徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

推遲時間

指数 推遲時間

在電動力學裏,由於電磁波傳播於真空的速度是有限的,觀測者偵測到電磁波的時間,會不同於這電磁波發射的時間,稱為推遲時間。 從馬克士威方程組,可以推導出電磁波傳播於自由空間的速度是光速 c\,\! 。由於光速是有限的,在時間 t_r\,\! 發射出來的光子,需要經過一些時間,才能移動到距離為 r\,\! 的觀測者。所以,觀測者偵測到這光子的時間 t\,\! ,遵守公式 因此,可以定義推遲時間為 推遲時間的概念意味著電磁波的傳播不是瞬時的。電磁波從發射位置傳播到終點位置,需要一段傳播期間,稱為時間延遲。與日常生活的速度來比,電磁波傳播的速度相當快。因此,對於小尺寸系統,這時間延遲,通常很難被注意到。例如,從開啟電燈泡到這電燈泡的光波抵達到觀測者的雙眼,所經過的時間延遲,只有幾億分之一秒。但是,對於大尺寸系統,像太陽照射陽光到地球,時間延遲大約為 8 分鐘,比較能夠被觀測到。.

7 关系: 基爾霍夫積分定理傑斐緬柯方程式磁矢势电磁辐射黎納-維謝勢推遲勢拉莫爾方程式

基爾霍夫積分定理

基爾霍夫積分定理(Kirchhoff integral theorem)表明,假設點P在閉合曲面\mathbb之外,只考慮單色波,則位於點P的波擾\psi(\mathbf),可以以位於閉合曲面\mathbb的所有波擾與其梯度表達為 \left \cdot\,\mathrm\mathbf' , 或者 \left \,\mathrmS' ; 其中,\mathbf.

新!!: 推遲時間和基爾霍夫積分定理 · 查看更多 »

傑斐緬柯方程式

在電磁學裏,給予含時電荷密度分佈和電流密度分佈,可以使用傑斐緬柯方程式(Jefimenko equation)來計算電場和磁場。這方程式因其發現者物理學家而命名。傑斐緬柯方程式是馬克士威方程組對於這些電荷密度分佈和電流密度分佈的解答。.

新!!: 推遲時間和傑斐緬柯方程式 · 查看更多 »

磁矢势

磁矢势,又稱磁位、磁勢(magnetic potential),通常標記為 \mathbf 。磁向量勢的旋度是磁場,以方程式表示 其中,\mathbf 是磁場。 直觀而言,磁向量勢似乎不及磁場來得「自然」、「基本」,而在一般電磁學教科書亦多以磁場來定義磁向量勢。以前,很多學者認為磁向量勢並沒有實際意義,只是人為的物理量,除了方便計算以外,別無其它用途。但是,詹姆斯·馬克士威頗不以為然,他認為磁向量勢可以詮釋為「每單位電荷儲存的能量」,就好像電勢被詮釋為「每單位電荷儲存的能量」。相關論述,稍後會有更詳盡解釋。 磁向量勢並不是唯一定義的;其數值是相對的,相對於某設定數值。因此,學者會疑問到底儲存了多少動量?不論如何,磁向量勢確實具有實際意義。尤其是在量子力學裏,於1959年,阿哈諾夫-波姆效應闡明,假設一個帶電粒子移動經過某零電場、零磁場、非零磁向量勢場區域,則此帶電粒子的波函數相位會有所改變,因而導致可觀測到的干涉現象 。現在,越來越多學者認為電勢和磁向量勢比電場和磁場更基本。不單如此,有學者認為,甚至在經典電磁學裏,磁向量勢也具有明確的意義和直接的測量值。 磁向量勢與電勢可以共同用來設定電場與磁場。許多電磁學的方程式可以以電場與磁場寫出,或者以磁向量勢與電勢寫出。較高深的理論,像量子力學理論,偏好使用的是磁向量勢與電勢,而不是電場與磁場。因為,在這些學術領域裏所使用的拉格朗日量或哈密頓量,都是以磁向量勢與電勢表達,而不是以電場與磁場表達。 開爾文男爵最先於1851年引入磁向量勢的概念,並且給定磁向量勢與磁場之間的關係。.

新!!: 推遲時間和磁矢势 · 查看更多 »

电磁辐射

電磁辐射,又稱電磁波,是由同相振盪且互相垂直的電場與磁場在空間中以波的形式傳遞能量和動量,其傳播方向垂直於電場與磁場構成的平面。 電磁輻射的載體為光子,不需要依靠介質傳播,在真空中的傳播速度为光速。電磁輻射可按照頻率分類,從低頻率到高頻率,主要包括無線電波、微波、紅外線、可見光、紫外線、X射線和伽馬射線。人眼可接收到的電磁輻射,波長大約在380至780nm之間,稱為可見光。只要是本身溫度大於絕對零度的物體,除了暗物質以外,都可以發射電磁輻射,而世界上並不存在温度等於或低於絕對零度的物體,因此,人們周邊所有的物體時刻都在進行電磁輻射。儘管如此,只有處於可見光频域以内的電磁波,才可以被人們肉眼看到,對於不同的生物,各種電磁波頻段的感知能力也有所不同。.

新!!: 推遲時間和电磁辐射 · 查看更多 »

黎納-維謝勢

在電動力學裏,黎納-維謝勢指的是移動中的帶電粒子的推遲勢。從馬克士威方程組,可以推導出黎納-維謝勢;而從黎納-維謝勢,又可以推導出一個移動中的帶電粒子所生成的含時電磁場。但是,黎納-維謝勢不能描述微觀系統的量子行為。 於1898年,於1900年,分別獨立地研究求得黎納-維謝勢的公式。於1995年,Ribarič和Šušteršič正確計算出移動中的偶極子和四極子的推遲勢。.

新!!: 推遲時間和黎納-維謝勢 · 查看更多 »

推遲勢

在電磁學裏,推遲勢指的是,響應含時電荷分佈或含時電流分佈,而產生的推遲純量勢或推遲向量勢。對於這程序,由於「前因」與「後果」之間必然的推遲關係,訊號以光速從源位置傳播到場位置,需要有限時間。在某源位置的電流或電荷分佈,必須經過一段時間之後,才能夠將其影響傳播到場位置,產生對應的電磁作用。這一段時間的長久跟源位置與場位置之間距離的遠近有關。.

新!!: 推遲時間和推遲勢 · 查看更多 »

拉莫爾方程式

在電動力學的領域中,拉莫爾方程式(Larmor formula)是用來計算非相對論性點電荷在有加速度的狀態下釋放電磁波的總功率。本公式是由約瑟夫·拉莫爾於1897年提出的光的波動理論一部分。 當任何點電荷(例如電子)有正或負的加速度時,會以電磁輻射的形式釋放能量。對於遠小於光速的狀態下,總輻射能量可用如下方程式表示: 公式中 a 是加速度, e 是電荷, c 是光速。相對論狀況下則由黎納-維謝勢給定。.

新!!: 推遲時間和拉莫爾方程式 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »