徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

折射率

指数 折射率

某种介质的折射率  等于光在真空中的速度  跟光在介质中的相速度  之比: (nv.

200 关系: 原子分子与光物理学垂直腔面發射激光器偏振卡西米爾·法揚斯反射 (物理学)可见光双筒望远镜变分法发酵分析吸收 (光学)吸收光谱学坦桑石增透膜大氣折射天线夫朗和斐譜線奧古斯德·維多·路易·伐諾伊契忍可夫輻射威廉·奥斯特瓦尔德孔徑角己烯丁酸异戊酯布儒斯特角三稜鏡三维计算机图形三溴甲烷三溴氟甲烷一氧化碳性质表干涉 (物理学)干涉測量術乙醇乙酸性质表乙腈性质表亨德里克·洛伦兹人工晶体人造水晶二氟二溴甲烷二氧化碳性质表二氧化锆二溴甲烷五氧化二钒性质表延迟 (工程学)介電質弯曲时空中的麦克斯韦方程组強度 (物理)异戊酸乙酯异戊酸异戊酯微分干涉相差显微镜化學圆二色性...利昂娜·伍兹分析化学分散式布拉格反射器單軸晶體冕牌玻璃凝聚态物理学几何光学全外反射全內反射全息存储全息摄影光子光子晶体光学光学仪器光学玻璃光学构件的制作和检测光學頻譜光學正弦定律光導纖維光的色聚光程光線轉換矩陣分析光纖通訊光速光速可變理論光泽 (矿物)光時域反射儀克劳修斯-莫索提方程式克爾效应勃姆石固体四足類四氯化硅性质表玻璃玻璃隕石硝石硅酸铝碘化銫碘甲烷碘苯磷化鎵磷的同素异形体稜鏡稀土金属空气立方氧化鋯立方晶系管型 (尿液)線性正則變換纵模绿松石细晶石眼屈光不正眼鏡瑞利散射生物组织光学窗口用於數學、科學和工程的希臘字母甲酚甲苯甲苯胺电光效应电磁辐射焦距燧石玻璃物理符號表物理性质相对电容率相干长度瀝青隱形眼鏡莫桑石菲涅耳方程萜烯面波青金石衍射飛蚊症複消色差透鏡馬赫-曾德爾干涉儀鲸蜡硬脂醇负折射负折射率超材料费曼物理学讲义超環面儀器黑曜岩迈克耳孙干涉仪近視阿贝分辨率阿贝图阿贝折光仪阿贝数薄膜干涉薄膜光学藍絲黛爾石钻石钒酸钇锗酸铋色差色散 (光學)色散关系艾蒂安-路易·马吕斯苯基丙酮苯甲醇離子交換雙合透鏡透镜Β-羟基-β-甲基丁酸Sellmeier等式X射线光学折射柯西等式材料性质列表格蘭-湯普遜稜鏡格拉德斯通-戴尔关系榍石機動戰士GUNDAM 00世界觀及設定橢圓偏振技術檸檬酸正交晶系氧化钡氧化镁氯溴甲烷水滴水晶 (消歧義)泡克耳斯效应波動角度法布里-珀罗干涉仪法拉第效应消色差透镜组溴乙酸最小作用量原理海市蜃楼斐索實驗斯涅尔定律斜长石无量纲量数值孔径數量級 (速率)拉格朗日不變量1 扩展索引 (150 更多) »

原子分子与光物理学

原子分子与光物理學是研究物质之间,或光与物质的相互作用, 其研究尺度約一至數個原子,能量尺度約幾個電子伏特。 这三个物理学的领域研究通常是紧密关联的。 原子分子与光物理學使用经典物理学、半经典物理学、与量子物理学的研究方法。 通常情況下,此理論的應用包含原子发射或吸收光子、激发态原子和分子的电磁辐射和散射,光谱分析,激光和激微波的产生,以及对物质光学性质的研究。.

新!!: 折射率和原子分子与光物理学 · 查看更多 »

垂直腔面發射激光器

垂直腔面發射激光器(Vertical-Cavity Surface-Emitting Laser,簡稱VCSEL,又譯垂直共振腔面射型雷射)是一種半導體,其雷射垂直於頂面射出,與一般用切開的獨立晶元製程,雷射由邊緣射出的邊射型雷射有所不同。 在製作的過程中,VCSEL比邊射型雷射多了許多優點。邊射型雷射需要在製作完成後才可進行測試。若一個邊射型雷射無法運作,不論是因為接觸不良或者是物質成長的品質不好,都會浪費製作過程與物質加工的處理時間。然而VCSEL可以在製造的任何過程中,測試其品質並且作問題處理,因為VCSEL的雷射是垂直於反應區射出,與邊射型雷射平行於反應區射出相反,所以可以同時有數萬個VCSEL在一個三英吋大的砷鎵晶元上被處理。此外,既使VCSEL在製造的過程需要較多的勞動與較精細的材料,生產結果是可被控制的及更多可被預期的。.

新!!: 折射率和垂直腔面發射激光器 · 查看更多 »

偏振

偏振(polarization)指的是横波能夠朝著不同方向振盪的性質。例如電磁波、引力波都會展示出偏振現象。纵波则不會展示出偏振現象,例如傳播於氣體或液體的聲波,其只會朝著傳播方向振盪。如右圖所示,緊拉的細線可以展示出線偏振現象與圓偏振現象。 電磁波的電場與磁場彼此相互垂直。按照常規,電磁波的偏振方向指的是電場的偏振方向。在自由空間裏,電磁波是以橫波方式傳播,即電場與磁場又都垂直於電磁波的傳播方向。理論而言,只要垂直於傳播方向的方向,振盪的電場可以呈任意方向。假若電場的振盪只朝著單獨一個方向,則稱此為「線偏振」或「平面偏振」;假若電場的振盪方向是以電磁波的波頻率進行旋轉動作,並且電場向量的矢端隨著時間流意勾繪出圓型,則稱此為「圓偏振」;假若勾繪出橢圓型,則稱此為「橢圓偏振」;對於這兩個案例,又可按照在任意位置朝著源頭望去,電場隨時間流易而旋轉的順時針方向、逆時針方向,將圓偏振細分為「右旋圓偏振」、「左旋圓偏振」,將橢圓偏振細分為「右旋橢圓偏振」、「左旋橢圓偏振」;這性質稱為手徵性。 光波是一種電磁波。很多常見的光學物質都具有各向同性,例如玻璃。這些物質會維持波的偏振態不變,不會因偏振態的不同而展現出不同的物理行為。可是,有些重要的雙折射物質或光學活性物質具有各向異性。因此,偏振方向的不同,波的傳播狀況也不同,或者,波的偏振方向會被改變。起偏器是一種光學濾波器,只能讓朝著某特定方向偏振的光波通過,因此,可以將非偏振光變為偏振光。 在涉及到橫波傳播的科學領域,例如光學、地震學、無線電學、微波學等等,偏振是很重要的參數。激光、光纖通信、無線通信、雷達等等應用科技,都需要完善處理偏振問題。 極化的英文原文也是「polarization」,在英文文獻裏,偏振與極化兩個術語通用,都是使用同一個詞彙來表達,只有在中文文獻裏,才有不同的用法。一般來說,偏振指的是任何波動朝著某特定方向振盪的性質,而極化指的是各個帶電粒子因正負電荷在空間裡分離而產生的現象。.

新!!: 折射率和偏振 · 查看更多 »

卡西米爾·法揚斯

卡西米爾·法揚斯(Kazimierz Fajans,Kasimir Fajans),波蘭猶太裔美國物理化學家,放射性科學先驅。其人生於1887年5月27日,逝于1975年5月18日。.

新!!: 折射率和卡西米爾·法揚斯 · 查看更多 »

反射 (物理学)

反射(英文:reflection),是一種物理現象,是指波阵面從一個介質進入另一個介質時,在两个介质的界面处,其傳播方向突然改變,而回到其來源的介質。常见的例子包括光、声波和水波的反射。反射定律指出,对于镜面反射,入射角等於反射角,即光線射入時的角度必與光線反射后的角度相等。镜面反射可以通过镜子观察到。 在声学方面,反射会引起回声,这在声纳上得到很好应用。在地质学方面,研究地震波时,反射是十分重要的部分。反射可以在水体的面波上被观察到,也可以在包括可见光在内的多种电磁波上被观察到。甚高频以及更高频的波的反射对于无线电传输和雷达十分重要。甚至硬X射线和伽马射线在角度较浅时,也可以被“擦边”镜反射。.

新!!: 折射率和反射 (物理学) · 查看更多 »

可见光

可見光(Visible light)是電磁波譜中人眼可以看見(感受得到)的部分。這個範圍中電磁輻射被稱為可見光,或簡單地稱為光。人眼可以感受到的波長範圍一般是落在390到700nm。對應於這些波長的頻率範圍在430–790 THz。但有一些人能够感知到波长大约在380到780nm之间的电磁波。正常视力的人眼对波长约为555nm的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域。.

新!!: 折射率和可见光 · 查看更多 »

双筒望远镜

双筒望远镜(或直接簡稱雙筒鏡,也稱之為野外鏡)是将两个相同的或者镜像对称的望远镜并排連在一个架子上使得它们始终对准同一方向而制成的望远镜。使用者可透过它同时以双眼观察远处景象。双筒望远镜比单筒望远镜提供更高的深度和距离感。雙筒鏡也可以成由兩個短的折射望遠鏡組合,用於觀看遙遠目標的設備。 最常见的双筒望远镜的大小正好适合双手托拿,它包括内部的反射系统,这个系统可以缩短望远镜的长度,使它短于透镜的焦距。此外它还可以增大物镜之间的距离来改善深度感。所有常见的双筒望远镜是伽利略式的,或者使用稜镜来呈现一个正像。 大的双筒望远镜比较重,不易稳定地拿住,因此一般被固定在三腳架上或其它支柱上。在第二次世界大战中美国制造过非常大的(10吨),其物镜的距离相当远的(15米)大型双筒望远镜来确定25公里以外的海上目标的距离。目前世界上最大的双筒望远镜是位于美国亞利桑那州的大雙筒望遠鏡(Large Binocular Telescope,LBT)。.

新!!: 折射率和双筒望远镜 · 查看更多 »

变分法

变分法是处理泛函的数学领域,和处理函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A到达不直接在它底下的一点B。在所有从A到B的曲线中必须极小化代表下降时间的表达式。 变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它不能分辨是找到了最大值或者最小值(或者都不是)。 变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用量原理在量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。它们也在材料学中研究材料平衡中大量使用。而在纯数学中的例子有,黎曼在调和函数中使用狄利克雷原理。 同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,莫尔斯理论,或者辛几何。变分一词用于所有极值泛函问题。微分几何中的测地线的研究是很显然的变分性质的领域。极小曲面(肥皂泡)上也有很多研究工作,称为普拉托问题。.

新!!: 折射率和变分法 · 查看更多 »

发酵分析

发酵分析(Fermentation Analysis)是研究和评价发酵物品的品质和变化的科学,它运用了物理学、化学、生物学等学科的基础原理及其技术,对发酵组分成分的检测原理、方法和技术的一门应用性学科。.

新!!: 折射率和发酵分析 · 查看更多 »

吸收 (光学)

吸收,在物理學上是光子的能量由另一個物體,通常是原子的電子,擁有的過程,因此電磁能會轉換成為其它的形式,例如熱能。波傳導的過程中,光線的吸收通常稱為衰減。例如,一個原子的價電子在兩個不同能階之間轉換,在這個過程中光子將被摧毀,被吸收的能量會以輻射能或熱能的形式再釋放出來。雖然在某些情況下 (通常是光學中),介質會因為穿過的波強度和飽和吸收 (或非線性吸收)發生時會改變它透明度,但通常情況下,波的吸收與強度無關 (線性吸收)。.

新!!: 折射率和吸收 (光学) · 查看更多 »

吸收光谱学

吸收光谱学是指一门光谱学技术,它通过测量电磁辐射的吸收,形成频率或波长对与试样交互的函数。试样从辐射域吸收能量,如光子。吸收强度的变化与频率构成函数关系,这种变化就是吸收光谱。吸收光谱学也应用于整个电磁波谱。 吸收光谱学被用作分析化学的工具,它可以确定试样中是否存在某种特殊物质,以及在许多情况下量化该物质存在的数量。红外和紫外-可见光光谱学是分析应用中特别常见的。吸收光谱学也被用于分子和原子物理学、天文光谱学和遥感的研究。 测量吸收光谱的实验方法很多。最常见的方法是将产生的无线电波导向试样,并探测透射电波的强度。透射的能量可以用来计算吸收。辐射源、试样布置和探测技术的选择,很大程度上依赖于频率范围和实验目的。.

新!!: 折射率和吸收光谱学 · 查看更多 »

坦桑石

坦桑石(Tanzanite),又稱丹泉石,藍或藍紫色的多色性寶石,是黝簾石的變種,也是十二月的誕生石。.

新!!: 折射率和坦桑石 · 查看更多 »

增透膜

增透膜(英语:Anti-reflective coating,AR)是一种表面光学镀层,它通过减少光的反射而增加透过率。在复杂的光学系统中,它可以通过减少系统中的散射光来提高对比度,例如望远镜,这对天文学十分重要。其他方面,增透膜能减少暗处双筒望远镜的闪光。 很多涂层都包括折射率不同的透明的薄膜结构thin film structures with alternating layers of contrasting.

新!!: 折射率和增透膜 · 查看更多 »

大氣折射

大氣折射(又稱:蒙氣差(蒙氣即行星的大氣)、折光差)即原本直線前進的光或其它電磁波在穿越大氣層時,因為空氣密度隨著高度變化所產生的偏折。這種折射是光通過空氣時因為密度的增加使速度降低(折射率增加)。大氣折射在近地面時會產生海市蜃樓,讓遠方的物體出現或蕩漾,和非幻覺的升高或降低,伸長或縮短。這個詞也適用於聲音的折射。無論是天體或地面上物體位置的測量都需要考慮大氣折射。 對天文或天體的折射,導致天體在天空中的位置看起來比實際為高。大地折射通常導致物體出現在比實際高的位置上,然而在靠近地面的空氣被加熱的下午,光線的曲折向上會使物體看似出現在比實際位置低的地方。 折射不僅影響可見光,還包括所有的電磁波,然而在程度上不盡相同(見光的色散)。例如在可見光,藍色受到的影響大於紅色。這會對天體光譜在展開時的高解析圖像造成影響。 只要有可能,天文學家會安排在天體在天空中接近高度最高的頂點時才要觀測。同樣的,水手也不會觀測一顆高度低於20°或更低恆星的位置。如果不能避免靠近地平線的觀測,有可能使用具有修正系統,以彌補這種折射造成的影響。如果色散也是一個問題(如果是寬頻的高解析觀測),大氣折射可以使用成對的旋轉玻璃稜鏡處理掉。但是當大氣折射的總量是溫度梯度、溫度、壓力和濕度(特別是在中紅外波長時的水蒸氣總量)的函數時,成功補償這些修正量的工作可以讓人為之望而卻步。另一方面,測量師經常都會將他們的工作安排在下午折射程度最低的時候。 在有很強的溫度梯度、大氣不均勻和空氣動盪的時候,大氣折射會變得很嚴重。這是造成恆星閃爍和日出與日落時太陽各種不同變形的原因。.

新!!: 折射率和大氣折射 · 查看更多 »

天线

天线是一种用来发射或接收无线电波的設備,广泛而言為电磁波的电子元件。天线应用于广播和电视、点对点无线电通訊、雷达和太空探索等系统。天线通常在空气和外层空间中工作,也可以在水下运行,甚至在某些频率下工作于土壤和岩石之中。 从物理学上讲,天线是一个或多个导体的组合,由它可因施加的時变电压或時变电流而产生辐射的电磁场,或者可以将它放置在电磁场中,由于场的感应而在天线内部产生時变电流并在其终端产生時变电压。.

新!!: 折射率和天线 · 查看更多 »

夫朗和斐譜線

--,是一系列以德國物理學家約瑟夫·夫朗和斐(1787年─1826年)為名的光譜線,這些是最初被當成太陽光譜中的暗特徵譜線。 英國的化學家威廉·海德·沃拉斯頓是在1802年第一位注意到有一定數量的黑暗特徵譜線出現在太陽光譜中,夫朗和斐獨立地再度發現這些譜線,並且開始系統性的研究與測量這些譜線。最後,他繪出了570條的譜線,並且以字母A到K標示出主要的特徵譜線,較弱的則以其他的字母標示。 後來古斯塔夫·基爾霍夫和羅伯特·本生確認了每一條譜線所對應的化學元素,並推論在太陽光譜中的暗線是由在太陽上層的那些元素吸收造成的,有些被觀察到的特徵譜線則是地球大氣層中的氧分子造成的。 主要的夫朗和斐譜線和對應的元素列在下表: 名稱元素波長(nm) 名稱元素波長(nm) y氧(O2)898.765 c鐵(Fe)495.761 Z氧(O2)822.696 FH β486.134 A氧(O2)759.370 d鐵(Fe)466.814 B氧(O2)686.719 e鐵(Fe)438.355 CH α656.281 G'H γ434.047 a氧(O2)627.661 G鐵(Fe)430.790 D1鈉(Na)589.592 G鈣(Ca)430.774 D2鈉(Na)588.995 hH δ410.175 D3 (or d)氦(He)587.5618 H鈣(Ca+)396.847 e汞(Hg)546.073 KCa+393.368 E2鐵(Fe)527.039 L鐵(Fe)382.044 b1鎂(Mg)518.362 N鐵(Fe)358.121 b2鎂(Mg)517.270 P鈦(Ti)+336.112 b3鐵(Fe)516.891 T鐵(Fe)302.108 b4鐵(Fe)516.751 t鎳(Ni)299.444 b4鎂(Mg)516.733 夫朗和斐譜線中的C-、F-、G'-、和h- 線對應於氫原子巴耳末系的α、β、γ、和δ線,D1和D2線是著名的「鈉雙線」,中心波長是(589.29 nm)以字母"D"標示的589.29 nm。 注意在一些譜線的字母有分歧,這是夫朗和斐譜線中的d-線,可能對應於鐵的藍色譜線466.814 nm或是氦3(D3)的黃色譜線587.5618 nm;相似的還有e-線,暨對應於汞(水銀),也對應於鐵。為了解決在使用上出現的二義性,對模凌兩可的夫朗和斐譜線會指明對應的元素(也就是汞e-線或鐵e-線)。 由於夫朗和斐譜線的波長都已經明確的被定義,所以常被用作說明光學材料的折射率和色散特性。 夫朗和斐譜線也是著名的吸收譜線,因而整個太陽吸收光譜常被稱為「夫朗和斐光譜」(夫琅禾费光譜)。.

