徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

弓形震波

指数 弓形震波

弓形激波(Bow shock)是太阳风与行星的磁层顶相遇处形成的激波。一个已经被深入研究的例子是太阳风与地球磁场相遇时形成的弓形激波。地球的弓形激波距离地球大约9万公里,厚度大约为100-1000公里 弓形激波的判别条件是此处流体的整体速度从超音速降低到亚音速以下。等离子体的声速为 其中cs为声速,\gamma是等压热容与等体热率之比,p是压强,\rho是等离子体的密度。 太阳风中的带电粒子沿着螺旋性的轨迹沿磁力线运动,它们围绕磁力线的运动类似于普通气体当中的热运动,平均热运动的速度近似为声速。在弓形激波处整体速度降低到粒子围绕磁力线的运动速度以下。 人们设想太阳在星际介质中运动时同样会形成弓形激波,这种假设的前提是星际介质相对于太阳的运动速度是超声速的,因为太阳风就在以超声速从太阳表面吹出。在日球顶处星际介质与太阳风的压力达到平衡,太阳风在终端激波处降为亚音速。弓形激波的位置距离太阳大约230天文单位。 赫比-阿罗天体周围也存在弓形激波。由于它们的星风与星际介质的相互作用更为剧烈,它们的弓形激波是可以在可见光波段观测到的。.

32 关系: 天体列表天王星天苑四太阳系太阳系天体列表太陽圈契忍可夫輻射弧矢增二十二彗尾彗星地球地磁场磁層鞘磁層頂磁层紅矩形星雲终端激波費米輝光黑寡婦脈衝星金星大氣層PSR J0357+3205恆星運動學水星磁場激波 (天文物理)木卫三木星木星的磁層月球探勘者戴森球星际边界探测器海王星日球層頂

天体列表

天体(Astronomical object),又稱星体,指太空中的物体,更廣泛的解釋就是宇宙中的所有的個体。.

新!!: 弓形震波和天体列表 · 查看更多 »

天王星

天王星是從太陽系由内向外的第七顆行星,其體積在太陽系排名第三(比海王星大),質量排名第四(比海王星輕)。其英文名稱Uranus來自古希臘神話的天空之神烏拉諾斯(),是克洛諾斯的父親,宙斯的祖父。与在古代就为人们所知的五顆行星(水星、金星、火星、木星、土星)相比,天王星的亮度也是肉眼可見的,但由於較為黯淡以及緩慢的繞行速度而未被古代的觀測者认定为一颗行星。直到1781年3月13日,威廉·赫歇耳爵士宣布發現天王星,从而在太陽系的現代史上首度擴展了已知的界限。這也是第一顆使用望遠鏡發現的行星。天文學符號為、♅(♅,Unicode編碼U+2645) 天王星和海王星的內部和大氣構成不同於更巨大的氣體巨星,木星和土星。同樣的,天文學家設立了不同的「冰巨行星」分類來安置她們。天王星大氣的主要成分是氫和氦,還包含較高比例的由水、氨、甲烷等結成的「冰」,與可以探测到的碳氫化合物。天王星是太陽系內大气层最冷的行星,最低溫度只有49K(−224℃)。其外部的大气层具有複杂的雲層結構,水在最低的雲層內,而甲烷組成最高處的雲層。相比较而言,天王星的内部则是由冰和岩石所构成。 如同其他的巨行星,天王星也有環系統、磁層和許多衛星。天王星的環系統在行星中非常獨特,因為它的自轉軸斜向一邊,幾乎就躺在公轉太陽的軌道平面上,因而南極和北極也躺在其他行星的赤道位置上。從地球看,天王星的環像是環繞著標靶的圓環,它的衛星則像環繞著鐘的指針(雖然在2007年與2008年該環看來近乎水平)。在1986年,來自太空探测器航海家2號的影像资料顯示天王星實際上是一顆平平無奇的行星,在其可見光的影像中沒有出现像在其他巨行星所擁有的雲彩或風暴。然而,近年內,隨著天王星接近晝夜平分點,地球上的觀測者发现天王星有季節變化的迹象和漸增的天氣活動。天王星上的風速可以達到每秒250公尺。 在西方文化中,天王星是太陽系中唯一以希臘神祇命名的行星,其他行星都依照羅馬神祇命名。.

