描述電腦科學下所有分支的對象和問題,如電腦運算、程式語言、密碼學、自動定理証明和軟件開發等。相反地,计算机的應用使離散數學的概念得以應用於日常生活當中(如運籌學)。 虽然离散数学的主要研究对象是离散对象,但是连续数学的分析方法往往也可以采用。数论就是离散和连续数学的交叉学科。同样的,有限拓扑(对有限拓扑空间的研究)从字面上可看作离散化和拓扑的交集。.
查看 数值分析和离散数学
稀疏矩阵
在数值分析中,稀疏矩阵(Sparse matrix),是其元素大部分为零的矩阵。反之,如果大部分元素都非零,则这个矩阵是稠密的。在科学与工程领域中求解线性模型时经常出现大型的稀疏矩阵。 在使用计算机存储和操作稀疏矩阵时,经常需要修改标准算法以利用矩阵的稀疏结构。由于其自身的稀疏特性,通过压缩可以大大节省稀疏矩阵的内存代价。更为重要的是,由于过大的尺寸,标准的算法经常无法操作这些稀疏矩阵。.
查看 数值分析和稀疏矩阵
算法
-- 算法(algorithm),在數學(算學)和電腦科學之中,為任何良定义的具體計算步驟的一个序列,常用於計算、和自動推理。精確而言,算法是一個表示爲有限長列表的。算法應包含清晰定義的指令用於計算函數。 算法中的指令描述的是一個計算,當其時能從一個初始狀態和初始輸入(可能爲空)開始,經過一系列有限而清晰定義的狀態最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化算法在内的一些算法,包含了一些隨機輸入。 形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,並在其后尝试定义或者中成形。这些尝试包括库尔特·哥德尔、雅克·埃尔布朗和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年的Formulation 1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義爲形式化算法的情況。.
查看 数值分析和算法
算法分析
在计算机科学中,算法分析(Analysis of algorithm)是分析执行一个给定算法需要消耗的计算资源数量(例如计算时间,存储器使用等)的过程。算法的效率或复杂度在理论上表示为一个函数。其定义域是输入数据的长度(通常考虑任意大的输入,没有上界),值域通常是执行步骤数量(时间复杂度)或者存储器位置数量(空间复杂度)。算法分析是计算复杂度理论的重要组成部分。 理论分析常常利用渐近分析估计一个算法的复杂度,并使用大O符号、大Ω符号和大Θ符号作为标记。举例,二分查找所需的执行步骤数量与查找列表的长度之对数成正比,记为 O(\log n),简称为「对数时间」。通常使用渐近分析的原因是,同一算法的不同具体实现的效率可能有差别。但是,对于任何给定的算法,所有符合其设计者意图的实现,它们之间的性能差异应当仅仅是一个系数。 精确分析算法的效率有时也是可行的,但这样的分析通常需要一些与具体实现相关的假设,称为计算模型。计算模型可以用抽象机器来定义,比如图灵机。或者可以假设某些基本操作在单位时间内可完成。 假设二分查找的目标列表总共有 n 个元素。如果我们假设单次查找可以在一个时间单位内完成,那么至多只需要 \log n + 1 单位的时间就可以得到结果。这样的分析在有些场合非常重要。 算法分析在实际工作中是非常重要的,因为使用低效率的算法会显著降低系统性能。在对运行时间要求极高的场合,耗时太长的算法得到的结果可能是过期或者无用的。低效率算法也会大量消耗计算资源。.
查看 数值分析和算法分析
算法设计
算法设计是大学中的一门课程,它属于工学的基础课程。它是数值计算方法的较浅近的版本。.
查看 数值分析和算法设计
约翰·伦奇
约翰·威廉·伦奇 (John William Wrench, Jr.,1911年10月13日-2009年2月27日),美国数学家,学术专长为数值分析,为用计算机进行数学计算的先驱者,最有名的工作是与合作计算圆周率,精确到小数点后10万位。.
查看 数值分析和约翰·伦奇
约翰·冯·诺伊曼
约翰·冯·诺伊曼(John von Neumann,,,),原名诺依曼·雅诺士·拉约士(Neumann János Lajos,),出生於匈牙利的美國籍猶太人数学家,现代電子計算機与博弈论的重要创始人,在泛函分析、遍历理论、几何学、拓扑学和数值分析等众多数学领域及計算機學、量子力學和经济学中都有重大貢獻。 冯·诺伊曼从小就以过人的智力与记忆力而闻名。冯·诺伊曼一生中发表了大约150篇论文,其中有60篇纯数学论文,20篇物理学以及60篇应用数学论文。他最后的作品是一个在医院未完成的手稿,后来以书名《》发布,表现了他生命最后时光的兴趣方向。 “诺依曼”和“诺伊曼”2种同音不同字的德音汉语译名写法都比较常见。另外也有资料采用其英音汉语译名“冯纽曼”。.
线性代数
线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.
查看 数值分析和线性代数
线性方程组
线性方程组是数学方程组的一种,它符合以下的形式: 其中的a_, \, a_以及b_, \, b_等等是已知的常数,而x_, \, x_等等则是要求的未知数。 如果用线性代数中的概念来表达,则线性方程组可以写成: 這裡的A是m×n 矩陣,x是含有n个元素列向量,b是含有m 个元素列向量。 A.