新!!: 折射率和夫朗和斐譜線 · 查看更多 »

奧古斯德·維多·路易·伐諾伊

奧古斯德·維多·路易·伐諾伊(Auguste Victor Louis Verneuil,)是一名法國無機化學家,因發明能合成寶石的商業可行方法而聞名。 1902年他發明俗稱火焰合成法的伐諾伊焰熔法,此法至今仍用於合成物美價廉的人工寶石,如剛玉、紅寶石、藍寶石等。.

新!!: 折射率和奧古斯德·維多·路易·伐諾伊 · 查看更多 »

契忍可夫輻射

契伦科夫辐射(Cherenkov radiation)是介質中運動的电荷速度超過該介質中光速時發出的一種以短波長為主的電磁輻射,其特徵是藍色輝光。這種輻射是1934年由苏联物理學家帕维尔·阿列克谢耶维奇·切连科夫發現的,因此以他的名字命名。1937年另兩名苏联物理學家伊利亞·弗蘭克和伊戈爾·塔姆成功地解釋了契忍可夫辐射的成因,三人因此共同獲得1958年的諾貝爾物理學獎。.

新!!: 折射率和契忍可夫輻射 · 查看更多 »

威廉·奥斯特瓦尔德

弗里德里希·威廉·奥斯特瓦尔德(德语:Friedrich Wilhelm Ostwald,拉脱维亚语:Vilhelms Ostvalds;),出生于拉脱维亚的德国籍物理化学家。他提出了稀释定律,对电离理论和质量作用定律进行了验证。他将热力学原理引入结晶学和催化现象的研究中,解释了自然和生产中的许多现象,并成功地完成了催化剂的工业应用,提出了奥斯特瓦尔德过程。 他也是出色的教材作者和卓越的学术组织者,创立过多种期刊,培养了大量的年青研究者,使得物理化学得以成为一门独立的科学和其他化学的理论基础,因此被认为是物理化学的创立者之一。另外他在颜色学、科学史和哲学方面也有独到的贡献。1909年因其在催化剂的作用、化学平衡、化学反应速率方面的研究的突出贡献,被授予诺贝尔化学奖 。.

新!!: 折射率和威廉·奥斯特瓦尔德 · 查看更多 »

孔徑角

一個透鏡的孔徑角是從焦點朝著透鏡望去,孔徑所佔的角度 a\,\! : 其中,f\,\! 是焦距,D\,\! 是孔徑的直徑。.

新!!: 折射率和孔徑角 · 查看更多 »

己烯

己烯(Hexene)是一系列含有六個碳原子的烯烃,化学式为C6H12。.

新!!: 折射率和己烯 · 查看更多 »

丁酸异戊酯

丁酸异戊酯也称为“正丁酸异戊酯”或“丁酸3-甲基丁酯”,常态下为无色至淡黄色透明液体,有强烈的洋梨、香蕉气味。丁酸异戊酯的熔点为-73.2°C,沸点为168.9°C,折射率约为1.4110(20°C)。丁酸异戊酯几乎不溶于水、甘油、丙二醇,但易溶于乙醇、乙醚。对皮肤有刺激性。.

新!!: 折射率和丁酸异戊酯 · 查看更多 »

布儒斯特角

布儒斯特角(Brewster angle),又稱為起偏振角,當入射自然光以此角度射入介面时,反射光是线偏振光,並且與折射光线互相垂直。此角度是以蘇格蘭物理學家大衛·布儒斯特(1781年–1868年)命名的。.

新!!: 折射率和布儒斯特角 · 查看更多 »

三稜鏡

三稜鏡是光學稜鏡中的一種形式,在外觀上呈現幾何的三角形,是光學稜鏡中最常見,也是一般人所熟知的,但並不是最常用到的稜鏡。三稜鏡最常用於光線的色散,這是將光線分解成為不同的光譜成分。利用不同波長的光線因為折射率不同,在折射時會偏轉不同的角度,便會造成色散的現象。這種效應也被用來對稜鏡物質進行高精密度的折射系數測量。 物質的折射系數固然在不同的波長會有所不同,但有些物質的折射系數對波長的變化比其他物質強烈(色散非常明顯)。稜鏡的頂角(在上圖中,上面的角)能夠影響到稜鏡色散時的特性。通常,要適當的選擇光線射入的角度和射出的角度,當角度接近布儒斯特角(Brewster angle)時,在折射時造成的損耗最小。 一束白光會分出不同顏色,一般就分為七種顏色,即紅、橙、黃、綠、藍、靛和紫。.

新!!: 折射率和三稜鏡 · 查看更多 »

三维计算机图形

三维计算机图形(3D computer graphics)是電子計算機和特殊三维软件帮助下创造的作品。一般来讲,该术语可指代创造这些图形的过程,或者三维计算机图形技术的研究领域,及其相关技术。 三维计算机图形和二维计算机图形的不同之处在于计算机内存储存了几何数据的三维表示,用于计算和绘制最终的二维图像。 一般来讲,为三维计算机图形准备几何数据的三维建模的艺术和雕塑及照相类似,而二维计算机图形的艺术和绘画相似。但是,三维计算机图形依赖于很多二维计算机图形的相同算法。 计算机图形软件中,该区别有时很模糊:有些二维应用程序使用三维技术来达到特定效果,譬如灯光,而有些主要用于3D的应用程序采用二维的视觉技术。二维图形可以看作三维图形的子集。.

新!!: 折射率和三维计算机图形 · 查看更多 »

三溴甲烷

溴仿(化学式:CHBr3)是卤仿之一,室温下为暗黄色的液体,有和氯仿类似的甜气味。它有限可溶于水,容易蒸发。折射率1.595(20°C、D),与乙醇、苯、氯仿、醚、石油醚、丙酮混溶,与水以1/800的比例溶解,少量自然存在于海洋植物中,进入环境中的溴仿大多是用氯气给水杀菌时的副产物。 溴仿可通过丙酮和次溴酸钠(溴与碱反应得到)发生卤仿反应、电解溴化钾的乙醇溶液或氯仿与溴化铝反应制取。 溴仿可作溶剂、选矿剂、镇静剂、阻燃剂、实验室试剂等。.

新!!: 折射率和三溴甲烷 · 查看更多 »

三溴氟甲烷

三溴氟甲烷或:Halon 1103,R 11B3是一种全卤代卤代甲烷。形状为无色液体。 三溴氟甲烷可用于灭火器。然而因为含有溴而具有很高的臭氧破壞潛勢(ODP),因此被蒙特利尔议定书所禁止。.

新!!: 折射率和三溴氟甲烷 · 查看更多 »

一氧化碳性质表

一氧化碳的一些性质如下所述。.

新!!: 折射率和一氧化碳性质表 · 查看更多 »

干涉 (物理学)

干涉(interference)在物理学中,指的是兩列或两列以上的波在空间中重疊時发生叠加,从而形成新波形的現象。 例如采用分束器将一束单色光束分成两束后,再让它们在空间中的某个区域内重叠,将会发现在重叠区域内的光强并不是均匀分布的:其明暗程度随其在空间中位置的不同而变化,最亮的地方超过了原先两束光的光强之和,而最暗的地方光强有可能为零,这种光强的重新分布被称作“干涉条纹”。在历史上,干涉现象及其相关实验是证明光的波动性的重要依据 ,但光的这种干涉性质直到十九世纪初才逐渐被人们发现,主要原因是相干光源的不易获得。 为了获得可以观测到可见光干涉的相干光源,人们发明制造了各种产生相干光的光学器件以及干涉仪,这些干涉仪在当时都具有非常高的测量精度:阿尔伯特·迈克耳孙就借助迈克耳孙干涉仪完成了著名的迈克耳孙-莫雷实验,得到了以太风观测的零结果。迈克耳孙也利用此干涉仪測得的精確長度,並因此獲得了1907年的諾貝爾物理學獎。而在二十世纪六十年代之后,激光这一高强度相干光源的发明使光学干涉测量技术得到了前所未有的广泛应用,在各种精密测量中都能见到激光干涉仪的身影。现在人们知道,两束电磁波的干涉是彼此振动的电场强度矢量叠加的结果,而由于光的波粒二象性,光的干涉也是光子自身的几率幅叠加的结果。.

新!!: 折射率和干涉 (物理学) · 查看更多 »

干涉測量術

干涉测量术(Interferometry)是通过由波的叠加(通常为电磁波)引起的干涉现象来获取信息的技术。这项技术对于天文学、光纤、工程计量、光学计量、海洋学、地震学、光谱学及其在化学中的应用、量子力学、核物理学、粒子物理学、 等离子体物理学、遥感、、表面轮廓分析、微流控、应力与应变的测量、测速以及验光等领域的研究都非常重要。 干涉仪广泛应用于科学研究和工业生产中对微小位移、折射率以及表面平整度的测量。在干涉仪中,从单个光源发出的光会分为两束,经不同,最终交汇产生干涉。所产生的干涉图纹能够反映两束光的光程差。在科学分析中,干涉仪用于测量长度以及光学元件的形状,精度能到纳米级。它们是现有精度最高的长度测量仪器。在傅里叶变换光谱学中,干涉仪用于分析包含与物质相互作用发生吸收或散射信息的光。由两个及以上的望远镜组成,它们的信号汇合在一起,结果的分辨率与直径为元件间最大间距的望远镜的相同。.

新!!: 折射率和干涉測量術 · 查看更多 »

乙醇

乙醇(Ethanol,結構简式:CH3CH2OH)是醇类的一种,是酒的主要成份,所以也俗稱酒精,有些地方俗稱火酒。化學結構通常縮寫為, 或 EtOH,Et代表乙基。乙醇易燃,是常用的燃料、溶剂和消毒剂,也用于有机合成。工業酒精含有少量有毒性的甲醇。医用酒精主要指体积浓度为75%左右(或质量浓度为70%)的乙醇,也包括医学上使用广泛的其他浓度酒精。 乙醇与甲醚是同分异构体。.

新!!: 折射率和乙醇 · 查看更多 »

乙酸性质表

乙酸的一些性质如下所述。.

新!!: 折射率和乙酸性质表 · 查看更多 »

乙腈性质表

乙腈的一些性质如下所述。.

新!!: 折射率和乙腈性质表 · 查看更多 »

亨德里克·洛伦兹

亨德里克·安东·洛伦兹(Hendrik Antoon Lorentz,),荷兰物理学家,曾与彼得·塞曼共同获得1902年诺贝尔物理学奖,并於1881年当选荷蘭皇家藝術與科學學院院士,同时还曾担任多国科学院外籍院士。 洛伦兹以其在电磁学与光学领域的研究工作闻名于世。他通过连续电磁场以及物质中离散电子等概念得到了经典电子理论。这一理论可以在许多问题中派上用场:比如电磁场对运动的带电粒子的作用力(洛伦兹力)、介质的折射率与其密度的关系(洛伦兹-洛伦茨方程)、光色散理论、对于一些磁学现象的解释(比如塞曼效应)以及金属的部分性质。在电子理论的基础上,他还发展了运动介质中的电动力学,其中包括提出了物体在其运动方向上会发生长度收缩的假说(洛伦兹-斐兹杰惹收缩)、引入了“局部时”的概念、获得了质量与速度之间的关系并构造了表述不同惯性系间坐标和时间关系的方程组(洛伦兹变换)。洛伦兹的研究工作后来成为狭义相对论与量子物理的基础。此外,洛伦兹在热力学、分子运动论、广义相对论以及热辐射理论等方面也有建树。.

新!!: 折射率和亨德里克·洛伦兹 · 查看更多 »

人工晶体

人工晶体(Intraocular lens, IOL),是一种植入眼内的人工透镜,取代天然晶状体的作用。第一枚人工晶体是由John Pike,John Holt和Hardold Ridley共同设计的,于1949年11月29日,Ridley医生在伦敦St.Thomas医院为病人植入了首枚人工晶体。 在二次大战中,科學家观察到某些受伤的飞行员眼中有玻璃碎片,却没有引起明显的、持续的炎症反应,于是想到玻璃或者一些高分子有机材料可以在眼内保持稳定,由此发明了人工晶体。 人工晶体的形态,通常是由一个圆形光学部和周边的支撑袢组成,光学部的直径一般在5.5-6mm左右,这是因为,在夜间或暗光下,人的瞳孔会放大,直径可以达到6mm左右,而过大的人工晶体在制造或者手术中都有一定的困难,因此主要生产厂商都使用5.5-6mm的光学部直径。支撑袢的作用是固定人工晶体,形态就很多了,基本的可以是两个C型的线装支撑袢。 台灣衛生福利部表示,一般功能人工水晶體(非特殊功能人工水晶體)具有良好的長期穩定性,且經台灣眼科醫師長達二十年的使用經驗,已足敷百分之九十以上白內障病患使用。.

新!!: 折射率和人工晶体 · 查看更多 »

人造水晶

人造水晶,一般指人造石英晶体,广泛应用于光学、电子、化学及耐火材料等工业。 人造石英晶体是二氧化硅的晶体,密度2.65,硬度7。.

新!!: 折射率和人造水晶 · 查看更多 »

二氟二溴甲烷

二氟二溴甲烷(化学式:CBr2F2)是一种卤代甲烷,无色、不可燃。 它是一种有效的灭火剂,但毒性却相当高。属于第一类消耗臭氧层物质(ODS)。.

新!!: 折射率和二氟二溴甲烷 · 查看更多 »

二氧化碳性质表

二氧化碳及干冰的一些性质如下叙述。.

新!!: 折射率和二氧化碳性质表 · 查看更多 »

二氧化锆

二氧化锆(化学式:ZrO2)是锆的主要氧化物,通常状况下为白色无臭无味晶体,难溶于水、盐酸和稀硫酸。一般常含有少量的二氧化铪。化学性质不活泼,但高熔点、高电阻率、高折射率和低热膨胀系数的性质,使它成为重要的耐火材料、陶瓷绝缘材料和陶瓷遮光剂亦是人工鑽的主要原料。能带间隙大约为5-7eV。.

新!!: 折射率和二氧化锆 · 查看更多 »

二溴甲烷

二溴甲烷(化學式:CH2Br2),又被稱為甲基二溴,是一种鹵代甲烷。它微溶於水中,易溶於四氯化碳、醚及甲醇。它的折射率為1.5419(20 °C,D)。.

新!!: 折射率和二溴甲烷 · 查看更多 »

五氧化二钒性质表

五氧化二钒的一些性质如下所述。.

新!!: 折射率和五氧化二钒性质表 · 查看更多 »

延迟 (工程学)

延迟(Latency)也译潜伏时间,它是指做出触发动作与得到响应之间的时间间隔。延迟实际上是任何物理相互作用在有限速度内传播产生的结果。该速度始终低于或等于光速。因此,不论触发的性质,任何空间维度不为零的物理系统都将存在某种延迟。 延迟的精确定义取决于被观察系统与产生触发的物质。在通信系统中,等待时间的下限由通信的介质确定。在可靠的双向通信系统中,等待时间受到信息传输最大速率的限制,即处在传输中的信息总量有限。在人机交互领域,可察觉的延迟对用户满意度和可用性有很大影响。.

新!!: 折射率和延迟 (工程学) · 查看更多 »

介電質

介電質(dielectric)是一種可被電極化的絕緣體。假設將介電質置入外電場,則束縛於其原子或分子的束縛電荷不會流過介電質,只會從原本位置移動微小距離,即正電荷朝著電場方向稍微遷移位置,而負電荷朝著反方向稍微遷移位置。這會造成介電質電極化,從而在介電質內部產生反抗電場,減弱整個介電質內部的電場。假若介電質是由弱鍵結的分子構成,則這些分子不但會被電極化,也會改變取向,試著將自己的對稱軸與電場對齊。 介電質通常指的是可被高度電極化的物質。在原子與分子層次,極化性可以用來衡量微觀的電極化性質,從極化性可以理論計算出介電質的電極化率和電容率,兩個巨觀的電極化性質。或者,可以直接從實驗測量出介電質的電極化率和電容率。假若置入了具有高電容率的介電質,則平行板電容器的電容會大幅增加,儲存於兩塊金屬平行板的正負電荷也會增加 。 介電質的用途相當廣泛。介電質的電傳導能力很低,再加上具備有很好的(dielectric strength)性質,就可以用來製造電絕緣體。另外介電質可被高度電極化,是優良的電容器材料。對於介電性質的研究,涉及了物質內部電能和磁能的儲存與耗散。用於解釋電子學、光學和固態物理的各種各樣現象,這研究極端重要。 回應麥可·法拉第的請求,英國科學家威廉·暉巍(William Whewell)命名所有可被電極化的絕緣體為介電質。.

新!!: 折射率和介電質 · 查看更多 »

弯曲时空中的麦克斯韦方程组

物理学中,弯曲时空中的麦克斯韦方程组(Maxwell's equations in curved spacetime)制约着弯曲时空(其间的度规可能不是闵可夫斯基性的)中的电磁场的动力学。它们可以被认为是真空中的麦克斯韦方程组在广义相对论框架中的扩展,而真空中的麦克斯韦方程组只是一般化的麦克斯韦方程组在局部平直时空中的特殊形式。但由于在广义相对论中电磁场本身的存在也会引起时空的弯曲,因此真空中的麦克斯韦方程组应被理解为一种出于方便的近似形式。 然而,这种形式的麦克斯韦方程组仅仅对真空情形下的麦克斯韦方程组有用,这也被称作“微观”麦克斯韦方程组。对于宏观上与各向异性的物质相关的麦克斯韦方程组,物质的存在会建立一个参考系从而使方程组不再是协变的。 阅读本条目需要读者了解平直时空中电磁理论的四维形式。 电磁场本身要求其几何描述与坐标选取无关,而麦克斯韦方程组在任何时空中的几何描述都是一样的,而不管这个时空是否是平直的。同时,当使用非笛卡尔的局部坐标时平直闵可夫斯基空间中的方程组会做同样的修改。例如本条目中方程组可以写成球坐标中的麦克斯韦方程组的形式。基于上述原因,更好的理解方法是将闵可夫斯基空间中的麦克斯韦方程组理解为一种特殊形式,而非将弯曲时空中的麦克斯韦方程组理解为一种相对论化的推广。.

