我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

扭歪多面體

指数 扭歪多面體

在幾何學中,扭歪多面體(Skew polyhedron)是指頂點、邊或面並非全部位於同一個三維空間中的多面體,即扭歪多邊形的高一維類比,因此其無法找到一個唯一的內部區域以及其體積。 正扭歪多面體代表每個面全等、每條邊等長、每個角都相等的扭歪多面體,是一系列可能具有非平面的面或頂點圖。考克斯特的研究著重於具有扭歪頂點圖新的四維多面體,後期多由研究有扭歪面的形狀。 具有無限多個面的扭歪多面體稱為扭歪無限面體。除了扭歪無限面體之外的扭歪多邊形僅能存在於四維或以上的空間。.

目录

  1. 4 关系: 五階正方形鑲嵌正圖形列表正扭歪無限面體扭歪無限面體

五階正方形鑲嵌

在幾何學中,五階正方形鑲嵌是由正方形組成的雙曲正鑲嵌圖,在施萊夫利符號中用表示,代表了每個頂點皆為五個正方形的公共頂點,因此每個頂點周圍皆包含了五個不重疊的正方形,一個正方形內角90度,五個正方形超過了360度,因此無法因此無法在平面上作出,但可以在雙曲面上作出,或是以扭歪多面體的方式呈現。.

查看 扭歪多面體和五階正方形鑲嵌

正圖形列表

此頁面列出了所有的歐幾里得空間、雙曲空間和球形空間的正圖形或正多胞形。施萊夫利符號可以描述每一個正圖形或正多胞形,他被廣泛使用如下面的每一個緊湊的參考名稱。 正圖形或正多胞形可由其維度分類,也可以分成凸、非凸(星形、複合或凹)和無窮等形式。非凸形式(或凹形式)使用與凸形式相同的頂點,但面(或邊)有相交。無限的形式則是在一較低維的歐幾里得空間中密鋪(鑲嵌或堆砌)。 無限的形式可以擴展到密鋪雙曲空間。雙曲空間是和正常的空間有相同的規模,但平行線在一定的距離內會分岔得越來越遠。這使得頂點值可以存在負角度的缺陷,例如製作一個由個正三角形組成的頂點,它們可以被平放。它不能在普通平面上完成的,但可以在一個雙曲平面上構造。.

查看 扭歪多面體和正圖形列表

正扭歪無限面體

在幾何學中,正扭歪無限面體(Regular skew apeirohedron)是一種頂點並非全部共面的正無限面體,即每個面都全等、每個角也相等的扭歪無限面體。通常扭歪無限面體會具有正扭歪的面或扭歪的頂點圖。.

查看 扭歪多面體和正扭歪無限面體

扭歪無限面體

在幾何學中,扭歪無限面體(Skew apeirohedron)是一種頂點並非全部共面的無限面體,存在非平面的面或非平面的頂點圖,並保持圖形不折回形成封閉區間而無限延伸。其也可以看作是面數無法被窮盡的扭歪多面體。由於該多面體所形成的空間有如海綿般有很多孔洞,因此又稱為海綿多面體。.

查看 扭歪多面體和扭歪無限面體