查看 数值分析和线性方程组
维恩位移定律
维恩位移定律(Wien's displacement law)是物理学上描述黑体电磁辐射光谱辐射度的峰值波长与自身温度之间反比关系的定律,其数学表示为: 式中 光学上一般使用纳米(nm)作为波长单位,则 b.
查看 数值分析和维恩位移定律
無限差分法
在数学中,無限差分法(infinite-difference methods),是一种微分方程数值方法,是通过無限差分來近似导數,从而寻求微分方程的近似解。.
查看 数值分析和無限差分法
特征值和特征向量
在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.
萊斯利·约翰·科姆里
莱斯利·约翰·科姆里FRS(Leslie John Comrie,),新西兰天文学家暨机械计算机先驱。.
非线性振动学
非线性振动学,振动学的一个分支。 严格来说,一切振动系统都是非线性的。所谓线性振动只是系统在较小运动时的一种近似。 一些非线性特性是材料本身决定的。比如,在小的形变下,钢的应力和形变是可被认为是线性关系,当形变较大时,这个假定不再成立。一个单摆也只是在小角度时才可认为是线性的。另外阻尼与速度成正比也只是一种线性近似。 对于非线性振动的方程,单独的解通常是不重要的,数值分析是一个很重要的方法。 Category:力学.
查看 数值分析和非线性振动学
馬克士威方程組
克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.
查看 数值分析和馬克士威方程組
解析解
解析解,又稱為閉式解,是可以用解析表達式來表達的解。 在数学上,如果一个方程或者方程组存在的某些解,是由有限次常见运算的組合给出的形式,则称该方程存在解析解。二次方程的根就是一个解析解的典型例子。在低年级数学的教学当中,解析解也被称为公式解。 当解析解不存在时,比如五次以及更高次的代数方程,则该方程只能用数值分析的方法求解近似值。大多數偏微分方程,尤其是非线性偏微分方程,都只有數值解。 解析表達式的准确含义依赖于何种运算称为常见运算或常见函数。传统上,只有初等函数被看作常见函数(由於初等函數的運算總是獲得初等函數,因此初等函數的運算集合具有閉包性質,所以又稱此種解為閉式解),无穷级数、序列的极限、连分数等都不被看作常见函数。按这种定义,许多累积分布函数无法写成解析表達式。但如果把特殊函数,比如误差函数或gamma函数也看作常见函数,则累积分布函数可以写成解析表達式。 在计算机应用中,这些特殊函数因为大多有现成的数值法实现,它们通常被看作常见运算或常见函数。实际上,在计算机的计算过程中,多数基本函数都是用数值法计算的,所以所谓的基本函数和特殊函数对计算机而言并无区别。 J J J en:Analytical expression ja:解析解.
查看 数值分析和解析解
马克斯·奥古斯特·佐恩
马克斯·奥古斯特·佐恩(Max August Zorn,1906年6月6日於德国克雷费尔德——1993年3月9日於美国印第安纳州布卢明顿(Bloomington))是德国裔美国数学家。 佐恩是代数学家,群论学家,和数值分析学家。 他最著名的是佐恩引理。这是集合论一个很强的工具,应用范围广泛,可用於很多数学构造,例如向量空间、偏序集等。 他从1946年起任印第安纳州大学教授直到逝世。 按印第安纳州大学数学教授肯特·奥尔(Kent Orr)所言,有次年老的荣誉教授佐恩差点被汽车撞毙,数学大楼附近便竖立了一支交通灯。 佐恩也很热衷於弹吉他。在布卢明顿分校的数学学院所处的罗尔斯堂(Rawles Hall),挂了一幅他弹吉他的图画。 Z Z Z Z Z.
詹姆斯·哈迪·威尔金森
詹姆斯·哈迪·威尔金森,FRS(英文:James Hardy Wilkinson )是英国数学家和计算机学家,在数值分析领域具有杰出贡献。数值分析是应用数学与计算机科学的交叉学科,特别在工程和物理学上具有显著的应用。.
计算力学
计算力学是关于应用计算方法研究服从力学原理的现象的学科。在作为除理论科学与实验科学外“第三条路”的计算科学出现之前,计算力学普遍被视作应用力学的子学科,现在则被视作计算科学的子学科。.
查看 数值分析和计算力学
计算多体系统动力学
计算多体系统动力学是关于学术研究中多体系统的微分方程求解的算法研究,目前在求解多体系统微分方程时候经常出现代数微分方程,而计算多体系统动力学就是解决如何将多体系统的微分方程转化为代数方程来求解的数值方法研究。.
计算科学
计算科学,又称科学计算,是一个与数学模型构建、定量分析方法以及利用计算机来分析和解决科学问题相关的研究领域。在实际应用中,计算科学主要应用於:对各个科学学科中的问题,进行计算机模拟和其他形式的计算。 这一领域不同於计算机科学(对於计算、计算机以及信息处理的研究),同时也异於科学和工程学的传统形式——理论与实验。科学计算技术要想获得理解,主要需要通过在计算机上实现的数学模型进行分析。 科学家和工程师发展了计算机程序和应用软件,来为被研究的系统建立模型,並以多種輸入參數運行這些程序。一般来说,这些模型需要大量的计算(通常为浮点计算),常在超级计算机或分布式计算平台上执行。 数值分析是计算科学中使用的技法的重要基础。.