新!!: 折射率和弯曲时空中的麦克斯韦方程组 · 查看更多 »

強度 (物理)

在物理學中,強度的定義是單位面積下的能量轉換率。在SI制單位下,瓦特每平方公尺(W/m2)。最常用來表示波的強度(例如:音波、光波)。通常指波在一个週期内的能量轉換率。 強度(intensity)一詞不同於“力度、力量強度”(strength)或振幅(amplitude)。 強度也可以被定義為能量密度乘上能量移動的速度;向量运算結果的單位等同於 W/m2。.

新!!: 折射率和強度 (物理) · 查看更多 »

异戊酸乙酯

异戊酸乙酯,无色透明液体,有似香蕉、苹果的香味。相对密度0.8656(20°C)。沸点134.7°C。折射率1.3962(20°C)。微溶于水,易溶于乙醇、乙醚。由异戊酸与乙醇在硫酸催化下酯化,再经中和、水洗、蒸馏而得。用作香精香料。 Category:羧酸酯 Category:乙酯.

新!!: 折射率和异戊酸乙酯 · 查看更多 »

异戊酸异戊酯

异戊酸异戊酯是一種有機化合物,屬於酯類的一種,其化學式為C10H20O2。 异戊酸异戊酯在常溫下外觀為无色透明液体,有似香蕉、苹果的香味。沸点191-194°C。折射率1.4131(19°C)。难溶于水,易溶于乙醇、乙醚、苯。有轻微刺激性和毒性。常用於香精和溶剂。.

新!!: 折射率和异戊酸异戊酯 · 查看更多 »

微分干涉相差显微镜

微分干涉相差显微技术(DIC),又称Normarski干涉相差显微技术或Normarski显微镜,是一种增强对比度来观察未染色的透明的样品的光学显微镜。DIC根据干涉测量获取有关样品信息,以查看其他不可见的特征。相对复杂的光学系统产生具有灰色背景的黑色或白色的图像。该图像类似于通过相差显微镜获得的但没有明亮衍射光晕的图像。该技术由波兰物理学家在1952年研发。 DIC通过将偏振光源分离成在样品平面上空间位移(剪切)的两个正交偏振相干部分,并在观察之前重组。复合时两部分的干涉对其光程差(即折射率乘积和几何路径长度)敏感。添加可调节的偏移相位确定在所述样品中的零光程差的干涉,对比度是正比于沿剪切方向的路径长度梯度,得到三维的光密度变化的样本图像,图像强调线条和边缘,但不提供表面上准确的图像。.

新!!: 折射率和微分干涉相差显微镜 · 查看更多 »

化學

化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.

新!!: 折射率和化學 · 查看更多 »

圆二色性

圓二色性(Circular dichroism, 缩写:CD)是涉及圆偏振光的二色性,即左旋光的和右旋光的差分吸收。左旋圆(LHC)的和右旋圆(RHC)的偏振光表示一个光子的两种可能的自旋角动量状态,因此圆形二色性也被称为自旋角动量的二色性 。这种现象在19世纪上半叶被让-巴蒂斯特·毕奥(Jean-Baptiste Biot),奥古斯丁·菲涅耳(Augustin Fresnel)和(Aime Cotton)发现。它在光学活性手性分子的吸收带中被显示。CD光谱学在许多不同领域中具有广泛的应用。最值得注意的是,使用UVCD来研究蛋白质的二级结构。UV/可见光CD被用于研究电荷转移跃迁。近红外CD被用于通过探测过渡金属的d→d跃迁来研究分子的几何和电子结构。,其使用来自红外能量区的光,被用于小有机分子的结构研究,并且最近被用于研究蛋白质和DNA。.

新!!: 折射率和圆二色性 · 查看更多 »

利昂娜·伍兹

利昂娜·伍兹(Leona Woods,),亦称利昂娜·伍兹·马歇尔和利昂娜·伍兹·马歇尔·利比(Leona Woods Marshall Libby),美国物理学家,曾协助建立人类史上首个核反应堆与首枚原子弹。 早在23岁,伍兹就参与了世界上首个核反应堆Chicago Pile-1的建设,她是导师费米领导的项目团队中最年轻的一员。此外,伍兹在建立和使用实验所需的盖革计数器上起到关键作用。反应堆成功运转并达到自持状态时,她也是唯一在场的女性。曼哈顿计划中,她与费米合作;同时,她曾与第一任丈夫约翰·马歇尔(John Marshall)一同解决了汉福德区钚生产厂氙中毒的问题,并负责监督钚生产反应炉的建造和运行。 战后,她加入恩里科·费米研究所,随后先后供职于普林斯顿高等研究院、布鲁克黑文国家实验室和纽约大学,并于1962年成为纽约大学教授。她的研究方向包括粒子物理、天体物理和宇宙学。1966年,她与马歇尔离婚,转而与诺贝尔奖得主威拉得·利比结为伉俪。此外,她还是科罗拉多大学的教授和兰德公司的职员。晚年,她关注生态环境问题,发明了一种利用树木年轮中同位素比例来研究气候变化的方法。同时,她强烈支持用食品輻照作为消灭有害细菌的手段。.

新!!: 折射率和利昂娜·伍兹 · 查看更多 »

分析化学

分析化学是開發分析物質成分、結構的方法,使化學成分得以定性和定量,化學結構得以確定。定性分析可以找到样品中有何化学成分;定量分析可以确定这些成分的含量。在分析样品时一般先要想法分离不同的成分。分析化學是化學家最基礎的訓練之一,化學家在實驗技術和基礎知識上的訓練,皆得力於分析化學。 分析的方式大概可分为两大类,经典方法和仪器分析方法。仪器分析方法使用仪器去测量分析物的物理属性,比如光吸收、荧光、電導等。仪器分析法常使用如电泳、色谱法、场流分级等方法来分离样品。當代分析化學著重儀器分析,常用的分析儀器有幾大類,包括原子與分子光譜儀,電化學分析儀器,核磁共振,X光,以及質譜儀。儀器分析之外的分析化學方法,現在統稱為古典分析化學。古典方法(也常被称为湿化学方法)常根据颜色,气味,或熔点等来分离样品(比如萃取、沉淀、蒸馏等方法)。这类方法常通过测量重量或体积来做定量分析。.

新!!: 折射率和分析化学 · 查看更多 »

分散式布拉格反射器

DBR(distributed Bragg reflector,一個譯名:分佈式布拉格反射器)是在中使用的反射器。當光經過不同介質時在介面的地方會反射,反射率的大小會與介質間折射率大小有關,因此如果我們把不同折射率的薄膜交互週期性的堆疊在一起,當光經過這些不同折射率的薄膜的時候,由於各層反射回來的光因相位角的改變而進行建設性干涉,然後互相結合再一起,得到強烈反射光。 如果多膜層數變的非常多,而薄膜折射率 n1、n2、n3.

新!!: 折射率和分散式布拉格反射器 · 查看更多 »

單軸晶體

單軸晶體是一種透射光學元件,此元件其中某一個結晶軸的折射率不同於其他兩個結晶軸,即 n_i\neq n_j.

新!!: 折射率和單軸晶體 · 查看更多 »

冕牌玻璃

冕牌玻璃是由包含大約10%的碱石灰硅酸鹽的氧化鉀,它有著較低的折射率(大約是1.52)和低色散(阿貝數大約是60)。 除了具體以材料命名的冕牌玻璃之外,其他的光學玻璃也有與被稱為冕牌玻璃性質相似的產品。通常,只要阿貝數在50-85之間的玻璃,像是肖特硼矽酸鹽玻璃:BK7,是一種很常見,用在精密透鏡上的冕牌玻璃。硼矽酸鹽玻璃包含大約10%的含硼氧化物,有良好的光學和機械特性,並且對化工和環境的傷害具有抵抗性。用於冕牌玻璃的其它添加物還有氧化鋅、五氧化二磷、 氧化鋇、和螢石。 燧石玻璃的凹透鏡經常與冕牌玻璃的凸透鏡組合成消色差透鏡。兩種玻璃的色散作用會相互的補償(抵消)以消除色差,並且和單鏡有著相同的焦距。.

新!!: 折射率和冕牌玻璃 · 查看更多 »

凝聚态物理学

凝聚态物理学專門研究物质凝聚相的物理性质。该领域的研究者力图通过物理学定律来解释凝聚相物质的行为。其中,量子力学、电磁学以及统计力学的相关定律对于该领域尤为重要。 固相以及液相是人们最为熟悉的凝聚相。除了这两种相之外,凝聚相还包括一些特定的物质在低温条件下的超导相、自旋有关的铁磁相及反铁磁相、超低温原子系统的玻色-爱因斯坦凝聚相等等。对于凝聚态的研究包括通过实验手段测定物质的各种性质,以及利用理论方法发展数学模型以深入理解这些物质的物理行为。 由于尚有大量的系统及现象亟待研究,凝聚态物理学成为了目前物理学最为活跃的领域之一。仅在美国,该领域的研究者就占到该国物理学者整体的近三分之一,凝聚态物理学部也是美国物理学会最大的部门。此外,该领域还与化学,材料科学以及纳米技术等学科领域交叉,并与原子物理学以及生物物理学等物理学分支紧密相关。该领域研究者在理论研究中所采用的一些概念与方法也适用于粒子物理学及核物理学等领域。 晶体学、冶金学、弹性力学以及磁学等等起初是各自独立的学科领域。这些学科在二十世纪四十年代被物理学家统合为固体物理学。时间进入二十世纪六十年代后,有关液体物理性质的研究也被纳入其中,形成凝聚态物理学这一新学科。据物理学家菲利普·安德森所述,术语“凝聚态物理学”是他和首创。1967年,他们把位于卡文迪许实验室的研究组名称由“固体理论”改为“凝聚态理论”。二人觉得原来的名称并没有涵盖液体及等方面研究。但是,“凝聚态”这一术语此前已在欧洲学界出现,只是由他们普及而已。较为著名的例子是施普林格公司于1963年创建的期刊《凝聚态物理学》(Physics of Condensed Matter)。二十世纪六、七十年代的资金环境以及各国政府采取的冷战政策促使相关领域物理学家接纳了“凝聚态物理学”这一术语。他们认为这一术语相对于“固体物理学”而言更为突出了固体、液体、等离子体以及其他复杂物质研究之间的共通性。这些研究与金属和半导体在工业上的应用息息相关。贝尔实验室是最早开展凝聚态物理学研究项目的研究机构之一。 “凝聚态”这一术语在更早的文献中即已出现。例如,在1947年出版的由雅科夫·弗伦克尔撰写的专著《液体动力学理论》(Kinetic theory of liquids)的绪论中,他提出:“液体动力学理论日后也将发展为固体动力学理论的推广与延伸。实际上,更为正确的做法或许是将液体与固体统归为‘--’。”.

新!!: 折射率和凝聚态物理学 · 查看更多 »

几何光学

几何光学是利用幾何學研究光學的學術方法。几何光学有几个基本原理Moritz von Rohr, p2。.

新!!: 折射率和几何光学 · 查看更多 »

全外反射

全外反射是一種光學現象,電磁輻射(即可見光)-在某些角度- 會被從兩種折射率不同介質的界面完全反射回原介質(參考斯涅爾定律)。全內反射發生在第一種介質的折射率大於第二種介質,例如,湧現在水面下的光。光學密級的材料(在這個例子是水)是內部的介質。對可見光,水的折射率是1.33,空氣的折射率非常接近1。在真空中,所有波長的折射率都是1。 但是對X-射線而言,所有介質的折射率都僅略小于1,這使得X-射線在真空中的全反射只能在以很小的角度撞擊時才能發生。X射线能产生全反射,但是其掠射角极小,一般不会超过20'~30'。  由於這種全反射發生在介質的外面,因此被稱為全外反射。 Category:幾何光學 Category:光学现象.

新!!: 折射率和全外反射 · 查看更多 »

全內反射

全內反射,又稱全反射(total reflection)是一種光學現象。當光線經過兩個不同折射率的介質時,部份的光線會於介質的界面被折射,其餘的則被反射。但是,當入射角比臨界角大時(光線遠離法線),光線會停止進入另一介面,反之會全部向內面反射。 這只會發生在當光線從光密介質(較高折射率的介質)進入到光疏介質(較低折射率的介質),入射角大於臨界角時。因為沒有折射(折射光線消失)而都是反射,故稱之為全內反射。例如當光線從玻璃進入空氣時會發生,但當光線從空氣進入玻璃則不會。最常見的是沸騰的水中氣泡顯得十分明亮,就是因爲發生了全內反射。 克普勒(Johannes Kepler,1571-1630)在西元1611年於他的著作Dioptrice中,已發表內部全反射(total internal reflection)的現象。.

新!!: 折射率和全內反射 · 查看更多 »

全息存储

光全息存储技术是一种利用激光全息摄影原理将图文等信息记录在感光介质上的大容量信息存储技术,它有可能取代磁存储和光学存储技术,成为下一代的高容量数据存储技术。传统的存储方式将每一个比特都记为记录介质表面磁或光的变化,而全息存储中将信息记录在介质的体积内,而且利用不同角度的光线可以在同样的区域内记录多个信息图像。 另外,磁存储和光存储每次都只能读写一个比特的信息,而全息存储可以并行的读写数百万比特,这样可以使信号的传输速率大大超过目前光存储的速度 。.

新!!: 折射率和全息存储 · 查看更多 »

全息摄影

全像術(Holography),又稱--,是一种记录被摄物体反射(或透射)光波中全部信息(振幅、相位)的照相技术,而物体反射或者透射的光线可以通过记录胶片完全重建,仿佛物体就在那里一样。通过不同的方位和角度观察照片,可以看到被拍摄的物体的不同的角度,因此记录得到的像可以使人产生立体视觉。.

新!!: 折射率和全息摄影 · 查看更多 »

光通常指的是人類眼睛可以見的電磁波(可見光),視知覺就是對於可見光的知覺。可見光只是電磁波譜上的某一段頻譜,一般是定義為波長介於400至700奈(纳)米(nm)之間的電磁波,也就是波長比紫外線長,比紅外線短的電磁波。有些資料來源定義的可見光的波長範圍也有不同,較窄的有介於420至680nm,較寬的有介於380至800nm。 而有些非可見光也可以被稱為光,如紫外光、紅外光、x光。 光既是一种高频的电磁波,又是一種由称為光子的基本粒子組成的粒子流。因此光同时具有粒子性与波动性,或者说光具有“波粒二象性”。.

新!!: 折射率和光 · 查看更多 »

光子

| mean_lifetime.

新!!: 折射率和光子 · 查看更多 »

光子晶体

光子晶体是由周期性排列的不同折射率的介质制造的规则光学结构。这种材料因为具有光子带隙而能够阻断特定频率的光子,从而影响光子运动的。这种影响类似于半导体晶体对于电子行为的影响。由半导体在电子方面的应用,人们推想可以通过光子晶体制造的器件来控制光子运动,例如制造光子计算机。另外,光子晶体也在自然界中发现。.

新!!: 折射率和光子晶体 · 查看更多 »

光学

光學(Optics),是物理學的分支,主要是研究光的現象、性質與應用,包括光與物質之間的相互作用、光學儀器的製作。光學通常研究紅外線、紫外線及可見光的物理行為。因為光是電磁波,其它形式的電磁輻射,例如X射線、微波、電磁輻射及無線電波等等也具有類似光的特性。英文術語「optics」源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 大多數常見的光學現象都可以用古典電动力學理論來說明。但是,通常這全套理論很難實際應用,必需先假定簡單模型。幾何光學的模型最為容易使用。它試圖將光當作射線(光線),能夠直線移動,並且在遇到不同介質時會改變方向;它能夠解釋像直線傳播、反射、折射等等很多光線現象。物理光學的模型比較精密,它把光當作是傳播於介質的波動(光波)。除了反射、折射以外,它還能夠以波性質來解釋向前傳播、干涉、偏振等等光學現象。幾何光學不能解釋這些比較複雜的光學現象。在歷史上,光的射線模形首先被發展完善,然後才是光的波動模形.

新!!: 折射率和光学 · 查看更多 »

光学仪器

光學儀器可以是處理光波以增強圖像的觀賞;或是分析光波(或光子),已確定若干或某一種特徵與屬性。.

新!!: 折射率和光学仪器 · 查看更多 »

光学玻璃

光学玻璃是制造光学镜头、光学仪器的主要材料。光学玻璃必须有高度精确的折射率、阿贝数和高透明度、高均匀度。.

新!!: 折射率和光学玻璃 · 查看更多 »

光学构件的制作和检测

光学构件的制作和检测包括許多光学构件(如透鏡)的製造及測試程序。 傳統球面透镜的製作一開始會先研磨玻璃坯料,產生有粗糙表面的光学构件,這可以用環型製具來製作,接下再拋光產生光学构件需要的精細表面,一般會用的方式進行,也就是旋轉有粗糙表面光学构件,和依需求外形設計的工具磨擦,兩者之間再加入磨料及流體。 一般會用彎曲的斧鑿工具來對透镜拋光,磿料和流體的混合物稱為拋光液,一般是用陶瓷或二氧化鋯顆粒,再加入水及潤滑劑,使斧鑿工具不會粘在透镜上。拋光液中粒子的大小會視光学构件的外形及需要的表面精度而調整。 透镜在拋光後,會進行測試來確認是否產生正確外形的透镜,也確認其精度在規格範圍內。光學設備和其理想形狀的偏差一般會以波長的分數表示,而波長會以設備應用時的光波波長或是某個光源提供的可見光波長為準。便宜的透鏡誤差會到ㄧ至數個波長(λ, 2λ……等),標準的工業鏡片誤差在1/4波長(λ/4)以下。若是用在雷射、干涉測量術或全息摄影的精密透鏡其誤差在1/10波長(λ/10)以下。 除了精度誤差外,透鏡也需要符合--面品質的規格(如划痕、凹陷、斑點),其尺寸也需有一定的精準度。.

新!!: 折射率和光学构件的制作和检测 · 查看更多 »

光學頻譜

光学频谱,简称光谱,是复色光通过色散系统(如光栅、棱镜)进行分光后,依照光的波长(或频率)的大小顺次排列形成的图案。光谱中的一部分可见光谱是电磁波谱中人眼可见的唯一部分,在这个波长范围内的电磁辐射被称作可见光。光谱并没有包含人類大脑視覺所能区别的所有颜色,譬如褐色和粉红色,其原因是粉红色并不是由单色组成,而是由多种色彩组成的。参见颜色。.

新!!: 折射率和光學頻譜 · 查看更多 »

光學正弦定律

光學正弦定律是指物體經過一透鏡後,在物空间中的折射率、物體高度及傾斜角的乘積和其像在的高度、折射率及傾斜角的乘積相等: 其中.