新!!: 弓形震波和天王星 · 查看更多 »

天苑四

天苑四(ε Eri / ε Eridani) 是一顆主序帶上分類為K2的恆星。它是波江座內最靠近我們,也是在近距離恆星列表上能以裸眼看見的全天第三靠近的恆星。估計他的年齡少於十億年,相對來說還是顆年輕的恆星,因此這顆恆星的磁場活動比太陽強,而恆星風的強度估計是太陽的30倍。自轉也比較快速,雖然有緯度上的變化,估計週期約為11.1 天。天苑四不僅質量和體積都比太陽小,它的金屬量(原子量大於氦的元素)也比較低。 虽然一些径向速度观测数据暗示可能存在一颗大行星,然而由于该恒星活跃的磁场导致数据中存在高水平背景噪音,因此该结果仍未被完全接受。如果真有這樣的一顆行星,它的軌道週期應該是2502天,與恆星的平均距離為3.4天文單位(5億5百萬公里)。迄2008年,天苑四是距離太陽最近的已知擁有行星的恆星。這顆恆星也有兩條小行星帶,一條在大約3天文單位的距離上,另一條在20天文單位,並且可能是受到尚未能確認的第二顆行星攝動的物質。它看起來也有柯伊伯带,有比太陽附近更多物質密集的在軌道上環繞著,證實了對這顆恆星尚年輕的懷疑。 由於它是相對接近且與太陽相似的恆星,所以天苑四經常出現在科幻作品中。與它最接近的鄰居是距離5.22光年遠的魯坦726-8(鯨魚座UV和鯨魚座BL)。.

新!!: 弓形震波和天苑四 · 查看更多 »

太阳系

太陽系Capitalization of the name varies.

新!!: 弓形震波和太阳系 · 查看更多 »

太阳系天体列表

太陽系天體列表收錄太陽系中唯一的恆星──太陽,及所有的行星和矮行星,還有較具代表性的太陽系小天體和1890年代以前發現的衛星。 依據行星定義,環繞太陽的天體可分為行星、矮行星和太陽系小天體,而環繞它們的天體皆稱作衛星。小行星和彗星是由國際小行星中心認定並給予編號的天體,它們幾乎都屬於太陽系小天體,只有少部份的小行星同時是矮行星。流星體是太陽系小天體中,分布最廣、數量最多而質量最小的天體,因為難以觀測,只有在黃道光和對日照,以及成為流星時才容易被發現。.

新!!: 弓形震波和太阳系天体列表 · 查看更多 »

太陽圈

太陽圈(heliosphere)是太陽所能支配或控制的太空區域。太陽圈的邊緣是一個磁性氣狀泡,並且遠遠的超出冥王星之外。從太陽"吹"出的電漿,也就是所謂的太陽風,創建和維護著這個鼓起的泡沫,並且抵抗來自銀河系的氫氣和氦氣,也就是外面的星際物質,滲入的壓力。太陽風從太陽向外流動,直到遭遇到終端震波,然後在那兒突然的減速。航海家太空船積極的探測太陽圈的邊界,穿越過震波和進入日鞘,這是要到達太陽圈最外層的邊緣,稱為日球層頂的過渡區。當太陽在空間中移動時,太陽圈的整體形狀是由星際物質控制的,它似乎不是一個完美的球形。以有限的資料用於未探勘過的自然界,已經推導出許多理論的架結構。 在2013年9月12日,NASA宣布航海家一號已經在2012年8月25日穿過太陽圈,當時它測量到的電漿密度突然增加了40倍。因為日鞘標誌著太陽風和其餘銀河系的一種邊界,可以說航海家一號已經離開太陽系,抵達星際空間。.

新!!: 弓形震波和太陽圈 · 查看更多 »

契忍可夫輻射

契伦科夫辐射(Cherenkov radiation)是介質中運動的电荷速度超過該介質中光速時發出的一種以短波長為主的電磁輻射,其特徵是藍色輝光。這種輻射是1934年由苏联物理學家帕维尔·阿列克谢耶维奇·切连科夫發現的,因此以他的名字命名。1937年另兩名苏联物理學家伊利亞·弗蘭克和伊戈爾·塔姆成功地解釋了契忍可夫辐射的成因,三人因此共同獲得1958年的諾貝爾物理學獎。.