查看 数值分析和计算科学
计算物理学
計算物理學()是研究如何使用數值方法分析可以量化的物理学問題的学科。 历史上,计算物理学是计算机的第一项应用;目前计算物理学被视为计算科学的分支。 计算物理有时也被视为理论物理的分支学科或子问题,但也有人认为计算物理与理论物理与实验物理联系紧密,又相对独立,是物理学第三大分支《计算物理学》 刘金远等 科学出版社 ISBN 978-7-03-034793-0。.
查看 数值分析和计算物理学
计算机科学
计算机科学用于解决信息与计算的理论基础,以及实现和应用它们的实用技术。 计算机科学(computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探討计算问题的性质,比如计算复杂性理论;还有一些领域專注于怎样实现计算,比如程式語言理論是研究描述计算的方法,而程式设计是应用特定的程式語言解决特定的计算问题,人机交互则是專注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。 有时公众会误以为计算机科学就是解决计算机问题的事业(比如信息技术),或者只是与使用计算机的经验有关,如玩游戏、上网或者文字处理。其实计算机科学所关注的,不仅仅是去理解实现类似游戏、浏览器这些软件的程序的性质,更要通过现有的知识创造新的程序或者改进已有的程序。 尽管计算机科学(computer science)的名字里包含计算机这几个字,但实际上计算机科学相当数量的领域都不涉及计算机本身的研究。因此,一些新的名字被提议出来。某些重点大学的院系倾向于术语计算科学(computing science),以精确强调两者之间的不同。丹麦科学家Peter Naur建议使用术语"datalogy",以反映这一事实,即科学学科是围绕着数据和数据处理,而不一定要涉及计算机。第一个使用这个术语的科学机构是哥本哈根大学Datalogy学院,该学院成立于1969年,Peter Naur便是第一任教授。这个术语主要被用于北欧国家。同时,在计算技术发展初期,《ACM通讯》建议了一些针对计算领域从业人员的术语:turingineer,turologist,flow-charts-man,applied meta-mathematician及applied epistemologist。 三个月后在同样的期刊上,comptologist被提出,第二年又变成了hypologist。 术语computics也曾经被提议过。在欧洲大陆,起源于信息(information)和数学或者自动(automatic)的名字比起源于计算机或者计算(computation)更常见,如informatique(法语),Informatik(德语),informatika(斯拉夫语族)。 著名计算机科学家Edsger Dijkstra曾经指出:“计算机科学并不只是关于计算机,就像天文学并不只是关于望远镜一样。”("Computer science is no more about computers than astronomy is about telescopes.")设计、部署计算机和计算机系统通常被认为是非计算机科学学科的领域。例如,研究计算机硬件被看作是计算机工程的一部分,而对于商业计算机系统的研究和部署被称为信息技术或者信息系统。然而,现如今也越来越多地融合了各类计算机相关学科的思想。计算机科学研究也经常与其它学科交叉,比如心理学,认知科学,语言学,数学,物理学,统计学和经济学。 计算机科学被认为比其它科学学科与数学的联系更加密切,一些观察者说计算就是一门数学科学。 早期计算机科学受数学研究成果的影响很大,如Kurt Gödel和Alan Turing,这两个领域在某些学科,例如数理逻辑、范畴论、域理论和代数,也不断有有益的思想交流。.
查看 数值分析和计算机科学
计算流体力学
计算流体力学(Computational Fluid Dynamics,簡稱CFD)是21世纪流体力学领域的重要技術之一,使用数值方法在计算机中对流体力学的控制方程进行求解,从而可预测流场的流动。目前有多种商业CFD软件问世,比如FLUENT、CFD-ACE+(CFDRC)、Phoenics、CFX、Star-cd等。 目前在工程领域CFD方法已经得到广泛的应用。美国海空军下一代F-35战斗机所使用的附面层分离进气道是CFD的成果之一。附面层分离进气道通过特殊设计形状的突起分离流速较慢的附面层以改善涡轮风扇发动机的进气流场。此设计比传统的附面层隔板方法可以减轻数百公斤重量,同时在一定速度范围内能够维持很好的分离效率。 CFD最基本的考虑是如何把连续流体在计算机上用离散的方式处理。一个方法是把空间区域离散化成小胞腔,以形成一个立体网格或者格点,然后应用合适的算法来解运动方程(对于不粘滞流体用欧拉方程,对于粘滞流体用纳维-斯托克斯方程)。另外,这样的一个网格可以是不规则的(例如在二维由三角形组成,在三维由四面体组成)或者是规则的;前者的特征是每个胞腔必须单独存储在内存中。最后,如果问题是高度动态的并且在尺度上跨越很大的范围,网格本身应该可以动态随时间调整,譬如在自适应网格细化方法中。 如果选择不使用基于网格的方法,也有一些可选的替代,比较突出的有:.