新!!: 折射率和光學正弦定律 · 查看更多 »

光導纖維

光導纖維(Optical fiber),簡稱光纖,是一種由玻璃或塑料製成的纖維,利用光在這些纖維中以全反射原理傳輸的光傳導工具。微細的光纖封裝在塑料護套中,使得它能夠彎曲而不至於斷裂。通常光纖的一端的發射裝置使用發光二極體或一束激光將光脈衝傳送至光纖中,光纖的另一端的接收裝置使用光敏元件檢測脈衝。包含光纖的线缆称为光缆。由於信息在光導纖維的傳輸損失比電在電線傳導的損耗低得多,更因為主要生產原料是硅,蘊藏量極大,較易開採,所以價格很便宜,促使光纖被用作長距離的信息傳遞媒介。隨著光纖的價格進一步降低,光纖也被用於醫療和娛樂的用途。 光纖主要分為兩類,與。前者的折射率是漸變的,而後者的折射率是突變的。另外還分為單模光纖及多模光纖。近年來,又有新的光子晶體光纖問世。 光导纤维是双重构造,核心部分是高折射率玻璃,表层部分是低折射率的玻璃或塑料,光在核心部分傳輸,并在表层交界处不断进行全反射,沿“之”字形向前傳輸。这种纤维比头发稍粗,这样细的纤维要有折射率截然不同的双重结构分布,是一个非常惊人的技术。各国科学家经过多年努力,创造了内附着法、MCVD法、VAD法等等,制成了超高纯石英玻璃,特制成的光导纤维傳輸光的效率有了非常明显的提高。现在较好的光导纤维,其光傳輸損失每公里只有零点二分贝;也就是说传播一公里后只損4.5%。.

新!!: 折射率和光導纖維 · 查看更多 »

光的色聚

光的色聚是光线由於不同波長在介質中有不同折射率,因此在通過凸透鏡或某些其他介质後发生汇聚,此原本分散分布的各色光(彩色光)轉變成白光的現象。 此現在之原理與光的色散相同,但為光線以相反路徑行進的結果。.

新!!: 折射率和光的色聚 · 查看更多 »

光程

光程(英语:Optical path length)是指在均匀介质中,光行径的几何路径的长度 s 与光在该介质中的折射率 n 的乘积,用 Δ 表示,即: 两条光线光程的差值叫做光程差。光程的重要性在于确定光的相位,相位决定光的干涉和衍射行为。.

新!!: 折射率和光程 · 查看更多 »

光線轉換矩陣分析

光線轉換矩陣分析(又稱ABCD矩陣分析),是用於某些光學系統,特別是雷射領域的一種光線追蹤技術。它包含一個描述光學系統的光線轉化矩陣(ray transfer matrix),這個矩陣與一代表光線的向量相乘之後,可以得到光線在該系統中的運行軌跡。這類的分析也被應用於加速器物理(accelerator physics)中,用以追蹤通過粒子加速器中磁鐵裝置的粒子,詳情請見电子光学。 以下介紹的技術使用了近軸逼近法,此逼近法意即假設所有光線相對於系統的光軸(optical axis)都處於小角度(θ為徑度)、短距離(x)。.

新!!: 折射率和光線轉換矩陣分析 · 查看更多 »

光纖通訊

光纖通訊(Fiber-optic communication)是指一種利用光與光纖(Optical Fiber)傳遞資訊的一種方式,屬於有線通信的一種。光經過調變(Modulation)後便能攜帶資訊。自1980年代起,光纖通訊系統對於電信工業產生了革命性的作用,同時也在數位時代裡扮演非常重要的角色。光纖通信具有傳輸容量大、保密性好等許多優點。光纖通信線在已經成為當今最主要的有線通信方式。將需傳送的信息在發送端輸入到發送機中,將信息叠加或調制到作為信息信號載體的載波上,然後將已調制的載波通過傳輸媒質傳送到遠處的接收端,由接收機解調出原來的信息。 根據訊號調變方式的不同,光纖通訊可以分為數位光纖通訊、類比光纖通訊。纖通訊的產業包括了光纖電纜、光器件、光裝置、光通訊儀表、光通訊積體電路等多個領域。 利用光纖做為通訊之用通常需經過下列幾個步驟:.

新!!: 折射率和光纖通訊 · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

新!!: 折射率和光速 · 查看更多 »

光速可變理論

光速可變理論認爲光速(以c表示)是時空的函數,因此不是確定的數值。在經典物理學中,真空中的光速是一個常數,在國際單位制中被定義為c.

新!!: 折射率和光速可變理論 · 查看更多 »

光泽 (矿物)

光泽(Lustre, 或luster)是矿物在光照射下表面呈现的一种外观属性,与矿物表面反射光的强弱和方向有关。对于常见的光泽类型,有不少惯用术语描述,例如“金属光泽”,“玻璃光泽”,“树脂光泽”等。矿物的光泽界限模糊,即使不同地区出产的同种矿物光泽可能也不尽相同,不同来源的文献形容同一矿物时可能有不同描述。 有些矿物呈现不寻常的光学现象,例如(表面呈现星形亮斑)与(呈现一条明亮光带,并且随样品旋转而移动)。下文列出一些形容矿物的光泽术语和光学现象。.

新!!: 折射率和光泽 (矿物) · 查看更多 »

光時域反射儀

光時域反射儀(Optical Time Domain Reflectometer, 缩写: OTDR)是在電信領域上用來量測光纖特性的儀器。 光時域反射儀會打入一連串的光突波進入光纖來檢驗。檢驗的方式是由打入突波的同一側接收光訊號,因為打入的訊號遇到不同折射率的介質會散射(瑞利散射(Rayleigh scattering))及反射回來。反射回來的光訊號強度會被量測到,並且是時間的函數,因此可以將之轉算成光纖的長度。 光時域反射儀可以用來量測光纖的長度、衰減,包括光纖的熔接處及轉接處皆可量測。在光纖斷掉時也可以用來量測中斷點。 Category:光纖通信 Category:电信设备 Category:纖维光學.

新!!: 折射率和光時域反射儀 · 查看更多 »

克劳修斯-莫索提方程式

克劳修斯-莫索提方程式(Clausius-Mossotti equation)表達了線性介電質的極化性和相對電容率之間的關係,是因義大利物理學者莫索提(Ottaviano-Fabrizio Mossotti)和德國物理學者魯道夫·克勞修斯而命名。這方程式也可以更改為表達極化性和折射率之間的關係,此時稱為洛倫茲-洛倫茨方程式(Lorentz-Lorenz equation)。 極化性是一種微觀屬性,而相對電容率則是在介電質內部的一種巨觀屬性,所以,這方程式式連結了介電質關於電極化的微觀屬性與巨觀屬性。.

新!!: 折射率和克劳修斯-莫索提方程式 · 查看更多 »

克爾效应

克爾效應(Kerr effect),也稱「二次電光效應」,是物質因響應外電場的作用而改變其折射率的一種效應。克爾效應與泡克耳斯效應不同,前者感應出的折射率改變與外電場平方成正比,後者則與外電場成線性關係;前者可以在液體或非晶物質出現,後者只出現於沒有對稱中心的晶體物質。克爾效應或多或少會出現在每一種物質,但在某些液體會比較顯著。這效應最先由蘇格蘭科学家約翰·克爾(John Kerr)在1878年發現。 克爾效應又分為克爾電光效應與克爾光學效應。.

新!!: 折射率和克爾效应 · 查看更多 »

勃姆石

勃姆石(Boehmite或Böhmite)又称软水铝石,是一种含铝矿石,其主要成分是γ-AlO(OH)(水合氧化铝的两种常见相之一),它和主要成分为α-AlO(OH) 的水铝石均是铝土矿的主要组成成分。.

新!!: 折射率和勃姆石 · 查看更多 »

固体

固體是物質存在的一種狀態,是四種基本物质状态之一。與液體和氣體相比,固體有固定的體積及形狀,形狀也不會隨著容器形狀而改變。固體的質地較液體及氣體堅硬,固體的原子之間有緊密的結合。固體可能是晶体,其空間排列是有規則的晶格排列(例如金屬及冰),也可能是無定形體,在空間上是不規則的排列(例如玻璃)。一般而言,固体是宏观物体,一个物体要达到一定的大小才能夠被称为固体,但是对其大小無明确的规定。 物理學中研究固體的分支稱為固体物理学,是凝聚态物理学的主要分支之一。材料科学探討各種常見固體的物理及化學特性。固體化學研究固體結構、性質、合成、表徵等的一門化學分支,也和一些固體材料的化學合成有關。.

新!!: 折射率和固体 · 查看更多 »

四足類

四足類(学名:Tetrapoda)是擁有四肢或附屬肢體的脊椎動物。兩棲動物、爬行動物(包括恐龍)、鳥類及哺乳動物都是四足類,而甚至沒有腳的蛇亦是從四足類演化而來。最早期的四足類是於泥盆紀由肉鰭魚類適應輻射成為呼吸空氣的兩棲類。.

新!!: 折射率和四足類 · 查看更多 »

四氯化硅性质表

四氯化硅的一些性质如下所述:.

新!!: 折射率和四氯化硅性质表 · 查看更多 »

玻璃

玻璃是一種呈玻璃態的无定形体,熔解的玻璃經過迅速冷卻(過冷)而成形,雖為固態,但各分子因沒有足夠時間形成晶體,仍凍結在液態的分子排布狀態。 玻璃一般而言是透明、脆性、不透氣、並具一定硬度的物料。最常見的玻璃是,包括75%的二氧化硅(SiO2)、由碳酸鈉中製備的氧化鈉(Na2O)以及氧化鈣(CaO)及其他添加物。玻璃在日常环境中呈化学惰性,亦不會與生物起作用。玻璃一般不溶于酸(例外:氢氟酸与玻璃反应生成SiF4,从而导致玻璃的腐蚀);但溶于强碱,例如氫氧化銫。 因為玻璃透明的特性,因此有許多不同的應用,其中一個主要應用是作建築中的透光材料,一般是在牆上窗戶的開口安裝小片的玻璃(玻璃窗),但二十世紀的許多大樓會用玻璃為其側面的包覆,即玻璃幕牆大樓,這種現代的玻璃已經具有防破裂的能力而被廣為應用,更新款的加入防鳥類撞擊的設計。玻璃可以反射及折射光線,而且藉由切割或是拋光,可以提昇其反射或折射的能力,因此可以作透鏡、三棱鏡、其至高速傳輸用的光纖。玻璃中若加入金屬鹽類,其顏色會改變,玻璃本身也可以上色,因此可以用玻璃製作藝術品,包括著名的花窗玻璃。 玻璃雖然容易脆斷,但非常的耐用,在早期的文化遺址中都發現許多玻璃的碎片。因為玻璃可以形成或模製成任何的形狀,而且本身是無菌的,因此常用來作為容器,包括碗、花瓶、瓶子、玻璃杯,尤其成本低廉,適合大量生產。堅硬的玻璃也常作為紙鎮、彈珠等。若將玻璃嵌入有機塑料中,是複合玻璃纤维中的重要的加固材料。 在科學上,玻璃的定義較為廣泛,是指加熱到液態時會出現玻璃轉化的无定形固體。有許多材料都符合這類玻璃的條件,包括一些金屬合金、離子鹽類、水溶液及聚合物。在包括瓶子及眼鏡的許多應用中,聚合物玻璃(如壓克力、聚碳酸酯及PET)的重量較輕,可以取代傳統的矽玻璃。 玻璃在中國古代亦稱琉璃,日語漢字以硝子代表。.

新!!: 折射率和玻璃 · 查看更多 »

玻璃隕石

玻璃陨石,中国古代称雷公墨,是一类天然形成的玻璃物体,目前一般认为是大型陨石碰撞地表时,地表岩石和陨石被快速加热融化溅起后,下落并冷却而形成,但也有少数研究人员认为其是在地外形成后降落到地球的。外观类似黑曜岩,故又称似黑曜岩。 玻璃陨石的外形多为球状、哑铃状、液滴状、纽扣状和不规则形状,内常含有气泡空腔。陆上找到的玻璃陨石直径一般几毫米到十几厘米,海洋沉积物中的微玻璃陨石则有些只有40微米大小。外观黑色、褐色或深绿色,半透明;易碎,断口常为贝壳状。 比重2.3-2.6,折射率1.48-1.62。化学成分上含二氧化硅很高,还可能含有焦石英、柯石英、斜锆石和铁镍金属等,含水则很少(平均含水量0.005%).

新!!: 折射率和玻璃隕石 · 查看更多 »

硝石

硝石,也称消石、火硝、牙硝(古書上又稱茫消或北帝玄珠,焰硝等),是一种天然矿物,主要成分为硝酸钾。 其他来源的硝酸钾,以及其他的硝酸盐矿物如智利硝石(硝酸鈉)、挪威硝石(硝酸钙)有的时候也被称作硝石。但注意芒硝不是硝酸盐,而是含结晶水的硫酸钠。 硝石为透明或白色晶体,属斜方晶系。其摩氏硬度与石膏接近,比重2.1, 折射率 nα.

新!!: 折射率和硝石 · 查看更多 »

硅酸铝

硅酸铝(aluminium silicate或aluminosilicate)是一种硅酸盐,其化学式为Al2SiO5,由于多数硅酸盐的结构非常复杂,常不写成盐的形式而是写成金属各自的氧化物的形式,故硅酸铝常被写作Al2O3·SiO2。硅酸铝的密度为2.8到2.9克/厘米3,折射率为1.56,其莫氏硬度与矿石类型,含水量有关系,在4.5到7.5之间变化。硅酸铝粉末常用作防火材料,例如在玻璃工业上用作筑玻璃窑。.

新!!: 折射率和硅酸铝 · 查看更多 »

碘化銫

化銫(化學式:CsI)是一種無機離子化合物,通常作為X-射線影像倍增管等螢光顯示設備之輸入熒光劑。碘化銫陰極管對於強紫外線波段有很高的偵測效率。 碘化銫晶體常用於粒子物理學實驗中電磁量能器的閃爍體材料。純碘化銫是一種快速,高密度的閃爍體材料,具有相對較高的發光量。發出的光線有兩個主要成分:位在近紫外線區的波長310 nm和460 nm 兩個波段。碘化銫的缺點是高溫度影響梯度和輕微吸濕性。 碘化銫可用於傅立葉變換光譜(FT-IR)的光譜儀作為分光鏡。碘化銫相對於更常用的溴化鉀分光鏡,有更廣泛的透光範圍,使用波段可以延伸到遠紅外線。但是有一個問題,光學的碘化銫晶體的都非常柔軟,無解理,因此很難製作出一個平坦的拋光面。此外,碘化銫光學晶體必須存放在乾燥容器中,以防止水與碘化銫反應。在碘化銫的表面鍍上一層鍺,可以盡量減少在交換分光器時,接觸到空氣中溼氣的影響。.

新!!: 折射率和碘化銫 · 查看更多 »

碘甲烷

烷是一个卤代烃,分子式写为CH3I、MeI,是甲烷的一碘取代物。室温下为密度大的挥发性液体,偶极矩1.59D,折射率1.5304(20°C、D)、1.5293(21°C、D)。碘甲烷可与常见的有机溶剂混溶,纯品无色,暴露于阳光下会分解出I2而带紫色,可通过加入金属铜或银去除。自然界中碘甲烷少量存在于稻田中。温带海洋中的藻类以及陆地上的某些真菌和细菌也可以代谢产生碘甲烷 碘甲烷是有机合成中常用的甲基化试剂。.

新!!: 折射率和碘甲烷 · 查看更多 »

碘苯

苯也称碘代苯,是苯的一碘取代物,分子式为C6H5I。它用于有机合成中或用作折射率标准液。.

新!!: 折射率和碘苯 · 查看更多 »

磷化鎵

磷化鎵(GaP)是鎵的磷化物,是無機化合物,也是半導體材料,其間接能隙為2.26eV(300K)。其多晶的材料為淡橙色。未摻入雜質的單晶晶片會是透明的橙色,但大量摻入雜質的晶片因為吸收自由電子,其顏色會變深。磷化鎵無味,不會溶於水。 若要變成N型半導體,需要掺杂硫或是碲,若要製作P型半導體,需要掺杂鋅。 磷化鎵常用在光學系統中,其折射率在波長262 nm (UV)時為4.30,波長550 nm (green)時為3.45,波長840 nm(IR)時為3.19。.

新!!: 折射率和磷化鎵 · 查看更多 »

磷的同素异形体

磷的同素异形体有许多种,其中白磷和红磷最为常见。另外还存在紫磷和黑磷。气态磷单质中有P2分子与磷原子。.

新!!: 折射率和磷的同素异形体 · 查看更多 »

稜鏡

鏡,在光學中是一種透明的光學元件,拋光與平坦的表面能折射光線。正確的表面角度取決於應用上的需求,傳統的幾何形狀是以三角型為基礎長方形為邊的三稜柱。在口頭上提到稜鏡時,通常都是指這種類型,但許多光學稜鏡都不是這種形狀的稜鏡。只要是對波長透明的材料都可以用來製造稜鏡,但傳統上和外觀上看都是以玻璃來製作。 稜鏡可以將光線分裂成原來的成分,也就是光譜(在彩虹中的顏色),也可以用來反射或分裂成不同的偏振光。.

新!!: 折射率和稜鏡 · 查看更多 »

稀土金属

土金属,或称稀土元素,是元素週期表第Ⅲ族副族元素钪、钇和镧系元素共17种化学元素的合称。钪和钇因为经常与镧系元素在矿床中共生,且具有相似的化学性质,故被认为是稀土元素。 与其名称暗示的不同,稀土元素(钷除外)在地壳中的豐度相当高,其中铈在地壳元素豐度排名第25,占0.0068%(与铜接近)。稀土元素並不稀有,但其傾向於兩兩一起生成合金,且難以將稀土元素單獨分離。另外,稀土元素在地殼中的分佈相當分散,很少有稀土元素集中到容許商業开采的礦床。人类第一种发现的稀土矿物是从瑞典伊特比村的矿山中提取出的,许多稀土元素的名称正源自于此地。.

新!!: 折射率和稀土金属 · 查看更多 »

空气

气是指地球大气层中的气体混合。它主要由78%的氮气、21%氧气、还有1%的稀有气体和杂质组成的混合物。空气的成分不是固定的,随着高度的改变、气压的改变,空气的组成比例也会改变。但是长期以来人们一直认为空气是一种单一的物质,直到后来法国科学家拉瓦锡通过实验首先得出了空气是由氧气和氮气组成的结论。19世纪末,科学家们又通过大量的实验发现,空气裡还有氦、氩、氙、氖等稀有气体。 在自然状态下空气是无味无臭的。 空气中的氧气对于所有需氧生物来说是必需。所有动物都需要呼吸氧气,植物利用空气中的二氧化碳进行光合作用,二氧化碳是近乎所有植物的唯一的碳的来源。.

