目录
康威多面體
在幾何學中,康威多面體是一種多面體類型,包含著所有由柏拉圖立體為種子(T、C、O、D、I),經過有限次康威多面體變換可得到的立體。康威多面體必有外接球和內切球,且有很高的對稱性。 康威多面體有無限多種,其中包含了柏拉圖立體、阿基米德立體、卡塔蘭立體,但大部份的詹森多面體都不是康威多面體。 除了柏拉圖立體、阿基米德立體、卡塔蘭立體之外,截角三角化四面体、截半截角二十面體、截角五角化二十四面體、截角五角化六十面體、四角化扭棱立方體、五角化扭棱十二面體、六角化五角化截角三角化四面體、菱形九十面體也是康威多面體。 所有康威多面體都可使用康威多面體表示法表示;但並非所有可使用康威多面體表示法表示的多面體都屬於康威多面體。.
康威多面體表示法
康威多面體表示法是用來描述多面體的一種方法。 一般是用種子多面體(seed)為基礎並標示對種子多面體做的操作或運算。 種子多面體一般都為正多面體或正多邊形密鋪,表示的字母則取他們名字的第一個字母,例如.
五角化扭棱十二面體
在幾何學中,五角化扭棱十二面體是一種凸多面體,乍看之下像是由正三角形組成,但實際上正三角形只有80个,其余60个是等腰三角形。.