查看 数值分析和计算流体力学
豪斯霍尔德变换
豪斯霍尔德变换(Householder transformation)或譯「豪斯霍德轉換」,又称初等反射(Elementary reflection),最初由A.C Aitken在1932年提出。Alston Scott Householder在1958年指出了这一变换在数值线性代数上的意义。这一变换将一个向量变换为由一个超平面反射的镜像,是一种线性变换。其变换矩阵被称作豪斯霍尔德矩阵,在一般内积空间中的类比被称作豪斯霍尔德算子。超平面的法向量被称作豪斯霍尔德向量。.
查看 数值分析和豪斯霍尔德变换
贝塞尔样条
在数学的数值分析和计算机图形学中,贝济埃样条是条样的每个多项式都是伯恩斯坦多项式的样条。.
查看 数值分析和贝塞尔样条
软件工程主题列表
软件工程主题列表是軟件工程條目的補充,用以為主條目提供更詳細的內容及例子。.
龙格现象
在数值分析领域中,龙格现象是在一组等间插值点上使用具有高次多项式的多项式插值时出现的区间边缘处的振荡问题。 它是由卡尔·龙格(Runge)在探索使用多项式插值逼近某些函数时的错误行为时发现的。这一发现非常重要,因为它表明使用高次多项式插值并不总能提高准确性。 该现象与傅里叶级数近似中的吉布斯现象相似。.
查看 数值分析和龙格现象
龙格-库塔法
数值分析中,龙格-库塔法(Runge-Kutta methods)是用于非线性常微分方程的解的重要的一类隐式或显式迭代法。这些技术由数学家卡尔·龙格和马丁·威尔海姆·库塔于1900年左右发明。.
查看 数值分析和龙格-库塔法
迭代法
迭代法(Iterative Method),在计算数学中,迭代是通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的数学过程,为实现这一过程所使用的方法统称。 跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题,例如通过开方解决方程x^2.
查看 数值分析和迭代法
赝势
赝势(pseudopotential),或有效势(effective potential),是指在对能带结构进行数值计算时所引入的一个虚拟的势。引入赝势有助于实现一个复杂的系统的近似计算。事实上,赝势近似法是正交平面波方法(Orthogonalized Plane Wave method,OPW method)的延伸,其应用范围包括原子物理学和。“赝势”这个概念是由于1934年首先发表的。.
查看 数值分析和赝势
逼近误差
在数值分析这个数学分支中,逼近误差是近似值与真实值之间的差别。由于如下因素可能会导致逼近误差的出.
查看 数值分析和逼近误差
耗散
耗散是出現在非勻相熱力學系統中不可逆過程的結果。耗散過程是指能量(內能、動能或勢能)由一種形式轉換到另一種形式,而且後者可以作的功少於前者。例如將能量轉換為熱是一種耗散過程,因為熱會由較熱的物體轉移到較冷的物體,二者的溫度差會減少,根據熱力學第二定律,這様會使二者物體所組成系統可作的機械功減少。 熱力學的耗散過程在本質上就是不可逆的,此過程以固定的速率。若一個過程的溫度都有明確的定義,單位體積內溫度乘以熵的變化率即為單位體積耗散的能量。 不可逆過程包括:.
查看 数值分析和耗散
FFTPACK
FFTPACK是使用Fortran语言编写的快速傅立叶变换程序库。它提供了复数、实数、正弦、余弦以及四分之一波等变换。其开发者是国家大气研究中心的Paul Swarztrauber。该程序库属于数学程序库SLATEC的一部分。 它的大部分内容都有C和Java的版本。.
查看 数值分析和FFTPACK
Fortran
福傳(Fortran),源自於「公式翻译」(Formula Translation)的縮寫,是一種程式語言。1957年由IBM開發出,是世界上第一个被正式采用並流传至今的高级编程語言。.
查看 数值分析和Fortran
FreeMat
FreeMat是一个自由开源的数值计算环境和编程语言,类似于MATLAB和GNU Octave。同时支持许多MATLAB函数和一些互動式數據語言(IDL)功能,它提供了一个扩展C,C++和Fortran代码的少代码界面,以及并行分布算法开发(通过MPI),并具有绘图和3D可视化能力。.
查看 数值分析和FreeMat
GW150914
GW150914是由激光干涉引力波天文台(LIGO)于2015年9月14日探测到的引力波现象,是人类首次直接探测到的引力波。相关探测结果由LIGO、處女座干涉儀(VIRGO)研究团队于2016年2月11日共同宣布。这束产生于双黑洞的引力波信号与广义相对论中对双黑洞旋近、併合以及併合后的黑洞会发生衰荡(ringdown)的理论预测相符。同时GW150914也是人类对双黑洞併合的首度观测,展示了双黑洞系统确实存在,且其併合在宇宙的目前阶段仍能发生。 信號名稱GW150914的意義為「重力波2015年9月14日」,GW是重力波"Gravitational Wave",150914是發現日期。 对于引力波的实验探寻已经超过了50年。其与物质间的作用十分微弱,以致爱因斯坦本人都怀疑其是否能被探测到。此次探测到的引力波所造成的时空变化相对于LIGO探测器的一个干涉臂而言,相当于头发丝的宽度之于地球与太阳外最近恒星的距离。然而在併合最后阶段,等价于约3倍太阳质量的能量在不到1秒的时间内以引力波的形式释出,瞬时功率非常巨大,大于可观测宇宙中所有星体发光功率总和。 此次探测验证了广义相对论最后一项未被证实的理论预测,同时开启了引力波天文学的新纪元。引力波就此作为一种粒子和电磁波之外的新的探针,将被用于探测过去未能探测到的天体现象,如中子星的诞生、演化以及衰亡以及宇宙诞生之初的图景。.