新!!: 折射率和空气 · 查看更多 »

立方氧化鋯

立方氧化鋯(Cubic Zirconia,簡稱CZ),亦稱作鋯立晶、方晶鋯石、高碳鑽、俄羅斯鑽、碳鑽、Sona鑽、蘇聯鑽或蘇聯石,是二氧化鋯(Zirconia,ZrO2)晶體的一種。氧化鋯天然存在時大部份為單斜晶體(mono-clinic),主要以礦物(Baddeleyite)存在。以立方單晶體存在的氧化鋯在天然中極為罕有,但現時經常以人工方法合成,被廣泛用作鑽石的代替品。因為這種人工合成方法在蘇聯發明及最先使用,故此立方氧化鋯亦被稱為「蘇聯鑽」或「蘇聯石」。立方氧化鋯有時被稱作「方晶鋯石」,但這名稱並不完全正確;因為鋯石(Zircon)是天然存在寶石的一種,其化學成份為矽酸鋯(Zirconium Silicate,ZrSiO4),與合成的立方氧化鋯為兩種不相同的物質;而氧化鋯的方晶相其實還分為立方晶(Cubic)及正方晶(Tetragonal)兩種。 人工合成的立方氧化鋯是一種堅硬、無色及光學上無瑕的結晶。因為其成本低廉,耐用而外觀與鑽石相似,故此在1976年起至今都是最主要的鑽石的代替品。 近年亦開始使用性質更為接近鑽石的碳化矽和RZ人造鑽石(ROSELLE ZIRCONIA)與立方氧化鋯競爭代替鑽石。.

新!!: 折射率和立方氧化鋯 · 查看更多 »

立方晶系

立方晶系,也叫等轴晶系,它有4个三重对称轴以及3个互相垂直的4次对称轴或者3个相互垂直的二重对称轴。其中的3个互相垂直的4次对称轴或者3个相互垂直的二重对称轴是晶体结晶轴。轴角α.

新!!: 折射率和立方晶系 · 查看更多 »

管型 (尿液)

圓柱體 (尿液) (Urinary casts),又称为尿液管型、尿管型或者管型(有可能还称为尿液铸型或尿铸型),是指形成于远端肾单位,之后离开形成部位,并最终从尿液之中排出体外的,由微粒物质构成的圆柱状聚集体。尿液管型是通过肾小管细胞所分泌的Tamm-Horsfall 粘蛋白沉淀析出而形成的;另外,有时则是由蛋白尿时尿液之中的白蛋白所形成的。在有利于蛋白质变性和沉淀的环境条件下,管型形成明显增强(例如,低流量、盐类浓缩、pH偏低)。不幸的是,在这些条件下,Tamm-Horsfall蛋白尤其易于发生沉淀。 在尿液分析过程中,如果显微镜检发现尿液之中存在管型,则尿液管型具有临床意义,可以作为肾脏疾病的诊断和预后指标。正如管型的圆柱状外形所反映的那样,管型形成于肾脏之中纤细的远曲小管和收集管。一般而言,在流经泌尿系统下游通路的时候,管型会保持其原有的形状和组成。最为常见类型的管型都属于良性,而另外一些类型则可作为某种病理状态的指标。管型的不同类型全都取决于各种构成成分在粘蛋白基质(即透明管型)之中包涵或粘附情况。“管型”一词本身仅仅描述了尿液管型的形状,因而在实际工作中,还需要采用名词或形容词来对其加以限定,描述管型的实际组成成分。 对于可能出现在尿沉渣之中的管型可以作出如下分类:.

新!!: 折射率和管型 (尿液) · 查看更多 »

線性正則變換

線性正則變換是一種積分變換,在1970年代被提出。線性正則變換是廣義化的傅立葉變換、分數傅立葉變換、菲涅耳轉換(en:Fresnel transform)、拉普拉斯轉換。.

新!!: 折射率和線性正則變換 · 查看更多 »

纵模

光学谐振腔的纵模是一种由谐振腔边界条件所限定的特定的驻波模式。 腔的模式对应于沿腔轴向传播的经由腔的反射表面多次反射之后形成相长干涉的波的波长。其余的波长则因相消干涉而抑制。腔模中,纵模的波节沿着腔的轴向分布。对应的,横模的波节垂直于腔轴方向分布。.

新!!: 折射率和纵模 · 查看更多 »

绿松石

绿松石,又称松石,也被稱為突厥玉(法文與turquoise)、土耳其石、土耳其玉是一种水合铜铝磷酸盐矿物,属于磷酸盐矿物。分子结构式:CuAl6(4)4(OH)8·4O。一般是由水流沉淀生成,颜色从蓝、绿色到浅绿、浅黄色,硬度则差异较大。其中以蓝色的最为贵重,可作昂贵的首饰装饰。蓝色和蓝绿色翠绿等纯正色彩而且结构致密的,都可作为高级艺术雕刻的材料。绿松石因其美丽的色泽和瑰丽的花纹,成为东方、西方共同喜爱的宝石。在西方绿松石还是现代诞生石中代表十二月的诞生石,象征着成功与必胜。.

新!!: 折射率和绿松石 · 查看更多 »

细晶石

细晶石是一种矿物。颜色为浅黄、红褐或黑色。立方晶系。分子为(Na,Ca)2Ta2O6(O,OH,F)。属于烧绿石组,出现于伟晶岩。构成钽矿。 莫氏硬度5.5。比重4.2-6.4。半透明至不透明的八面体晶体。折射率2.0-2.2。 英文名称microlite源自希腊文mikros意为"small"与lithos意为"stone"。.

新!!: 折射率和细晶石 · 查看更多 »

眼屈光不正

从视光学上讲,眼在休息状态下,平行光线经过眼屈光系统的屈光作用在视网膜形成焦点,称为正视眼(emmetropia)。所有眼在休息状态下平行光线不能在视网膜成焦点者称为非正视眼(ampetopia)或屈光不正(errors of refraction)。.

新!!: 折射率和眼屈光不正 · 查看更多 »

眼鏡

鏡是鑲嵌在框架內的透鏡鏡片,戴在眼睛前方,以改善視力、保護眼睛或作裝飾打扮用途。亦有特製眼鏡供觀看3D立體影像或虛擬真實影像。 眼鏡可矯正多種視力問題,包括近視、遠視、散光、老花或斜視等,但不能醫治或根治這些問題。其他種類的眼鏡包括護目鏡、太陽眼鏡、游泳鏡等,為眼睛提供各種保護。 現代的眼鏡,通常在鏡片中間設有鼻托(鼻梁撑),及在左右兩臂擱在耳朵上的位置設有軟墊,而另外也有隱形眼鏡。.

新!!: 折射率和眼鏡 · 查看更多 »

瑞利散射

利散射(Rayleigh scattering),由英国物理学家約翰·斯特拉特,第三代瑞利男爵(John Strutt, 3rd Baron Rayleigh)的名字命名。它是半径比光或其他電磁輻射的波长小很多的微小颗粒(例如單個原子或分子)对入射光束的散射。瑞利散射在光通過透明的固體和液體時都會發生,但以氣體最為顯著。 在大氣中,太陽光的瑞利散射會導致瀰漫天空輻射,這也是天空为藍色和太陽偏黃色的原因。 瑞利散射適用於尺寸遠小於光波長的微小顆粒,和光學的“軟”顆粒(即,其折射率接近1)。当顆粒尺度相似或大於散射光的波長时,通常是由米氏散射理論、離散偶極子近似和其它計算技術来處理。 瑞利散射光的強度和入射光波长λ的四次方成反比: I(\lambda)_ \propto \frac 其中\scriptstyle I(\lambda)_是入射光的光強分布函數。 因此,波長較短的藍光比波長較長的紅光更易產生瑞利散射。.

新!!: 折射率和瑞利散射 · 查看更多 »

生物组织光学窗口

生物组织光学窗口(或近紅外窗口、治療窗口)指的是光在生物组织内穿透深度达到最大值的波长区间,一般处于近红外波长范围内。在,散射是光与组织间最主要的作用形式,导致光在传播过程中迅速弥散。由于散射增大了光子在组织内的传播距离,因而光子为组织所吸收的概率也随之增大。实际上,散射效应随波长变化很小,因此,生物组织光学窗口的范围主要受限于组织的吸收,其下限(短波长一端)由血液吸收所决定,上限(长波长一端)则由水的吸收所决定。对于光学成像和光热治疗等应用而言,选择位于光学窗口波长范围内的合适光源,对于提高成像(治疗)效率、提高穿透深度、降低光致组织损伤,有着十分重要的意义。.

新!!: 折射率和生物组织光学窗口 · 查看更多 »

用於數學、科學和工程的希臘字母

希臘字母被用於數學、科學、工程和其他方面。在數學方面,希臘字母通常用於常數、特殊函數和特定的變數,而且通常大寫和小寫都有分別,而且互不相關。有一些希臘字母和拉丁字母一樣,而且不被使用:A, B, E, H, I, K, M, N, O, P, T, X, Y, Z。除此之外,由於小寫的ι(iota),ο(omicron)和υ(upsilon)跟拉丁字母i,o和u相似,所以很少被使用。有時,希臘字母的字體變種在數學數有特定的意思,例如φ(phi)和π(pi)。 在金融數學中,有些會用來表示投資風險的變數。 母語為英語的數學家在讀希臘字母時,他們不會用現在的或古時的發音,但用傳統的英語發音。例如θ,數學家會讀成/ˈθeɪtə/。(古時:,現在:).

新!!: 折射率和用於數學、科學和工程的希臘字母 · 查看更多 »

甲酚

酚(化学式:CH3C6H4OH),甲苯酚的简称,也称“克利沙尔”(Cresol)。根据甲基和羟基相对取代位置的不同,又有邻甲酚、间甲酚和对甲酚三种异构体。.

新!!: 折射率和甲酚 · 查看更多 »

甲苯

苯(Toluène,德语: Toluol,Toluene,IUPAC:Methylbenzene,分子式:),是一种无色,带特殊芳香味的易挥发液体。甲苯是芳香族碳氫化合物的一员,它的很多性质与苯很相像,在现今实际应用中常常替代有相当毒性的苯作为有机溶剂使用,还是一种常用的化工原料,可用于制造噴漆、炸药、农药、苯甲酸、染料、合成树脂及涤纶等。同时它也是汽油的组分之一。.

新!!: 折射率和甲苯 · 查看更多 »

甲苯胺

苯胺(Toluidine)是一类芳香胺,属于二取代苯,化学式C7H9N,分子式CH3C6H4NH2,包括邻甲苯胺(2-甲基苯胺)、间甲苯胺(3-甲基苯胺)和对甲苯胺(4-甲基苯胺)。它们分子量为107.16,不溶或微溶于水,都可溶于乙醇和乙醚等有机溶剂,有毒,主要用于合成各种染料,也用作药物合成等其他有机合成原料。周公度(2004):《化学词典》,第328页。化学工业出版社。 邻甲苯胺被国际癌症研究机构(IARC)列为1类致癌物。.

新!!: 折射率和甲苯胺 · 查看更多 »

电光效应

电光效应是在外加电场作用下,物体的光学性质所发生的各种变化的统称。与光的频率相比,通常这一外加电场随时间的变化非常缓慢。这些不同的电光效应可分为两类:.

新!!: 折射率和电光效应 · 查看更多 »

电磁辐射

電磁辐射,又稱電磁波,是由同相振盪且互相垂直的電場與磁場在空間中以波的形式傳遞能量和動量,其傳播方向垂直於電場與磁場構成的平面。 電磁輻射的載體為光子,不需要依靠介質傳播,在真空中的傳播速度为光速。電磁輻射可按照頻率分類,從低頻率到高頻率,主要包括無線電波、微波、紅外線、可見光、紫外線、X射線和伽馬射線。人眼可接收到的電磁輻射,波長大約在380至780nm之間,稱為可見光。只要是本身溫度大於絕對零度的物體,除了暗物質以外,都可以發射電磁輻射,而世界上並不存在温度等於或低於絕對零度的物體,因此,人們周邊所有的物體時刻都在進行電磁輻射。儘管如此,只有處於可見光频域以内的電磁波,才可以被人們肉眼看到,對於不同的生物,各種電磁波頻段的感知能力也有所不同。.

新!!: 折射率和电磁辐射 · 查看更多 »

焦距

距,也稱為焦長,是光學系統中衡量光的聚集或發散的度量方式,指從透鏡中心到光聚集之焦點的距離。亦是照相機中,從鏡片光學中心到底片、CCD或CMOS等成像平面的距離。具有短焦距的光學系統比長焦距的光學系統有更佳聚集光的能力。.

新!!: 折射率和焦距 · 查看更多 »

燧石玻璃

燧石玻璃,也稱為火石玻璃,是具有高折射率和低阿貝數的光學玻璃。燧石玻璃的阿贝數是隨意訂定的,通常在50至55,但也可以更低一些,折射率則在1.45到2.00之間。由於它們的光學性能可以互相補償,因此燧石玻璃製成的凹透鏡經常會與冕牌玻璃製成的凸透鏡做成消色差透鏡。 相較於一般的玻璃,燧石玻璃是使用喬治雷文斯克羅夫特大約於1662年在英國東南部發現的高純度的硅土做原料,主要是製造英國早期鉀鹼鉛玻璃的水晶玻璃。 傳統上,燧石玻璃含有4%-60%的二氧化鉛,但是,製造和處理這些玻璃是汙染的來源。許多現代的燧石玻璃都改用其他不會改變主要光學性質的添加物,像是二氧化鈦和二氧化锆,來製造。 無色的燧石玻璃可以做成時髦的人造鑽石,當做假金剛石。.

新!!: 折射率和燧石玻璃 · 查看更多 »

物理符號表

這是一個普通物理常數和符號的清單,以粗體字表示的符號為向量。物理上,有一組常在數學表達式中出現的符號。工作者熟悉這些符號,不是每次使用都加以說明。所以,對於物理初學者,下面的列表給出了很多常見的符號包括名稱、讀法。.

新!!: 折射率和物理符號表 · 查看更多 »

物理性质

物理性质是物质不需要发生化学变化就表现出来的性质。這些性質是能被感現感知或利用儀器測知的。.

新!!: 折射率和物理性质 · 查看更多 »

相对电容率

在电磁学裏,相对电容率,又稱為相對介電常數,定义为电容率与真空电容率的比例∶ 其中,\epsilon_ 是电介质的相对电容率,\epsilon 是电介质的电容率,\epsilon_ 是真空电容率。 對於線性电介质,電極化強度 \mathbf\,\! 與電場 \mathbf\,\! 的關係方程式為: 其中,\chi_e\,\! 是电極化率。 電位移 \mathbf\,\! 的定義涉及電場和電極化強度: 這公式又可寫為 電位移與電場成正比。所以,相对电容率与电极化率 \chi_e 有以下的关系:.

新!!: 折射率和相对电容率 · 查看更多 »

相干长度

在物理学中,相干长度表示的是相干波(例如电磁波)保持一定的进行传播的距离。当相互干涉的波的路径之间的差距小于相干长度时,干涉现象明显。波的干涉长度越长,越接近完美的正弦波。相干长度在全息摄影与通信工程领域是一个重要的概念。 本条目主要讨论的是经典电磁场中的相干现象。量子力学中波函数的量子相干长度是经典相干长度在数学意义上的类比概念。.

新!!: 折射率和相干长度 · 查看更多 »

瀝青

瀝青,是高黏度有機液體的一種,表面呈黑色,可溶於二硫化碳、四氯化碳。它們多會以柏油或焦油的形態存在。 沥青主要可以分为煤焦沥青、石油沥青和天然沥青三种:其中,煤焦沥青是炼焦的副产品。石油沥青是原油蒸馏后的残渣。天然沥青则是储藏在地下,有的形成矿层或在地壳表面堆积。Buton Asphalt Indonesia.

新!!: 折射率和瀝青 · 查看更多 »

隱形眼鏡

隱形眼鏡是一種直接附在角膜表面泪液层上的鏡片,可以矯正視力、减缓近视眼进一步发展。.

新!!: 折射率和隱形眼鏡 · 查看更多 »

莫桑石

莫桑石(或稱摩星石)是天然碳化硅晶体的别称,1893年由法国化学家亨利·莫桑发现,因而得名。天然碳化硅只在一些陨石中发现过,在自然界中极其罕见,开采到的尺寸和数量也不足以用作珠宝,因此现今市面上的莫桑石基本上都是实验室中生产的。 碳化硅属于超硬材料,硬度為9.5,略低于钻石。折射率略高於鑽石(2.648~2.691),色散也佳(0.104)。相较于其他材料,它的導熱係數2.3-4.9 watt/K-cm,接近鑽石的26 watt/K-cm,價格卻為鑽石的十分之一,因此,被認為是鑽石的最佳替代品。碳化硅晶体和薄膜有许多工业用途。大颗粒的碳化硅单晶可用于生产珠宝(仿钻石)。.

新!!: 折射率和莫桑石 · 查看更多 »

菲(分子式:C14H10)是一个多环芳香烃,由三个苯环稠合而成,与蒽为同分异构体。无色片状结晶,有蓝色螢光,易升华,具刺激性。存在于吸烟时的烟雾中。折射率(nD20)为1.6415。.

新!!: 折射率和菲 · 查看更多 »

菲涅耳方程

菲涅耳方程(或称菲涅耳条件)是由法国物理学家奥古斯丁·菲涅耳推导出的一组光学方程,用於描述光在两种不同折射率的介质中传播时的反射和折射。方程中所描述的反射因此还被称作“菲涅耳反射”。.

新!!: 折射率和菲涅耳方程 · 查看更多 »

萜烯

萜烯(terpene,简称萜,詞由turpentine 松節油而來)是一系列萜类化合物的总称,屬脂類,不溶於水,是分子式为异戊二烯(C5H8)的整数倍的烯烃类化合物。萜烯是一個龐大而多樣類有機化合物,主要由一些植物产生,特別是針葉樹;一些动物也能够产生,如白蚁(分泌金合歡烯 farnesene,C15H24)等;近年来研究发现,在海洋生物体内也提取出了大量的萜类化合物,如海参、软珊瑚等。許多萜類化合物是芳烴,它們往往有強烈的氣味。一些植物产生这些带有气味的萜烯,用以阻嚇食草動物和吸引食草動物的寄生蟲天敵,从而可能有一种保护功能。萜烯是树脂以及由树脂而来的-松-节油的主要成分。一些昆蟲如白蟻或燕尾蝶,從它們的Y腺器官(osmeteria)排放萜烯。萜烯和萜類化合物的區別在於,萜烯是烯烃,而萜類是含有其他官能團的烯烃。据统计,目前已知的萜类化合物的总数超过了22,000种。很多萜类化合物具有重要的生理活性,是研究天然产物和开发新药的重要来源。萜类化合物中常见并重要的主要有胡萝卜素类化合物、樟脑、松香酸、薄荷醇类、冰片、维生素A、類固醇等。.