新!!: 弓形震波和契忍可夫輻射 · 查看更多 »

弧矢增二十二

弧矢增二十二(船尾座ζ,ζ Pup)是船尾座的一顆恆星。它的固有名稱是Naos(,源自希臘的ναύς "ship")和Suhail Hadar(阿拉伯文的 سهيل هدار,可能是「非常明亮的」)。 它的光譜分類是O5Ibf,使它是非常熱的恆星,而且是肉眼能夠看見的O型恆星之一。它曾被認為是距離地球超過400秒差距的船帆座複合體古姆星雲的一部分,但是2008年依巴谷的資料給出的距離只有 ± 4%。它的表面溫度是42,000K,目前的質量約為40太陽質量,半徑是太陽半徑的14倍,但是這些數值有著高度的不確定性。較早的資料認為它的距離更遠,数值相對也更大,而且有些新計算的值也超過前述數值的兩倍。 弧矢增二十二是極端藍的超巨星,也是銀河系內最明亮的恆星之一。視覺上,它的能量是太陽的12,500倍以上,是一顆非常藍的恆星,大部分的輻射集中在紫外線,因此它的熱光度超過太陽的500,000倍。從地球上看到它的視星等在亮度上排名上是第62名。 弧矢增二十二,是典型的O型星,它有著值得注意的強烈恆星風,並且在過去十年獲得越來越多的關注。它的恆星風速度估計是2,500公里/秒,每年抛射掉的質量超過百萬分之一,或是在可以比較的時間週期內排放掉十萬分之一太陽質量。這種質量拋射的證據在非可見光的波長上,像是電波和X射線是非常明確的。.

新!!: 弓形震波和弧矢增二十二 · 查看更多 »

彗尾

彗尾和彗髮是彗星在內太陽系受到太陽照射,從地球可以看見的結構,是由直接反射陽光的灰塵和從發射出光輝的離子化氣體兩種形成來源結合成的。多數的彗星都很暗淡,必須用望遠鏡才能看見,但是每十年左右,都會有幾顆亮到可以用裸眼直接看見的彗星。 每顆彗星的氣體和塵埃噴流形成的彗尾都是獨特的,指向的方向也都略有不同。塵埃尾會被拖曳在彗星軌道的後方,他經常會因為曲線的形狀而形成反尾。同時,由氣體構成的離子尾永遠都指向背向太陽的方向,因為這些氣體受到太陽風的影響遠比塵埃來得強烈,跟隨的是磁力線,而不是軌道的路徑。從地球觀測的視差有時會使彗尾看似指向相反的方向。 彗星固體的核心大小一般不會超過50公里的直徑,但是彗髮可以比太陽還要大,並且彗尾的長度可已超過1天文單位(1億5千萬公里)或是更長 。 對反尾的觀測在太陽風的發現上有著重大的貢獻。古中国在对彗星的长期观察中,注意到彗尾总是背向太阳,西元653年正史描述当彗星早上出现时,它的尾指向西,而当它晚上出现时,它的尾巴指向东,古書推斷是太阳的气将彗尾吹向背离太阳的方向。 離子尾的形成是太陽的紫外線輻射對彗髮產生光電效應的結果。一旦質點被游離,它們會獲得淨值為正的電荷,並且產生"誘導磁層"包圍著彗星。彗星和誘導磁場對向外流動的太陽風粒子形成一個障礙,彗星在軌道上相對於太陽風的速度是超音速的,因此在太陽風流動方向的彗星前端形成弓形震波。在這個弓形震波,彗星高濃度的離子(稱為"吸合離子")聚集並"載入"活動中的電漿與太陽磁場,而這些場線披覆在彗星的周圍形成了離子尾 。.