Heun方法
在数学和计算机科学中,Heun法亦被稱為改进的或修改過的欧拉方法(即,顯式的梯形规则),或类似的二阶的龙格-库塔法。它是以德國數學家的名字命名的,是求解給定初值常微分方程的数值方法。这两个变体可以被看作是把欧拉方法扩展为两级二阶龙格-库塔法。 通过Heun法计算初值问题数值解的过程步骤: 根據Heun法,首先计算中间值\tilde_,然后計算在下一个積分点的最終近似值y_。.
查看 数值分析和Heun方法
LU分解
在线性代数中,LU分解是矩阵分解的一种,可以将一个矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积)。LU分解主要应用在数值分析中,用来解线性方程、求反矩陣或计算行列式。.
查看 数值分析和LU分解
MATLAB
MATLAB(矩阵实验室)是MATrix LABoratory的缩写,是一款由美国The MathWorks公司出品的商业数学软件。MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。除了矩阵运算、绘制函数/数据图像等常用功能外,MATLAB还可以用来创建用户界面及与调用其它语言(包括C、C++、Java、Python和FORTRAN)编写的程序。 尽管MATLAB主要用于数值运算,但利用为数众多的附加工具箱(Toolbox)它也适合不同领域的应用,例如控制系统设计与分析、图像处理、信号处理与通讯、金融建模和分析等。另外还有一个配套软件包Simulink,提供一个可视化开发环境,常用于系统模拟、动态/嵌入式系统开发等方面。.
查看 数值分析和MATLAB
MuPAD
MuPAD(Multi Processing Algebra Data Tool)是一个商用计算机代数系统。最初由德国帕德博恩大学(Universität Paderborn)Benno Fuchsteiner教授的MuPAD研究小组开发而成,1997年以来,其开发由该研究小组与德国SciFace Software有限公司共同承担。2008年9月,SciFace公司被The MathWorks公司收购,从此MuPAD作为符号数学工具箱(Symbolic Math Toolbox)被包含在MATLAB当中。.
查看 数值分析和MuPAD
OpenFOAM
OpenFOAM(英文 Open Source Field Operation and Manipulation 的缩写,意为开源的场运算和处理软件)是对连续介质力学问题进行数值计算的C++自由软件工具包,其代码遵守GNU通用公共许可证。它可进行数据预处理、后处理和自定义求解器,常用于计算流体力学(CFD)领域。该软件由OpenFOAM基金会维护(商标OpenFOAM的拥有者硅谷图形公司(SGI)赞助)。.
P進數
进数是数论中的概念,也称作局部数域,是有理数域拓展成的完备数域的一种。这种拓展与常见的有理数域\mathbb到实数域\mathbb、复数域\mathbb的数系拓展不同,其具体在于所定义的“距离”概念。进数的距离概念建立在整数的整除性质上。给定素数,若两个数之差被的高次幂整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使进数理论成为了数论研究中的有力工具。例如安德鲁·怀尔斯对费马大定理的证明中就用到了进数理论。 进数的概念首先由库尔特·亨泽尔于1897年构思并刻画,其发展动机主要是试图将幂级数方法引入到数论中,但现今进数的影响已远不止于此。例如可以在进数上建立p进数分析,将数论和分析的工具结合起来。此外进数在量子物理学、认知科学、计算机科学等领域都有应用。.
查看 数值分析和P進數
SAC编程语言
SAC(Single Assignment C)是一门严格的纯函数式编程语言,以满足数值计算领域的需求为主要目的。怎样实现对多维数组的高效计算是SAC的核心部分。效率在程序设计领域可以有两方面的理解。一方面是提供高级的数组运算操作,以加快开发程序,另一方面是在某种模式下优化编译程序,以减少其所需的运行时间和存储容量。作为一门成功的计算机语言,必须满足第二个条件。 为了能够编译出高效的可执行代码,某些对数值计算不重要的函数式语言的特征(到目前为止)还不被SAC支持,比如高阶函数(higher-order functions),多态(polymorphism),以及惰性求值(lazy evalution)。而像Haskell、Clean、Miranda 或者 ML却拥有这些特征。.
查看 数值分析和SAC编程语言
SIMPLE算法
SIMPLE算法,全名为压力耦合方程组的半隐式方法(Semi-Implicit Method for Pressure Linked Equations),是计算流体力学中一种被广泛使用的求解流场的数值方法,于1972年由苏哈斯·帕坦卡与布莱恩·斯波尔丁提出。 SIMPLE算法是一种压力修正法,通过“先猜想后修正”的方法得到压力场,并求解离散化的动量方程(纳维-斯托克斯方程)。其基本思路如下:.