新!!: 折射率和萜烯 · 查看更多 »

面波

面波,又稱表面波(Surface wave),是沿不同介质(常常是两密度不同的流体)界面传播的波。折射率梯度波导下的电磁波也可以成为表面波。地波(沿地面传播的无线电波)也是一种表面波。.

新!!: 折射率和面波 · 查看更多 »

青金石

青金石(Lazurite)為一種架狀矽酸鹽礦物,含硫酸根、硫離子、氯離子,化學式為(Na,Ca)8。 屬於似長石類礦物方鈉石礦物群的一員,晶系為等軸晶系,不過完好的晶型極為罕見,大多呈塊狀。自然界中多數存在於青金岩中。其英文「Lazurite」則來自波斯語lazward 其意為藍色。.

新!!: 折射率和青金石 · 查看更多 »

衍射

--(diffraction),又稱--,是指波遇到障碍物时偏离原来直线传播的物理现象。 在古典物理学中,波在穿过狭缝、小孔或圆盘之类的障碍物后會发生不同程度的弯散传播。假設將一个障碍物置放在光源和观察屏之间,則會有光亮区域與陰暗区域出現於观察屏,而且這些区域的边界並不銳利,是一种明暗相间的复杂图样。這现象称为衍射,當波在其传播路径上遇到障碍物时,都有可能發生这种现象。除此之外,当光波穿过折射率不均匀的介质时,或当声波穿过声阻抗不均匀的介质时,也会发生类似的效应。在一定条件下,不仅水波、光波能够产生肉眼可见的衍射现象,其他类型的电磁波(例如X射线和无线电波等)也能够发生衍射。由於原子尺度的實際物體具有類似波的性質,它們也會表现出衍射现象,可以通过量子力学进行研究其性质。 在適當情况下,任何波都具有衍射的固有性质。然而,不同情况中波发生衍射的程度有所不同。如果障碍物具有多个密集分布的孔隙,就会造成较为复杂的衍射强度分布图样。这是因為波的不同部分以不同的路径传播到观察者的位置,发生波叠加而形成的現象。 衍射的形式論还可以用來描述有限波(量度為有限尺寸的波)在自由空间的传播情况。例如,激光束的發散性質、雷达天线的波束形状以及超声波传感器的视野范围都可以利用衍射方程来加以分析。.

新!!: 折射率和衍射 · 查看更多 »

飛蚊症

飛蚊症正式名称为玻璃体混沌或玻璃体浮游物,又稱雲霧移睛。是一種因投入眼睛的光線將浮游在玻璃體的混濁物投影在視網膜上,而在視野中看到物體漂浮的現象。這些玻璃體浮游物在玻璃體中具有不同大小、形狀、濃稠度、折射率和能動性,並且通常都是以透明的型態呈現Cline D; Hofstetter HW; Griffin JR.

新!!: 折射率和飛蚊症 · 查看更多 »

複消色差透鏡

複消色差透鏡是比一般的消色差透鏡有著更好的顏色矯正能力的鏡頭或其他的透鏡。色差是不同顏色的光線穿過透鏡之後匯聚在不同焦距上的現象。在攝影學上,它導致影像整體的色調變得柔軟,顏色邊緣對比的反差降低,像是黑白色之間的邊緣。天文學家面臨著相似的問題,特別是在望遠鏡上,透鏡的問題更甚於面鏡。消色差透鏡可以將兩種不同顏色(通常是紅色和藍色)的光聚焦在相同的平面上;複消色差透鏡的設計能將三種不同顏色(通常是紅、綠、藍三色)的光匯聚在相同的平面。殘餘的顏色偏差(二階光譜)可以比等效口徑和焦距的消色差透鏡低一個數量級。複消色差透鏡可以修正兩個波長的球面像差,也比消色差透鏡多了一個波長。 天文學的數位影像使用更寬廣的波段觀測目標,在光學上非常敏銳的CCD陣列接收的波長從紫外線經過可見光一直到紅外線,因此必須要使用複消色差透鏡。天文攝影使用的複消色差透鏡,口徑從60-150 mm,焦比從5 到7。在曝光期間進行適當的導引和聚焦,這些複消色差透鏡可以在給定的口徑下得到最明銳和寬廣的天文攝影光學。 用於形象藝術過程(拷貝)的照相機依般都使用複消色差透鏡以取得最明銳的成像。傳統設計的複消色差透鏡一般的最大孔徑被限制在9,近來,高速的複消色差透鏡已經可以使用在一般的媒體上,包括數位和35 mm的照相機。 複消色差透鏡的設計需要使用特殊的光學玻璃,以達到矯正三種波長色散特性的目的。經常使用的是昂貴的螢石冕牌玻璃和不常見成分的燧石玻璃,並且在玻璃元素間的空隙填充相同透明度的液體,以平衡光學上異常的色散。溫度對玻璃和液體的折射系數、色散的影響也在設計時的考量之內,必須在合理的溫度範圍之內,只需要稍微的調整焦點就能獲得良好的光學品質。.

新!!: 折射率和複消色差透鏡 · 查看更多 »

馬赫-曾德爾干涉儀

赫-曾德爾干涉儀(Mach–Zehnder interferometer)是一種干涉儀,可以用來觀測從單獨光源發射的光束分裂成兩道之後,經過不同路徑與介質所產生的相對相移變化。這儀器是因德国物理学者(恩斯特·马赫之子)和路德维·曾德尔而命名。曾德尔首先於1891年提出這構想,後來馬赫於1892年發表論文對這構想加以改良。 為了方便敘述,本文使用術語「馬曾干涉儀」來簡稱馬赫-曾德爾干涉儀。.

新!!: 折射率和馬赫-曾德爾干涉儀 · 查看更多 »

鲸蜡硬脂醇

蜡硬脂醇(Cetearyl alcohol),分子式 C16H34O。.

新!!: 折射率和鲸蜡硬脂醇 · 查看更多 »

负折射

负折射(Negative refraction)指的是光束在界面处的折射方向与正常折射方向(正常的折射光线与入射光线在法线异侧)相反,即折射光线和入射光线位于法线同侧的电动力学现象。用同时具备负介电常数 \epsilon和负磁导率\mu的超材料可以得到这一现象。此时超材料具负折射率。 这样的材料也被称作负折射率材料。 负折射会在具备正相速度(正折射率)的介质与负相速度(负折射率)介质的界面处发生。.

新!!: 折射率和负折射 · 查看更多 »

负折射率超材料

负折射率超材料或负折射率材料(NIM)是一种人造光学结构,它的折射率对于一定频率范围内的电磁波是负值。目前没有任何天然材料拥有这一属性。广义地说,超材料可以指任何合成材料,但一般上指的是拥有负折射率的一类材料,这些材料具有不寻常的光学属性和奇异的性质。 负折射率超材料由基本结构单元周期性排列构成,基本结构单元称为单胞,单胞的大小明显小于光的波长。单胞在实验室最早由印刷電路板材料制成,即由导线和电介质制成。通常情况下,这些人工制备的单胞按特定的重复形式堆叠或在平面上排列起来,组成单个的超材料。 负折射率超材料的单胞对光的响应是在构筑材料之前预先设计好的,材料总的对光的响应主要由单胞的几何形状决定,行为与其组分对光的响应有着根本的不同。超材料是“从下到上合成的有序宏观材料”,具有其组分所不具有的涌现性质。Shivola, Ari.

新!!: 折射率和负折射率超材料 · 查看更多 »

费曼物理学讲义

英語精裝版的《費曼物理學講義》,夹带有《费曼物理学诀窍》。 《费曼物理学讲义》(The Feynman Lectures on Physics)又译《费恩曼物理学讲义》,由理查德·費曼、羅伯·雷頓及馬修·山德士合著,被認為是费曼最易理解的专业作品,适用于任何对物理有兴趣的读者。该书今天已成为对现代物理的經典介绍,包括数学、电磁学、经典力学、量子物理学及物理学同其它学科的关系等。该书分为3卷。第1卷主要讲力学、光学、电磁辐射和热力学;第2卷主要讲电磁学和电动力学;第3卷主要讲量子力学。.

新!!: 折射率和费曼物理学讲义 · 查看更多 »

超環面儀器

超環面儀器(A Toroidal LHC ApparatuS, ATLAS),是歐洲核子研究組織(CERN)的大型強子對撞器(LHC)所配備的七大實驗探測器之一。此實驗專門為觀測涉及高質量粒子的現象而精心設計建造;使用先前較低能量的粒子加速器無法觀測到這些現象。物理學者希望此實驗能為在標準模型之後關於粒子物理學的新理論找到一些線索。 超環面儀器的長度為44m,直徑為25m,總重量為7000ton,內部連接的電線長達3000km。大約有來自38個國家174個學術機構的3000位科學家和工程師共同參與這實驗計畫。最初15年,團隊領導為,從2009年至2013年,法比奥拉·吉亞諾提是第二任領導人,從2013年開始,團隊領導為。2012年7月4日,CERN宣布,緊湊渺子線圈(CMS)探测到质量为125.3±0.6GeV的新玻色子(超過背景期望值4.9个标准差),超環面儀器测量到质量为126.5GeV的新玻色子(5个标准差),这两種粒子极像希格斯玻色子。後來確認就是希格斯玻色子。.

新!!: 折射率和超環面儀器 · 查看更多 »

黑曜岩

黑曜石(Obsidian)又名十勝石,是一種自然產生的玻璃。成因是因為火山熔岩迅速冷卻凝結,沒有足夠的時間讓礦物晶體長出,而形成玻璃質。因為熔岩流外圍冷卻的速度最快,所以黑曜石通常都是在熔岩流外圍發現。主要成分:二氧化硅,硬度:5,比重:2.339-2.527,折射率:1.48-1.51,含水1-2%,化学組成为SiO2(H2O)。.

新!!: 折射率和黑曜岩 · 查看更多 »

迈克耳孙干涉仪

迈克耳孙干涉仪(Michelson interferometer)是光学干涉仪中最常见的一种,其发明者是美国物理学家阿尔伯特·迈克耳孙。迈克耳孙干涉仪的原理是一束入射光分为两束后各自被对应的平面镜反射回来,这两束光从而能够发生干涉。干涉中两束光的不同光程可以通过调节干涉臂长度以及改变介质的折射率来实现,从而能够形成不同的干涉图样。迈克耳孙和爱德华·莫雷使用这种干涉仪于1887年进行了著名的迈克耳孙-莫雷实验,证实了以太的不存在,启发了狭义相对论。.

新!!: 折射率和迈克耳孙干涉仪 · 查看更多 »

近視

所謂近视(myopia),就是指眼睛看近处清楚而看远处不清楚的一种病理状态。有近视的人在看远处时,平行於視軸的平行光線通過眼球屈光系統的折射,彙聚在視網膜前,不能在視網膜上形成清晰的成像,因此无法看清,屬於一種屈光不正;而在看近處的物體時,像会后移到视网膜上,从而可以看清。近視的人,通過眯起眼睛可以限制光線的入射,從而減小像差,使自己可以看得更清楚一些,myopia原來的意思是眯著眼睛。近視后的远视力可以--凹透鏡來矯正,通常用屈光度來衡量屈光不正的程度,0到-3.00D屬於輕度近視,-3.00到-6.00D屬於中度近視,高於-6.00D的則是高度近視。高度近視眼的人因為眼軸過長而屬於一些眼病的高危人群,例如視網膜脱落和青光眼。 從表現上來看:.

新!!: 折射率和近視 · 查看更多 »

阿贝分辨率

1873年,德国科学家E.Abbe揭示了传统光学显微镜由于光的衍射效应和有限孔径分辨率存在因此产生的分辨率的极限原理。由于可见光的波动性,其可以发生衍射,因此光束不能无限聚焦。根据此,分辨率极限数值大约为λ⁄2n,其中λ是光波波长,n是样品介质的折射率。 2014年获得诺贝尔化学奖给的三个物理学家:艾力克·贝齐格(Eric Betzig)、斯特凡·W·赫尔(Stefan W. Hell)和W·E·莫纳(W.

新!!: 折射率和阿贝分辨率 · 查看更多 »

阿贝图

阿贝图是德国物理学家恩斯特·阿贝在1886年发明的玻璃坐标图,至今已一百多年。阿贝图是直角物理坐标图,以玻璃的阿贝数V为横轴(X轴),以玻璃的折射率n为纵轴(Y轴)。V轴和n轴的交点不是零点,V数在V轴上从左到右从大到小排列,从V.

新!!: 折射率和阿贝图 · 查看更多 »

阿贝折光仪

阿贝折光仪(Abbe refractometer)是一种实验室设备,用于高精度测量物质的折光率,由恩斯特·阿贝发明。.

新!!: 折射率和阿贝折光仪 · 查看更多 »

阿贝数

阿贝数是德国物理学家恩斯特·阿贝发明的物理学数,也称"V-数",用来衡量介质的光线色散程度.

新!!: 折射率和阿贝数 · 查看更多 »

薄膜干涉

假設照射一束光波於薄膜,由於折射率不同,光波會被薄膜的上界面與下界面分別反射,因相互干涉而形成新的光波,這現象稱為薄膜干涉。對於這現象的研究可以透露出關於薄膜表面的資訊,這包括薄膜的厚度、折射率。薄膜的商業用途很廣泛,例如,增透膜、鏡子、濾光器等等。 现在考虑在另一种材料上的一层薄膜。这种情况下,薄膜的上下表面同时反射光线。总反射光是两部分反射光的总和。由于光的波动性,两个界面的反射光可能干涉相长(强度增加)或干涉相消(强度减小),这取决于它们的相位关系。相位关系取决于两个反射光不同的光程,而光程取决于薄膜厚度,光学常数,和波长。 又光線由疏介質進入密介質被反射,光的相位會轉180度(i必須+1/2),所以當光程差2nd.

新!!: 折射率和薄膜干涉 · 查看更多 »

薄膜光学

薄膜光学是光學的一個分支,處理各種很薄的光學材料(薄膜)。和薄膜光学有關的材料,其厚度需要在可見光波長的等級內(約500 nm)。此厚度範圍的薄膜因為光的干涉,以及薄膜、空間及物質間的折射率差異,可以有顯著的折射特性,這些效應稱為薄膜干涉,會影響光學材料折射及传输光的特性,像在肥皂泡及水上的油漬就會看到這類的情形。 更廣義具有類似光學性質,但不是平面層狀結構的周期性結構稱為光子晶体。 在製造上,薄膜層可以由在基質(一般是玻璃)上沉積一層至多層薄膜而產生,一般會用像蒸發或等物理气相沉积方式,或是化学气相沉积法。 這類的薄膜常用來作,像是家用或車用的低輻射玻璃、玻璃上的增透膜、汽車車頭燈的反光擋板,以及高精度的滤光器及鏡子。這類鍍膜的另一種應用是。.

新!!: 折射率和薄膜光学 · 查看更多 »

藍絲黛爾石

藍絲黛爾石(Lonsdaleite)也译做郎士德碳,又因晶體結構及特性稱作六方金剛石(hexagonal diamomd)、六方碳。藍絲黛爾石是一種六方晶系的金剛石,屬於碳同素異形體的一種構形,咸信為流星上的石墨在墜入地球時所形成。撞擊時的巨大壓力及熱量改變石墨構形形成金剛石,卻又保留了石墨的平行六邊形晶格,並構成了立方的六方晶格。第一次鑑別出藍絲黛爾石是1967年在美國亞利桑那州的巴林杰隕石坑,從位在其中的「魔谷隕石」中所發現。 藍絲黛爾石發生在隕石的金剛石上,是一個連結在金剛石上非肉眼可見的顯微晶體。除魔谷隕石外,在美國新墨西哥州的「肯納隕石」(Kenna meteorite)、南極洲維多利亞地的艾倫丘陵隕石77283(Allan Hills (ALH) 77283)上亦有發現。此外,1908年6月30日一個阿波羅星體(指外來星體,包括彗星及隕石)撞擊俄羅斯西伯利亞的通古斯加撞擊區也有發現報告。 藍絲黛爾石具有透明棕黃色的外觀,折射率在2.40至2.41之間,比重在3.2至3.3之間,莫氏硬度在7至8之間。而金剛石的莫氏硬度則為10。藍絲黛爾石也可從聚合物——(PHC)在氬氣的一大氣壓力下從攝氏110度開始到1000度熱分解人工合成。藍絲黛爾石較低的硬度主要原因系天然形成礦石不純且不完美所致。但如果以人工合成則比鑽石硬58%,而抗壓程度也比鑽石高了大約58%。.

新!!: 折射率和藍絲黛爾石 · 查看更多 »

钍(Thorium,,舊譯作釖、鋀)是原子序数为90的元素,其元素符號為Th,屬锕系元素,具有放射性。其拉丁文名称來自北欧神话的雷神索尔(Thor)。 钍-232会通过吸收慢中子而变成可作核燃料之用的铀-233。钍、铀两种元素是核能发电厂最重要的燃料。.

新!!: 折射率和钍 · 查看更多 »

钻石

鑽石(古希腊文:ἀδάμας;法文、德文:Diamant;英文:Diamond),化学和工业中称为金剛石。鑽石是碳元素组成的無色晶体,為目前已知的自然存在的最硬物質。.

新!!: 折射率和钻石 · 查看更多 »

鉭(Tantalum,舊譯作鐽)是一種化學元素,符號為Ta,原子序為73。其名稱「Tantalum」取自希臘神話中的坦塔洛斯。鉭是一種堅硬藍灰色的稀有過渡金屬,抗腐蝕能力極強。鉭屬於難熔金屬,常作為合金的次要成份。鉭的化學活性低,適宜代替鉑作實驗器材的材料。目前鉭的最主要應用為鉭電容,在手提電話、DVD播放機、電子遊戲機和電腦等電子器材中都有用到。鉭在自然中一定與化學性質相近的鈮一齊出現,一般在鉭鐵礦、鈮鐵礦和鈳鉭鐵礦中可以找到。.

新!!: 折射率和钽 · 查看更多 »

钒酸钇

钒酸钇(化学式:YVO4)是钇的钒酸盐之一,熔点1825 °C,密度4.22g/cm3。.