新!!: 弓形震波和彗尾 · 查看更多 »

彗星

彗星(Comet,有時也被誤記為慧星)是由冰構成的太陽系小天體(SSSB),當他朝向太陽接近時,會被加熱並且開始釋氣,展示出可見的大氣層,也就是彗髮,有時也會有彗尾。這些現象是由太陽輻射和太陽風共同對彗核作用造成的。彗核是由鬆散的冰、塵埃、和小岩石構成的,大小從P/2007 R5的數百米至海爾博普彗星的數十公里不等,但大部分都不會超過16公里。 彗星的軌道週期範圍也很大,可以從幾年到幾百萬年。短週期彗星來自超越至海王星軌道之外的柯伊伯帶,或是與離散盤有所關聯 。長週期彗星被認為起源於歐特雲,這是在古柏帶外面,伸展至最近恆星一半距離上,由冰凍天體構成的球殼。長週期彗星受到路過恆星和銀河潮汐的引力攝動而直接朝向太陽前進。雙曲線軌道的彗星可能在進入內太陽系之前曾經被沿著雙曲線軌跡被拋射至星際空間,則只會穿越太陽系一次。來自太陽系外,在銀河系內可能是常見的系外彗星也曾經被檢測到。 彗星與小行星的區別只在於存在著包圍彗核的大氣層,未受到引力的拘束而擴散著。這些大氣層有一部分被稱為彗髮(在中央包圍著彗核的大氣層),其它的則是彗尾(受到來自太陽的太陽風電漿和光壓作用,從彗髮被剝離的氣體、塵埃、和帶電粒子,通常呈線性延展的部分)。然而,熄火彗星因為已經接近太陽許多次,幾乎已經失去了所有可揮發的氣體和塵埃,所以就顯得類似於小的小行星。小行星被認為與彗星有著不同的起源,是在木星軌道內側形成的,而不是在太陽系的外側。主帶彗星和活躍的半人馬小行星的發現,已經使得小行星和彗星之間的差異變得模糊不清。 ,已經知道的彗星有4,894顆,其中大約有1,500顆是克魯茲族彗星和大約484顆短週期彗星,而且這個數量還在穩定的增加中。然而,這只是潛在彗星族群中微不足道的數量:估計在外太陽系的儲藏所內類似的彗星體數量可能達到一兆顆。儘管大多數的彗星都是暗淡和不夠引人注目的,但平均大概每年會有一顆裸眼可見的彗星,其中特別明亮的就會被稱為"大彗星"。 在2014年1月22日,ESA科學家的報告首次明確的指出在矮行星穀神星,也是小行星帶中最大的天體,有水氣存在。這項檢測是通過赫歇爾太空望遠鏡使用遠紅外線技術完成的。此一發現是出人意料之外的,因為彗星,不是小行星,才會有這種典型的"噴流萌芽和羽流"。根據其中一位科學家的說法:"彗星和小行星之間的區隔是越來越模糊了"。 古代也有彗星出现的记录,古人一般認為彗星是凶兆。.

新!!: 弓形震波和彗星 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

新!!: 弓形震波和地球 · 查看更多 »

地磁场

地磁場是源自於地球內部,並延伸到太空的磁場。磁場在地表上的強度在25-65微特斯拉(即0.25至0.65高斯)之間。粗略地說,地磁場是一個與地球自轉軸呈11°夾角的磁偶極子,相當於在地球中心放置了一個傾斜了的磁棒。目前的地磁北極位於北半球的格陵蘭附近,實際上它是地磁場的南極,而地磁南極則是地磁場的北極。地核向外散發熱量時,引起外核中熔融鐵的對流運動,進而產生電流,地磁場即是此電流所致。這種使天體磁場形成的原理,稱為發電機理論。 南北磁極通常位於地理極附近,但其位置在地質時間尺度上可以有較大的變化。這種變化極其緩慢,不足以干預指南針的日常使用。不過,平均每幾十萬年會發生一次地磁逆轉,即南北磁極突然(與地質時間尺度相比較)互相換位。每次逆轉都會在岩石中留下印跡,這對古地磁學研究十分重要。以此所得的數據有助科學家了解大陸和海床的板塊運動。 磁層指的是地磁場在電離層以上的影響範圍。它能夠向太空延伸幾萬公里,並且阻止太陽風和宇宙射線中的帶電粒子損毀地球大氣上層,因此使得阻擋紫外線的臭氧層不致消失。.