插值
数学的数值分析领域中,內插或稱插值(interpolation)是一種通过已知的、离散的数据點,在範圍內推求新數據點的过程或方法。求解科学和工程的问题時,通常有許多數據點藉由采样、实验等方法获得,这些数据可能代表了有限個數值函數,其中自變量的值。而根据这些数据,我们往往希望得到一个连续的函数(也就是曲线);或者更密集的离散方程与已知数据互相吻合,这个过程叫做拟合。 與插值密切相關的另一個問題是通過簡單函數逼近複雜函數。假設給定函數的公式是已知的,但是太複雜以至於不能有效地進行評估。來自原始函數的一些已知數據點,或許會使用較簡單的函數來產生插值。當然,若使用一個簡單的函數來估計原始數據點時,通常會出現插值誤差;然而,取決於該問題领域和所使用的插值方法,以簡單函數推得的插值數據,可能會比所導致的精度損失更大。 內插是曲线必须通过已知点的拟合。参见拟合条目。 例如,已知数据:.
查看 数值分析和插值
条件数
数值分析中,一个问题的条件数是该数量在数值计算中的容易程度的衡量,也就是该问题的适定性。一个低条件数的问题称为良置的,而高条件数的问题称为病态(或者说非良置)的。.
查看 数值分析和条件数
样条函数
在数学学科数值分析中,样条是一种特殊的函数,由多项式分段定义。样条的英语单词spline来源于可变形的样条工具,那是一种在造船和工程制图时用来画出光滑形状的工具。在中国大陆,早期曾经被称做“齿函数”。后来因为工程学术语中“放样”一词而得名。 在插值问题中,样条插值通常比多项式插值好用。用低阶的样条插值能产生和高阶的多项式插值类似的效果,并且可以避免被称为龙格现象的数值不稳定的出现。并且低阶的样条插值还具有“保凸”的重要性质。 在计算机科学的计算机辅助设计和计算机图形学中,样条通常是指分段定义的多项式参数曲线。由于样条构造简单,使用方便,拟合准确,并能近似曲线拟合和交互式曲线设计中复杂的形状,样条是这些领域中曲线的常用表示方法。.
查看 数值分析和样条函数
样条插值
在数值分析这个数学分支中,样条插值是使用一种名為样条的特殊分段多项式进行插值的形式。由于样条插值可以使用低阶多项式样条实现较小的插值误差,这样就避免了使用高阶多项式所出现的龙格现象,所以样条插值得到了流行。.
查看 数值分析和样条插值
格拉姆-施密特正交化
在线性代数中,如果内积空间上的一组向量能够组成一个子空间,那么这一组向量就称为这个子空间的一个基。Gram-Schmidt正交化提供了一种方法,能够通过这一子空间上的一个基得--子空间的一个正交基,并可进一步求出对应的标准正交基。 这种正交化方法以和命名,然而比他们更早的拉普拉斯(Laplace)和柯西(Cauchy)已经发现了这一方法。在李群分解中,这种方法被推广为岩泽分解(Iwasawa decomposition)。 在数值计算中,Gram-Schmidt正交化是数值不稳定的,计算中累积的舍入误差会使最终结果的正交性变得很差。因此在实际应用中通常使用豪斯霍尔德变换或Givens旋转进行正交化。.
欧拉方法
在数学和计算机科学中,欧拉方法,命名自它的发明者萊昂哈德·歐拉,是一种一阶数值方法,用以对给定初值的常微分方程(即初值問題)求解。它是一种解决数值常微分方程的最基本的一类显型方法(Explicit method)。.
查看 数值分析和欧拉方法
歐洲中期天氣預報中心
歐洲中期天氣預報中心(英語:European Centre for Medium-Range Weather Forecasts,簡稱ECMWF),創立於1975年,是一個國際組織,位於英格蘭雷丁。.
正交矩阵
在矩阵论中,正交矩阵(orthogonal matrix)是一個方块矩阵Q,其元素為实数,而且行與列皆為正交的单位向量,使得該矩陣的转置矩阵為其逆矩阵: 其中,I為單位矩陣。正交矩陣的行列式值必定為+1或-1,因為: 底下是一些重要的性質:.
查看 数值分析和正交矩阵
水平集方法
水平集方法(Level Set Method) 是一种用于界面追踪和形状建模的数值技术.水平集方法的优点是可以在笛卡尔网格(Cartesian grid)上对演化中的曲线曲面进行数值计算而不必对曲线曲面参数化(这是所谓的欧拉法(Eulerian approach)).).水平集方法的另一个优点是可以方便的追踪物体的拓扑结构改变.例如当物体的形状一分为二,产生空洞,或者相反的这些操作.所有这些使得水平集方法成为随时间变化的物体建模的有力工具,例如膨胀中的气囊, 掉落到水中的油滴.