新!!: 折射率和钒酸钇 · 查看更多 »

鈦是化學元素,化學符號Ti,原子序數22,是銀白色過渡金屬,其特徵為重量輕、強度高、具金屬光澤,亦有良好的抗腐蝕能力(包括海水、王水及氯氣)。由于其稳定的化学性质,良好的耐高温、耐低温、抗强酸、抗强碱,以及高强度、低密度,常用來製造火箭及太空船,因此獲美誉为“太空金属”。鈦於1791年由格雷戈爾於英國康沃爾郡發現,並由克拉普羅特用希臘神話的泰坦為其命名。 钛被认为是一种稀有金属,这是由于在自然界中其存在分散并难于提取。但其相对丰度在所有元素中居第十位。鈦的礦石主要有鈦鐵礦及金紅石,廣佈於地殼及岩石圈之中。鈦亦同時存在於幾乎所有生物、岩石、水體及土壤中。從主要礦石中萃取出鈦需要用到克羅爾法或亨特法。鈦最常見的化合物是二氧化鈦,可用於製造白色顏料。其他化合物還包括四氯化鈦(TiCl4,作催化劑及用於製造煙幕或)及三氯化鈦(TiCl3,用於催化聚丙烯的生產)。 鈦能與鐵、鋁、釩或鉬等其他元素熔成合金,造出高強度的輕合金,在各方面有着廣泛的應用,包括宇宙航行(噴氣發動機、導彈及航天器)、軍事、工業程序(化工與石油製品、海水淡化及造紙)、汽車、農產食品、醫學(義肢、骨科移植及牙科器械與填充物)、運動用品、珠寶及手機等等。 鈦最有用的兩個特性是,抗腐蝕性,及金屬中最高的強度-重量比。在非合金的狀態下,鈦的強度跟某些鋼相若,但卻還要輕45%。有兩種同素異形體和五種天然的同位素,由46Ti到50Ti,其中豐度最高的是48Ti(73.8%)。鈦的化學性質及物理性質和鋯相似,這是因為兩者的價電子數目相同,並於元素週期表中同屬一族。.

新!!: 折射率和钛 · 查看更多 »

鉈(;thallium)是一種化學元素,符號為Tl,原子序為81。鉈是一種質軟的灰色貧金屬,在自然界中並不以單質存在。鉈金屬外表和錫相似,但會在空氣中失去光澤。兩位化學家威廉·克魯克斯和克洛德-奧古斯特·拉米在1861年獨立發現了這一元素。他們都是在硫酸反應殘留物中發現了鉈,並運用了當時新發明的火焰光譜法對其進行了鑑定,觀測到鉈會產生明顯的綠色譜線。其名稱「Thallium」由克魯克斯提出,來自希臘文中的「θαλλός」(thallos),即「綠芽」之意。翌年,拉米用電解法成功分離出鉈金屬。 鉈在氧化後,一般擁有+3或+1氧化態,形成離子鹽。其中+3態與同樣屬於硼族的硼、鋁、鎵和銦相似;但是鉈的+1態則比其他同族元素顯著得多,而且和鹼金屬的+1態相近。鉈(I)離子在自然界中大部份出現在含鉀礦石中。生物細胞的離子泵處理鉈(I)離子的方式也和鉀(I)類似。 在商業開採方面,鉈是硫化重金屬礦提煉過程的副產品之一。總產量的60至70%應用在電子工業,其餘則用於製藥工業和玻璃產業。鉈還被用在紅外線探測器中。放射性同位素鉈-201(以水溶氯化鉈的形態),在核醫學掃描中可用作示蹤劑,例如用於心臟負荷測試。 水溶鉈鹽大部份幾乎無味,且都是劇毒物,曾被用作殺鼠劑和殺蟲劑以及謀殺工具。這類化合物的使用已經被多國禁止或限制。鉈中毒會造成脫髮。.

新!!: 折射率和铊 · 查看更多 »

锗(Germanium,舊譯作鈤)是一种化学元素,它的化学符号是「Ge」,原子序数是32。它是一種灰白色类金属,有光澤,質硬,屬於碳族,化學性質與同族的錫與硅相近。在自然中,鍺共有5種同位素,原子質量數在70至76之間。它能形成許多不同的有機金屬化合物,例如四乙基鍺及異丁基鍺烷等。 即使地球表面上鍺的豐度地殼蘊含量相對较高,但由於礦石中很少含有高濃度的鍺,所以它在化學史上發現得比較晚。門捷列夫在1869年根據元素周期表的位置,預測到鍺的存在與其各項屬性,並把它稱作擬硅。克莱门斯·温克勒於1886年在一種叫硫銀鍺礦的稀有礦物中,除了找到硫和銀之外,還發現了一種新元素。儘管這種新元素的外觀跟砷和銻有點像,但是新元素在化合物中的化合比符合門捷列夫對硅下元素的預測。温克勒以他的國家——德國的拉丁語名來為這種元素命名。 鍺是一種重要的半導體材料,用於製造晶體管及各種電子裝置。主要的終端應用為光纖系統與紅外線光學(infrared optics),也用於聚合反應的催化劑,制造電子器件與太陽能電力等。現在,開採鍺用的主要礦石是閃鋅礦(鋅的主要礦石),也可以在銀、鉛和銅礦中,用商業方式提取鍺。一些鍺化合物,如四氯化鍺(GeCl4)和甲鍺烷,会刺激眼睛、皮膚、肺部與喉嚨。.

新!!: 折射率和锗 · 查看更多 »

锗酸铋

锗酸铋(Bismuth Germanate 或 Bismuth Germanium Oxide,简称BGO)是-系化合物的总称,最常见的两种锗酸铋化合物的化学式为(CAS:12233-56-6)和(CAS:12233-73-7)。由于应用最为广泛、研究最为深入,“锗酸铋”或“BGO”通常被用来特指(本条目亦遵从此习惯),这是一种立方晶系的无色透明晶体,在高能粒子或高能射线(γ射线、X射线)的作用下能发出峰值波长为480 nm的绿色荧光,利用其闪烁性能可探测高能粒子和高能射线。.

新!!: 折射率和锗酸铋 · 查看更多 »

鎦(Lutetium,--,舊譯作鏴)是一種化學元素,符號為Lu,原子序為71。鎦是一種銀白色金屬,在乾燥空氣中能抵抗腐蝕。鎦是最後一個鑭系元素,有時也算作第六週期首個過渡金屬,一般歸為稀土元素。 法國科學家喬治·於爾班(Georges Urbain)、奧地利礦物學家卡爾·奧爾·馮·威爾斯巴赫(Carl Auer von Welsbach)男爵以及美國化學家查爾斯·詹姆士(Charles James)於1907年分別獨自發現了鎦元素。他們都是在氧化鐿礦物中,發現了含有鎦的雜質。發現者隨即爭論誰最早發現鎦,不同的命名方案也引起了爭議。最終定下的名稱是「Lutecium」,取自巴黎的拉丁文名盧泰西亞(Lutetia),後拼法改為「Lutetium」。 鎦在地球地殼中的含量並不高,但仍比銀要常見得多。鎦-176是一種較常見的放射性同位素(佔所有鎦的2.5%),半衰期約為380億年,可用於測量隕石的年齡。鎦一般與釔一同出現,可作合金材料,以及為某些化學反應作催化劑。177Lu-DOTA-TATE可用於放射線療法,治療神經內分泌腫瘤。----------------->.

新!!: 折射率和镥 · 查看更多 »

色差

色差是指光学上透镜无法将各种波长的色光都聚焦在同一点上的现象。它的产生是因为透镜对不同波长的色光有不同的折射率(色散现象)。对於波长较长的色光,透镜的折射率较低。在成像上,色差表现为高光区与低光区交界上呈现出带有颜色的“边缘”,这是由于透镜的焦距与折射率有关,从而光谱上的每一种颜色无法聚焦在光轴上的同一点。色差可以是纵向的,由于不同波长的色光的焦距各不相同,从而它们各自聚焦在距离透镜远近不同的点上;色差也可以是横向或平行排列的,由于透镜的放大倍数也与折射率有关,此时它们会各自聚焦在焦平面上不同的位置。.

新!!: 折射率和色差 · 查看更多 »

色散 (光學)

在光學中,对于不同波长的光,介质的折射率n(λ)也不同。这使自然光(由多种波长的光混合组成)在穿过不同的介质时发生折射现象,组成自然光的不同波长的光線分离,这种现象称为自然光的色散,简称光的色散。这里的自然光是指正常人类用眼睛能看到的光。一般来说,光的波长越小,折射率越大:(在自然光中)紫色光折射率最大,红色光折射率最小(见右图)。 光的色散现象说明光在介质中的速度 v.

新!!: 折射率和色散 (光學) · 查看更多 »

色散关系

在物理科学和電機工程學中,色散关系描述波在介质中传播的色散现象的性质。色散关系将波的波长或波數与其頻率建立了联系。由这组关系,波的相速度和群速度有了方便的确定介质中折射率的表达式。克拉莫-克若尼關係式可以描述波的传播、的频率依赖性,這關係比與幾何相關和與材料相關的色散关系更具一般性。 色散的原因可能是几何边界条件(波导、浅水)或是波与传输介质间的相互作用。基本粒子(被认为是物質波)即使在没有集合约束和其他介质存在下也会有非平凡的色散关系。 在存在色散的情况下,波速不再唯一定义,从而产生了相速度和群速度的区别。.

新!!: 折射率和色散关系 · 查看更多 »

艾蒂安-路易·马吕斯

吕斯 艾蒂安-路易·马吕斯(Étienne Louis Malus,),法国官员、工程师、物理学家和数学家。.

新!!: 折射率和艾蒂安-路易·马吕斯 · 查看更多 »

苯基丙酮

苯基丙酮,还称:苯基-2-丙酮,苄基甲基酮或甲基苄基甲酮,是一种有机化合物。是一种透明的油状物,折射率为1.5168。.

新!!: 折射率和苯基丙酮 · 查看更多 »

苯甲醇

苯甲醇(分子式:C6H5CH2OH)也称苄醇,是最简单的含有苯基的脂肪醇,可以看作是羟甲基取代的苯,或苯基取代的甲醇。它是有微弱芳香气味的无色透明黏稠液体,有极性,低毒,蒸汽压低,因此用作醇类溶剂。可燃。稍溶于水(4 g/100 mL),可与乙醇、乙醚、苯、氯仿等有机溶剂混溶。 苄醇主要以游离态或酯的形式存在于香精油中,如茉莉花油、伊兰伊兰油、素馨花香油风信子油、月下香油和妥鲁香脂中都含有此成分。.

新!!: 折射率和苯甲醇 · 查看更多 »

離子交換

離子交換技術(Ion exchange)或稱離子色譜法,是將兩種電解質間做離子的交換,或是在電解溶液和配合物之間的交換。最常見到的例子是使用聚合物或礦物用來純化、分離或淨化純水和其他離子溶液。其他的例子有離子交換樹脂,功能化多孔或凝膠聚合物)、沸石、、黏土和土壤中的腐殖質。 離子交換有兩類,一種是陽離子交換,指的是帶正電的離子互相交換;另外的陰離子交換,則是帶負電的離子互相交換。也有兩性離子交換劑可讓陰、陽離子同時交換。而在混床中能同時有效的進行交換陰、陽離子的交換。混床包括了陰、陽離子交換樹脂,或由處理過的溶液通過幾種不同的離子交換材料所製造出來。 離子交換劑,可以為非選擇性或因喜好結合為某些類別的離子,這取決於其化學結構。這根據了離子的大小、電價或結構而定。可以結合交換離子的常見範例有:.

新!!: 折射率和離子交換 · 查看更多 »

雙合透鏡

雙合透鏡是將兩片單透鏡結合在一起的光學設計。這兩片透鏡分別用折射率和色散都不同的玻璃製成,通常一片是冕牌玻璃(Crown glass),另外一片是燧石玻璃(flint glass)。這樣的組合產生的影像品質比單一透鏡好。而早已灭绝的三叶虫,拥有由方解石构成的天然的双合透镜。 雙合透鏡有許多不同的形式,但多數商用的雙合透鏡都是消色差透鏡,主要用於減少色差,同樣也減少球面像差和其他在光學系統上的像差;複消色差透鏡也可以用雙合透鏡製造。 膠合的雙合透鏡,透鏡是以膠黏劑相結合,例如加拿大冷杉香脂或環氧。有些在透鏡之間不使用膠黏劑,而依靠外部的固定物使它們結合在一起,這種稱為氣隙雙合透鏡(air-spaced doublets)。 Category:透鏡.

新!!: 折射率和雙合透鏡 · 查看更多 »

透镜

本条目介绍的是光學設備,其他領域的透鏡不在此處討論。 透鏡是一種將光線聚合或分散的設備,通常是由一片玻璃構成,但用於其他電磁輻射的類似設備通常也稱為透鏡,例如:由石蠟製成的微波透鏡,用玻璃、树脂或水晶等透明材料制成的放大镜、眼镜等,也都是透镜。 透镜有两类,中间厚边缘薄的叫凸透镜,中间薄边缘厚的叫凹透镜,比球面半径小许多的透镜叫薄透镜,薄透镜的几何中心叫透镜的鏡心。 透镜并不一定是固定形状,使用满足要求的材料来制作可以改变形状的透镜可以提高清晰度,景深,不过通过使用镜头组也能达到相同的效果,就如澳大利亚摄影师吉姆·弗雷泽(Jim Frazier)做的那样,这样做是等效的。如果你有适合形状的壳来封存洁净的可增减的水,那就能做到。.

新!!: 折射率和透镜 · 查看更多 »

Β-羟基-β-甲基丁酸

β-羟基-β-甲基丁酸(β-Hydroxy β-methylbutyric acid,HMB)其共轭碱为β-羟基-β-甲基丁酸根(β-hydroxy β-methylbutyrate),是一种人体内天然产生的物质,可用作膳食补充剂,也可用作某些旨在促进伤口愈合的医疗食品的成分,并为因癌症或艾滋病导致肌肉萎缩的人提供营养支持。在健康成年人中,补充HMB已显示增加运动诱发的肌肉大小,肌肉力量和瘦体重增加,减少锻炼对骨骼肌的损害,改善有氧运动表现,并加速锻炼恢复。医学评论和meta分析表明,补充HMB还有助于保持或增加患有年龄相关性肌肉损失的个体的瘦体重和肌肉力量。 HMB部分通过刺激蛋白质的产生和抑制肌肉组织中蛋白质的分解产生这些效应。没有发现长期用作成人膳食补充剂的副作用。 HMB是L-亮氨酸的代谢产物,通过氧化L-亮氨酸(α-酮异己酸)的酮酸而在体内生成。由于只有一小部分L-亮氨酸被代谢成HMB,因此只能通过直接补充HMB来实现药物活性浓度的化合物在血浆和肌肉中的浓度。.

新!!: 折射率和Β-羟基-β-甲基丁酸 · 查看更多 »

Sellmeier等式

Sellmeier等式是描述特定透明介质中折射率和波长的经验关系等式。该等式用于确定光在介质中的色散。它于1871年由Wolfgang Sellmeier首次提出。是柯西建立色散模型柯西等式的进一步发展。.

新!!: 折射率和Sellmeier等式 · 查看更多 »

X射线光学

X射线光学是光學中的一個分支,以X射线為研究的對象。可見光用的透明透鏡是折射率大體上大於1的材料,但針對X射线的折射率會略小於1。處理X射线的主要方式有反射、繞射及干涉,其應用包括及。.

新!!: 折射率和X射线光学 · 查看更多 »

折射

折射(法語,英語:Refraction,德語: Refraktion, 西班牙語: Refracción),一種常見的物理現象,指當物體或波動由一種媒介斜射入另一種媒介造成速度改變而引起角度上的偏移。「折射」一定等同於「光的折射」,所以雖然光線(一種橫波)會因為「折射」的不同令光的運行方向改變,但「折射」現象並不能用以證明光線是一種波動。最普遍的例子就是用手槍瞄準,當子彈穿過水时,其角度就會因為折射而偏移。 而所謂的「屈折」,也就是「光的折射」,專指光從一種介質進入另一種具有不同折射率之介質,或者在同一種介質中折射率不同的部分運行時,由於波速的差異,使光的運行方向改變的現象。例如當一條木棒插在水裡面時,單用肉眼看會以為木棒進入水中時折曲了,這是光進入水裡面時,產生折射,才帶來這種效果。.

新!!: 折射率和折射 · 查看更多 »

柯西等式

柯西等式是光在特定透明材質下,其折射率和波長之間的經驗關係,得名自1836年定義此等式的數學家奧古斯丁·路易·柯西。.

新!!: 折射率和柯西等式 · 查看更多 »

材料性质列表

材料性质是一般指材料的各种强度性质。这些性质中很多是定量的。材料的某些定量性质通常作为的思考依据。 材料性质可以是常数,也可以是一个或多个 独立变量的函数。材料在不同测量方向上的性质常常有所变化,以上性质被称作各向异性。在给定范围内,同物理环境相关的材料性质通常呈现(或近似呈现)线性关系。 材料的某些性质可以通过相关方程预测系统的某些属性。例如,对于某已知热容量的材料,若其吸收或释放的热量已知,可以确定该材料温度的变化。材料性质通常经由标准化完成测量。.

新!!: 折射率和材料性质列表 · 查看更多 »

格蘭-湯普遜稜鏡

格蘭-湯普遜稜鏡(Glan–Thompson prism)是一種偏光稜鏡,類似尼柯耳稜鏡(Nicol prism)與格蘭-傅科稜鏡(Glan- Foucault prism),是由兩塊直角方解石晶體膠合製成。 如右圖所示,光束入射於格蘭-湯普遜稜鏡的平面與對應平行的平面稱為「通光面」,方解石晶體的光軸垂直於反射平面(稱為「光軸面」),兩塊直角稜鏡之間是「膠合劑界面」。在第一塊方解石,雙折射會將入射光束分開為兩束,各自感受不同的折射率沿著同樣路徑傳播。在膠合劑界面,尋常光(o光)會被全反射,只剩下非常光(e光)被透射,因此,格蘭-湯普遜稜鏡可以用為偏光分束器。傳統的膠合劑原料是加拿大樹膠(Canada balsam),但現今已廣泛被合成聚合物取代。 與格蘭-傅科稜鏡(膠合劑被替換為空氣)相比較,格蘭-湯普遜稜鏡的接收角(acceptance angle,入射光束與通光面的法線之間的夾角)較寬,但是幅照度的上限比格蘭-傅科稜鏡低很多,對於連續波,約為1W/cm2,格蘭-傅科稜鏡約為100W/cm2,這是因為膠合劑的抗光損傷能力限制。.

新!!: 折射率和格蘭-湯普遜稜鏡 · 查看更多 »

格拉德斯通-戴尔关系

格拉德斯通-戴尔关系(Gladstone–Dale relation)是流体折射率与密度之间所满足的定量关系式,由英国科学家与于19世纪提出。 格拉德斯通-戴尔关系的表达式为: 其中n为折射率,\rho为密度,K为格拉德斯通-戴尔常数。.

新!!: 折射率和格拉德斯通-戴尔关系 · 查看更多 »

榍石

榍石是一种钙钛硅酸盐矿物,主要成分为CaTiSiO5,一般含痕量的铁杂质或铝杂质,铈和钇之类的稀土金属也时常出现;部分钙元素有时会被置换成钍。 榍石的名称“sphene”取自希腊语“sphenos(σφηνώ)”,意为“楔子”。国际矿物学协会自从1982年起推荐使用的名称为“titanite”,但两种名称在如今都有在使用。.

新!!: 折射率和榍石 · 查看更多 »

機動戰士GUNDAM 00世界觀及設定

本條目介紹動畫《機動戰士GUNDAM 00》及其外傳中出現的名詞。.

新!!: 折射率和機動戰士GUNDAM 00世界觀及設定 · 查看更多 »

橢圓偏振技術

橢圓偏振技術(ellipsometry)是一種多功能和強大的光學技術,可用以取得薄膜的介電性質(複數折射率或介電常數)。它已被應用在許多不同的領域,從基礎研究到工業應用,如半導體物理研究、微電子學和生物學。橢圓偏振是一個很敏感的薄膜性質測量技術,且具有非破壞性和非接觸之優點。 分析自樣品反射之偏振光的改變,橢圓偏振技術可得到膜厚比探測光本身波長更短的薄膜資訊,小至一個單原子層,甚至更小。橢圓儀可測得複數折射率或介電函數張量,可以此獲得基本的物理參數,並且這與各種樣品的性質,包括形態、晶體質量、化學成分或導電性,有所關聯。它常被用來鑑定單層或多層堆疊的薄膜厚度,可量測厚度由數埃(Angstrom)或數奈米到幾微米皆有極佳的準確性。 之所以命名為橢圓偏振,是因為一般大部分的偏振多是橢圓的。此技術已發展近百年,現在已有許多標準化的應用。然而,橢圓偏振技術對於在其他學科如生物學和醫學領域引起研究人員的興趣,並帶來新的挑戰。例如以此測量不穩定的液體表面和顯微成像。.

新!!: 折射率和橢圓偏振技術 · 查看更多 »

檸檬酸

柠檬酸,化學式為 C6H8O7,(Citric Acid,亦称为枸橼酸)它包括3個羧基(R-COOH)基團。是一种中強度有機酸,這是自然在柑橘類水果中產生的一種天然防腐劑,也是食物和饮料中的酸味添加劑。在生物化学中,它是檸檬酸循環的重要中间产物,因此在几乎所有生物的代谢中起到重要作用。此外,它也是一种对环境无害的清洁剂。 很多种水果和蔬菜,尤其是柑橘属的水果中都含有较多的柠檬酸,特别是柠檬和青檸——它们含有大量柠檬酸,在干燥之后,含量可达8%(在果汁中的含量大约为47 g/L)。在柑橘属水果中,柠檬酸的含量介于橙和葡萄柚的0.005 mol/L和柠檬和青柠的0.30 mol/L之间。这个含量随着不同的栽培種和植物的生长情况而有所变化。.

新!!: 折射率和檸檬酸 · 查看更多 »

正交晶系

正交晶系,也叫斜方晶系。 该晶系特点是没有高次对称轴,二次对称轴和对称面总和不少于三个。晶体以这三个互相垂直的二次轴或对称面法线为结晶轴。α.

新!!: 折射率和正交晶系 · 查看更多 »

氧化钡

氧化钡(化学式:BaO)是钡的正常氧化物,为白色固体。它可由钡在氧气中燃烧,或钡盐热分解制得: 与水反应生成氢氧化钡:.

新!!: 折射率和氧化钡 · 查看更多 »

氧化镁

氧化镁(化学式:MgO)也称苦土,是镁的氧化物,一种离子化合物;常温下为白色固体;氧化镁以方镁石的形式存在于自然界中。.

新!!: 折射率和氧化镁 · 查看更多 »

氯溴甲烷

氯溴甲烷,又称溴氯甲烷、哈龙1011,是一种混合卤代甲烷。它是一种重质粘稠液体,折射率为1.4808。.

新!!: 折射率和氯溴甲烷 · 查看更多 »

水滴

水滴,是小量的水體,能以任何形態出現。 一支簡單的垂直管狀物體,慢慢流動液體到末端,便形成最容易出現的水滴。當氣態水份遇上冰冷的物體表面,冷凝作用便會發生,過度冷卻水蒸氣,霧化成水滴,結露的現象也是由於冷凝作用的關係。 數學上,垂直管狀物體末端水滴的最大可承受重量可以此計算: mg.

新!!: 折射率和水滴 · 查看更多 »

水晶 (消歧義)

水晶依中文使用習慣和外文翻譯可指下列事物:.

新!!: 折射率和水晶 (消歧義) · 查看更多 »

泡克耳斯效应

泡克耳斯效应(Pockels effect)是指光介质在恒定或交变电场下产生光的双折射效应,这是一种线性电-光效应,其折射率的改变和所加电场的大小成正比。德国物理学家于1893年研究发现的。但这种效应只存在缺少反演对称性的晶体中,例如铌酸锂(LiNbO3),钽酸锂(LiTaO3),硼酸钡(BBO),和砷化镓(GaAs)等,或存在其它非中心对称的介质,例如在电场极化高分子和玻璃中出现。电场极化高分子中含有特别设计的有机分子,它们具有比高非线性晶体高10倍的非线系数。 泡克耳斯效应和克尔效应的区别在于:泡克耳斯效应是与电场大小成正比,而克尔效应则是与电场大小的平方成比例的。.

新!!: 折射率和泡克耳斯效应 · 查看更多 »

波動角度

波動角度(英語:Angle of incidence),這裏集合了有關波動的角度的定義。.

新!!: 折射率和波動角度 · 查看更多 »

法布里-珀罗干涉仪

在光学中,法布里-佩罗干涉仪(英文:Fabry–Pérot interferometer)是一种由两块平行的玻璃板组成的多光束干涉仪,其中两块玻璃板相对的内表面都具有高反射率。法布里-佩罗干涉仪也经常称作法布里-佩罗谐振腔,并且当两块玻璃板间用固定长度的空心间隔物来间隔固定时,它也被称作法布里-佩罗标准具或直接简称为标准具(来自法语étalon, 意为“测量规范”或“标准”),但这些术语在使用时并不严格区分。这一干涉仪的特性为,当入射光的频率满足其共振条件时,其透射频谱会出现很高的峰值,对应着很高的透射率。法布里-佩罗干涉仪这一名称来自法国物理学家夏尔·法布里和阿尔弗雷德·佩罗。 法布里-佩罗干涉仪的共振特性和二项色性滤镜所利用的共振特性是相同的。实质上,二项色性滤镜是由很薄的法布里-佩罗干涉仪组连续排列得到的,从而在设计上它们有着相同的数学处理方法。法布里-佩罗干涉仪还被广泛应用在通信、激光和光谱学领域,它主要用於精确测量和控制光的频率和波长。当代工艺已经能够制造出非常精密且可调谐的法布里-佩罗干涉仪。.

新!!: 折射率和法布里-珀罗干涉仪 · 查看更多 »

法拉第效应

在物理學,法拉第效应(又叫法拉第旋转)是一种磁光效应(magneto-optic effect),是在介質內光波與磁場的一種相互作用。法拉第效應會造成偏振平面的旋轉,這旋轉與磁場朝著光波傳播方向的分量呈線性正比關係。 於1845年,麥可·法拉第发现了法拉第效應。這是最先揭示光波和電磁現象之間關係的實驗證據。由於法拉第效應顯示出,在穿過介質時,偏振光波會因為外磁場的作用,轉變偏振的方向,因此,馬克士威認為磁場是一種旋轉現象。這效應給予馬克士威重要的啟發。在於1861年發表的巨作《論物理力線》第四部份,為了突顯出自己設計的「分子渦流模型」的威力,他應用這模型來推導出法拉第效應。在1870年代,詹姆斯·馬克士威進一步發展出電磁輻射(包括可見光)的基礎理論。大多數對於光波呈透明狀況的介質(包括液體),當感受到磁場作用時,會出現這種效應。 法拉第效應會使得左旋圓偏振光波與右旋圓偏振光波各自以不同的速度傳播於某些介質,這性質稱為圓雙折射。由於線性偏振可以分解為兩個圓偏振部份的疊加,而這兩個圓偏振部份之間的振幅相同、螺旋性(helicity)不同、相位不同,法拉第效應所感應出的相對的相移,會造成線性偏振取向的旋轉。 法拉第效應可以應用於測量儀器。例如,法拉第效應被用於測量旋光度、或光波的振幅調變、或磁場的遙感。在自旋電子學裏,法拉第效應被用於研究半導體內部的電子自旋的極化。(Faraday rotator) 可以用於光波的調幅,是光隔離器與(optical circulator)的基礎組件,在光通訊與其它激光領域必備組件。.

新!!: 折射率和法拉第效应 · 查看更多 »

消色差透镜组

消色差透镜组是能基本上消除色像差的透镜组,一般由两块光学性质不同的玻璃或其他材料制成的透镜组合而成。例如,一块由折射率较小而色散能力较大的冕牌玻璃磨制而成的凸透镜,另一块是由折射率较大而色散能力较小的燧石玻璃磨制成的凹透镜。 消色差透镜能把两种不同颜色(如红色与紫色)的光线聚焦于同一点;对其他颜色的色像差虽未完全消除,但影响已很小。 在复消色差透镜中,同于上述同样的方法可使三种不同色光聚焦于一点,剩下的色像差影响更小。优质透镜(如照相机镜头、显微镜物镜等)都是既消除色像差又消除其他像差的复杂透镜组。.

新!!: 折射率和消色差透镜组 · 查看更多 »

溴,是一個化學元素及一種鹵素;元素符號Br,原子序35。溴分子在標準溫度和壓力下是有揮發性的紅棕色液體,活性介於氯與碘之間。纯溴也称溴素。溴蒸氣具有腐蝕性,并且有毒。在2007年,約有556,000公噸的溴被製造。Jack F. Mills "Bromine" in Ullmann's Encyclopedia of Chemical Technology Wiley-VCH Verlag; Weinheim, 2002.

新!!: 折射率和溴 · 查看更多 »

溴乙酸

没有描述。

新!!: 折射率和溴乙酸 · 查看更多 »

最小作用量原理

物理學中 最小作用量原理(least action principle),或更精確地,平穩作用量原理(stationary action principle),是一種變分原理,當應用於一個機械系統的作用量時,可以得到此機械系統的運動方程式。這原理的研究引導出經典力學的拉格朗日表述和哈密頓表述的發展。卡爾·雅可比特稱最小作用量原理為分析力學之母。 在現代物理學裏,這原理非常重要,在相對論、量子力學、量子場論裏,都有廣泛的用途。在現代數學裏,這原理是莫爾斯理論的研究焦點。本篇文章主要是在闡述最小作用量原理的歷史發展。關於數學描述、推導和實用方法,請參閱條目作用量。最小作用量原理有很多種例子,主要的例子是莫佩爾蒂原理(Maupertuis' principle)和哈密頓原理。 在最小作用量原理之前,有很多類似的點子出現於測量學和光學。古埃及的拉繩測量者(rope stretcher)在測量兩點之間的距離時,會將固定於這兩點的繩索拉緊,這樣,可以使間隔距離減少至最低值。托勒密在他的著作《地理學指南》(Geographia)第一册第二章裏強調,測量者必須對於直線路線的誤差做出適當的修正。古希臘數學家歐幾里得在《反射光學》(Catoptrica)裏表明,將光線照射於鏡子,則光線的反射路徑的入射角等於反射角。稍後,亞歷山卓的希羅證明這路徑的長度是最短的。.

新!!: 折射率和最小作用量原理 · 查看更多 »

海市蜃楼

海市蜃樓(又稱“蜃气楼”、“蜃楼”、“蜃景”、“蜃氣樓台”、“海市”等)是自然發生的光學現象,它將光線偏折而在遙遠的距離或天空中生成虛像。在大气科学中称为蜃景。古人認為是蜃吐出的氣息。 英文中的這個字源自拉丁文的mirare,再經由法文的mirage而來,意思是「看見的奇景」,也就是海市蜃樓。這與「mirror」(鏡子)和「to admire」(欣賞)有著相同的字根。 相對於幻覺,海市蜃樓是一種真實的光學現象,由於觀測到的位置是由實際光線折射形成的虛像,它可以用照相機來捕捉影像。然而,會出現甚麼樣的影像全由人類心靈解釋的能力來確定。例如,在地面的上蜃景非常容易被誤認為來自一小片水窪的反射。 蜃景可以分類為「下蜃景」(意思是低)、「上蜃景」(意思是高)和「複雜蜃景」,一種包含一系列異常複雜,垂直堆疊影像,形成快速變化蜃景的上蜃景。.

新!!: 折射率和海市蜃楼 · 查看更多 »

斐索實驗

斐索实验是阿曼德·斐索1851年进行的一项实验。他在本实验中测定了光在运动的水中的相对速度。为了确定介质运动对光速的影响,斐索使用了一台特制的干涉仪。 基于当时盛行的理论,在运动介质中传播的光会被介质拖动,导致最终测到的光速是光和介质的相对速度与介质运动速度的和。虽然斐索在实验中探测到了拖曳效应,但该效应却比预期弱很多。他的结果在当时被看作是奥古斯丁·菲涅耳的“” 的证据,但直到半个多世纪后才通过阿尔伯特·爱因斯坦发展的狭义相对论得到完满的解释。爱因斯坦本人认为该实验对于狭义相对论非常重要。.

新!!: 折射率和斐索實驗 · 查看更多 »

斯涅尔定律

光波從一種介質傳播到另一種具有不同折射率的介質時,會發生折射現象,其入射角與折射角之間的關係,可以用斯涅尔定律(Snell's Law)來描述。斯涅尔定律是因荷兰物理学家威理博·斯涅尔而命名,又稱為「折射定律」。 在光學裏,光線跟蹤科技應用斯涅尔定律來計算入射角與折射角。在實驗光學與寶石學裏,這定律被應用來計算物質的折射率。對於具有負折射率的负折射率超材料(metamaterial),這定律也成立,允許光波因負折射角而朝後折射。 斯涅尔定律表明,當光波從介質1傳播到介质2時,假若兩種介質的折射率不同,則会发生折射現像,其入射光和折射光都處於同一平面,稱為「入射平面」,并且与界面法线的夹角满足如下关系: 其中,n_1、n_2分别是两種介质的折射率,\theta_1和\theta_2分别是入射光、折射光与界面法线的夹角,分别叫做「入射角」、「折射角」。 這公式稱為「斯涅尔公式」。 斯涅尔定律可以從費馬原理推導出來,也可以從惠更斯原理、平移對稱性或馬克士威方程組推導出來。.

新!!: 折射率和斯涅尔定律 · 查看更多 »

斜长石

斜长石(Plagioclase)是长石的一种,是一种在地球上很常见且很重要的硅酸盐矿物。斜长石并没有特定的化学成分,而是由钠长石和钙长石按不同比例形成的固溶体系列。“斜长石”这个名称来源于希腊语中的“倾斜的切面”,指其二向完全解理的两个不同夹角。斜长石是两种矿物的固溶体这一性质首先是由德国矿物学家(Johann F. C. Hessel)于1826年发现的。在斜长石中,钠原子和钙原子可以在晶格中相互替代,按此两种原子的比例可将斜长石继续划分成从钠长石到钙长石的不同子类。在地质样品中,斜长石常因其易形成孪晶,以及表面由于解理形成类似唱片表面刻痕的性质被识别出来。.

新!!: 折射率和斜长石 · 查看更多 »

无量纲量

在量綱分析中,無量綱量,或称--、无维量、无维度量、无维数量、无次元量等,指的是沒有量綱的量。它是個單純的數字,量綱為1。無量綱量在數學、物理學、工程學、經濟學以及日常生活中(如數數)被廣泛使用。一些廣為人知的無量綱量包括圓周率(π)、歐拉常數(e)和黃金分割率(φ)等。與之相對的是有量綱量,擁有諸如長度、面積、時間等單位。 無量綱量常寫作兩個有量綱量之積或比,但其最終的綱量互相消除後會得出無量綱量。比如,應變是量度形變的量,定義為長度差與原先長度之比。但由於兩者的量綱均為L(長度),因此相除後得出的量是沒有量綱的。.

新!!: 折射率和无量纲量 · 查看更多 »

数值孔径

光学系统的数值孔径(NA)是一个无量纲的数,用以衡量该系统能够收集的光的角度范围。在光学的不同领域,数值孔径的精确定义略有不同。在光学显微镜领域,数值孔径描述了物镜收光锥角的大小,而后者决定了显微镜收光能力和空间分辨率;在光纤领域,数值孔径则描述了光进出光纤时的锥角大小。.

新!!: 折射率和数值孔径 · 查看更多 »

數量級 (速率)

本列表比較多種數量級的差別,以每秒1 公尺到每秒3 公尺來介紹多種速率。粗體代表其為準確值。.

新!!: 折射率和數量級 (速率) · 查看更多 »

拉格朗日不變量

拉格朗日不變量是光學系統中對於光傳播的量測,定義為 其中y和u為邊緣光線的高度及角度,而ȳ及ū為主光線的高度及角度。n為環境的折射率。為了不要和別的物理量混淆,有時會用符號Ж來代替H。 Ж2和光學系統的通量成正比(和有關)。對於一光學系統,拉格朗日不變量在所有的空間中均為不變量,因此在折射及光傳播後,拉格朗日不變量都不會改變。 光學不變量(optical invariant)是拉格朗日不變量的延伸,利用二個光線的高度及角度計算而得。對這些光線而言,光學不變量在所有空間中都是定值。.

新!!: 折射率和拉格朗日不變量 · 查看更多 »

1

1(一/壹)是0与2之间的自然数,是最小的正奇數.

新!!: 折射率和1 · 查看更多 »

重定向到这里:

折射系數

传出传入
嘿!我们在Facebook上吧! »