查看 数值分析和水平集方法
渲染
渲染(render,或称为绘制)在電腦繪圖中,是指以软件由模型生成图像的过程。模型是用语言或者数据结构进行严格定义的三维物体或虚拟场景的描述,它包括几何、视点、纹理、照明和阴影等信息。图像是数字图像或者位图图像。彩現用于描述:计算视频编辑软件中的效果,以生成最终视频的输出过程。 渲染是三维计算机图形学中的最重要的研究课题之一,并且在实践领域它与其它技术密切相关。在图形流水线中,渲染是最后一项重要步骤,通过它得到模型与动画最终显示效果。自从二十世纪七十年代以来,随着计算机图形的不断复杂化,渲染也越来越成为一项重要的技术。 渲染的应用领域有:计算机与视频游戏、模拟、电影或者电视特效以及可视化设计,每一种应用都是特性与技术的综合考虑。作为产品来看,现在已经有各种不同的渲染工具产品,有些集成到更大的建模或者动画包中,有些是独立产品,有些是开放源代码的产品。从内部来看,渲染工具都是根据各种学科理论,经过仔细设计的程序,其中有:光学、视觉感知、数学以及软件开发。 三维计算机图形的预渲染(Pre-rendering 或 Offline rendering)或者实时渲染(Real-time rendering 或 Online rendering)的速度都非常慢。预渲染的计算强度很大,需要大量的服务器运算完成,通常被用于电影制作;实时渲染经常用于三维视频游戏,通常依靠图形处理器(GPU)完成这个过程。.
查看 数值分析和渲染
有限差分法
在数学中,有限差分法(finite-difference methods,簡稱FDM),是一种微分方程数值方法,是通过有限差分來近似导數,从而寻求微分方程的近似解。.
查看 数值分析和有限差分法
有限元分析
有限元分析,即有限元方法(冯康首次发现时称为基于变分原理的差分方法),是一种用于求解微分方程组或积分方程组数值解的数值技术。这一解法基于完全消除微分方程,即将微分方程转化为代数方程组(稳定情形);或将偏微分方程(组)改写为常微分方程(组)的逼近,这样可以用标准的数值技术(例如欧拉法,龙格-库塔法等)求解。 在解偏微分方程的过程中,主要的难点是如何构造一个方程来逼近原本研究的方程,并且该过程还需要保持数值稳定性。目前有许多处理的方法,他们各有利弊。当区域改变时(就像一个边界可变的固体),当需要的精确度在整个区域上变化,或者当解缺少光滑性时,有限元方法是在复杂区域(像汽车、船体结构、输油管道)上解偏微分方程的一个很好的选择。例如,在正面碰撞仿真时,有可能在"重要"区域(例如汽车的前部)增加预先设定的精确度并在车辆的末尾减少精度(如此可以减少仿真所需消耗);另一个例子是模拟地球的气候模式,预先设定陆地部分的精确度高于广阔海洋部分的精确度是非常重要的。.
查看 数值分析和有限元分析
最后一位上的单位值
在计算机科学与数值分析中,最后一位上的单位值或称最小精度单位,缩写为ULP,是毗邻的浮点数值之间的距离,也即浮点数在保持指数部分的时候最低有效数字为1所对应的值。ULP用于度量数值计算的精度。 例如:圆周率位于毗邻的双精度浮点数3.1415926535897927与3.1415926535897936之间。.
流体体积法
流体体积法(VOF法)是计算流体力学中追踪和定位自由曲面或流体界面的数值技术。它使用静态或以某种确定形式迁移的网格以适应于界面形状的演化,是欧拉法的一种。 流体体积法能够保持追踪流体的「质量」,并且能够容易的追踪拓扑结构变化的流体界面。.
查看 数值分析和流体体积法
方程求解
數學中的方程求解是指找出哪些值(可能是數、函數、集合)可以使一個方程成立,或是指出這様的解不存在。方程是兩個用等號相連的數學表示式,表示式中有一個或多個未知數,未知數為自由變數,解方程就是要找出未知數要在什麼情形下,才能使等式成立。更準確的說,方程求解不一定是要找出未知數的值,也有可能是將未知數以表示式來表示。方程的解是一組可以符合方程的未知數,也就是說若用方程的解來取代未知數,會使方程變為恆等式。 例如方程的解為,因為若將方程中x取代為,方程會變成恆等式。也可以將y視為未知數,解則為。也可以將x和y都視為未知數,此時會有許多組的解,像是或是等,所有滿足的都是上述方程的解。 依問題的不同,方程求解可能只需要找到一組可以滿足方程的解,也有可能是要找到所有的解()。有時方程會存在許多解,但要找到某種最佳解,這類的問題稱為最佳化問題,找出最佳化問題的解一般不視為方程求解。 有些情形下,方程求解會需要找到解析解,也就是以解析表達式來表達的解。有些情形下,方程求解只需要找到數值解,也就是數值分析的方法求解近似值。許多方程不存在解析解,或是沒有簡單形式的解析解,例如五次方程以及更高次的代數方程,不存在根式解(用有限次的四則運算及根號組合而成的解析解),這是由數學家尼爾斯·阿貝爾證明的。.
查看 数值分析和方程求解
数学学科分类标准
数学学科分类标准(MSC) 是由美国数学学会策划的建立在两个主要的引文数据库数学评论和数学文摘的字母数字混合的分类方案.
数值稳定性
在数值分析中,数值稳定性是一种希望得到的数值算法特性。根据算法的不同,稳定性的精确定义也有所不同,但是都与算法的精确性与正确性相关。 理论上有些计算下可以用多种代数上等价的理想实数或者复数算法来实现,但是实际上由于不同的数值稳定性可能会得到不同的结果。数值稳定性的一项任务就是选择健壮即有良好数值稳定性的算法。.
查看 数值分析和数值稳定性
数值线性代数
数值线性代数是一门研究在计算机上进行线性代数计算,特别是矩阵运算的算法的学科,是工程学和计算科学问题中的基本部分,这些问题包括图像处理、信号处理、金融工程学、材料科学模拟、结构生物学、数据挖掘、生物信息学、流体动力学和其他很多领域。这类软件多依赖於解决多种数值线性代数问题的先进算法的发展、分析和实现,在很大程度上是依靠矩阵在有限差分法和有限元法中的作用。 数值线性代数中的常见问题包括下列计算问题:LU分解、QR分解、奇异值分解、特征值。.
查看 数值分析和数值线性代数
数值相对论
数值相对论(numerical relativity)是广义相对论的一个分支,旨在通过数值方法求解爱因斯坦场方程,以模拟强引力场中的物理过程。相对论天文学中的物理系统,如引力坍缩、中子星、黑洞及引力波等等,以及其他不能利用弱场低速情形中结论近似的现象都可以利用数值相对论模拟。 由于爱因斯坦方程的复杂性与非线性,这一领域的模拟需要特定的数值方法。而计算量巨大的三维问题则需要借助超级计算机解决。一些数学与天体物理学问题,比如密接联星及其引力波的数值模拟,目前可以利用数值相对论求解。.
查看 数值分析和数值相对论
數值分析
#重定向 数值分析.
查看 数值分析和數值分析
數值積分
在数值分析中,數值積分是计算定積分数值的方法和理论。在数学分析中,给定函数的定積分的计算不总是可行的。许多定积分不能用已知的積分公式得到精确值。数值积分是利用黎曼积分等数学定义,用数值逼近的方法近似计算给定的定积分值。借助于电子计算设备,数值积分可以快速而有效地计算复杂的积分。.
查看 数值分析和數值積分
打靶法
打靶法(Shooting method)是数值分析中在求解边界值问题時,将解归约为求解數個初值问题的方法。下面的讨论在打靶法的解释中有详细注释。 对于一个二阶常微分方程的边界值问题,该方法表述如下: 令 为边界值问题。 令 y(t1; a) 代表下列初值问题的一个解 定义函数F(a)为y(t1; a)和给定边界值y1的差 若边界值问题有解,则F有一个根,而这个根就是y'(t0)的给出边界问题解y(t)的取值。 上述問題的求解可以采用通常的求根方法,例如二分法或者牛顿法。.
查看 数值分析和打靶法
拟蒙特卡罗方法
数值分析中,拟蒙特卡罗方法是使用低差异列(一种确定生成的超均匀分布列,也称为拟随机列、次随机列)来进行数值积分和研究其它一些数值问题的方法。而普通的蒙特卡罗方法或蒙地卡罗积分方法使用的是伪随机数。MATLAB中提供了生成如哈尔顿列、索博尔列等超均匀分布列的函数。 拟蒙特卡罗方法和蒙特卡罗方法的具体内容相似,要解决的问题都是通过测量某个可测函数 f 在某些点上的取值,而在数值上求它的积分的近似值。例如要求在单位体积^s上的积分近似,可以设取的点为x1,..., xN,那么: 其中的xi都是s维向量。拟蒙特卡罗方法和普通蒙特卡罗方法的区别在于xi的具体选取方式。蒙特卡罗方法用的是伪随机列,而拟蒙特卡罗方法用到的是哈尔顿列、索博尔列等低差异列。使用低差异列的优点是收敛速率较快。拟蒙特卡罗方法可以达到O(1/N)的收敛速率,而普通蒙特卡罗方法的收敛速率则是 O(N-0.5) Søren Asmussen and Peter W.
查看 数值分析和拟蒙特卡罗方法
拉格朗日插值法
在数值分析中,拉格朗日插值法是以法国18世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法。许多实际问题中都用函数来表示各結果之間某种内在联系或规律,而不少函数都只能通过繁複实验和多次观测来了解。而,如果对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。上面这样的多项式就称为拉格朗日(插值)多项式。数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后(1783年)由莱昂哈德·欧拉再次发现。1795年,拉格朗日在其著作《师范学校数学基础教程》中发表这个插值方法,从此他的名字就和这个方法联系在一起。 对于给定的若n+1个点(x_0, y_0),(x_1, y_1),\ldots,(x_n, y_n),对应于它们的次数不超过n的拉格朗日多项式\scriptstyle L只有一个。如果计入次数更高的多项式,则有无穷个,因为所有与\scriptstyle L相差\lambda (x-x_0)(x-x_1)\ldots(x-x_n)的多项式都满足条件。.
查看 数值分析和拉格朗日插值法
亦称为 数值计算方法,數值解。