新!!: 弓形震波和地磁场 · 查看更多 »

磁層鞘

磁層鞘是在太空的行星磁層中介於磁層頂和弓形震波之間的區域。通常行星組織的磁場在磁層鞘的區域會因為太陽風的介入,因產生交互作用而變得不規則和減弱,並且不勝負荷的充滿了被偏轉的高能帶電粒子。 在這個區域能觀察到的粒子密度遠比弓形震波之外為低,但大於在內側的磁層頂,因此可以被視為是瞬間的過渡狀態。 由於長久以來誤解它只單純的是弓形震波和磁層頂交互作用下的副產物,對磁層鞘內部確實本質的科學研究受到了限制,而沒有注意它本身固有的性質。然而,近代的研究顯示磁層鞘是一個有活力的區域,動盪喧擾的電漿流對弓形震波和磁層頂的結構也許扮演著重要的角色,並且也許可以支配高能粒子流穿越過邊界。 由於太陽風的壓力,地球的磁層鞘在朝向太陽的這一面,在空間中佔據的典型的大小約是10倍地球半徑,背向太陽的一面則延伸得更為遙遠。磁層鞘確實的位置和範圍取決於太陽活動的變化。.

新!!: 弓形震波和磁層鞘 · 查看更多 »

磁層頂

磁顶,又称磁层顶。主要指地球磁场与太阳风作用形成的磁层的边界层。当然也可指一切磁化行星与恒星风作用形成磁层的边界。磁层顶外侧一直到弓形震波处被称磁层鞘。磁层顶内侧是磁层的边界层。.

新!!: 弓形震波和磁層頂 · 查看更多 »

磁层

磁層是一个天体周围、以该天体的磁场为主的地区。地球、木星、土星、天王星和海王星的周围均有磁層。火星仅有局部的磁场,因此不能形成一个磁層。除此之外其它拥有磁场的天体如脉冲星也有磁層。.

新!!: 弓形震波和磁层 · 查看更多 »

紅矩形星雲

紅矩形星雲,是鄰近麒麟座的一個原行星雲,因為它是紅色,形狀又是矩形,因此得到這個名字。他也被稱為HD 44179,是在1973年的一次稱為”Hi star”的AFCRL天空紅外線調查的火箭飛行過程中發現的,而在這個星雲中心的聯星系統在1915年就已經被Robert Grant Aitken發現。.

新!!: 弓形震波和紅矩形星雲 · 查看更多 »

终端激波

终端激波(termination shock)是太阳风由于接触到星际介质而开始减速的区域,是受太陽影響的空間中最外圍的邊界。在终端激波处,太陽風內的粒子與星際介質發生--,速度由每小时70-150万英里的速度迅速降低到亞音速以下,发生壓縮,温度升高,磁場也发生了變化。终端激波的位置距离太阳约75-90天文单位,并随着耀斑等太阳活动的不同而改变。 激波的出現是因為太陽風中的顆粒速度由400公里/秒降低至大約0.33公里/秒(聲音在空氣中的速度)以下造成的(不能忽略密度對實際速度的影響)。星際介質的密度雖然很低,仍會對太陽風產生一個固定的壓力,而來自太陽風的壓力會以與太陽距離平方的倒數逐漸減弱。當太陽風遠離太陽到足夠遠的距離後,星際介質的壓力變得足夠讓太陽風的速度降至音速之下,這就形成了震波。 在地球上也能觀察到其他形式的終端震波,或許最容易看見的就是經由水閥落入水槽中的水流。擊中水槽底部的水,是水流中速度最高的,並且高於已經存在水槽中的波速,在表面形成淺碟狀、迅速散開的水流(類似於稀薄的超音速太陽風)。環繞在淺碟的周圍,是由水形成的震波前緣或水牆,在震波前緣之外,水的移動速度比當地的波速還慢(類似以音速的星際介質)。 在背離太陽的方向上,終端震波跟隨在日球層頂之後,這是太陽風的粒子被星際介質擋住的地方,然後弓形震波通過之後,來自星際介質的粒子就不會再被激發了。 有证据显示,-zh-hans:旅行者1号; zh-hant:航海家一號;-探测器于2004年12月份飞抵距太阳94天文单位处,探测器上的仪器读数发生了变化,表明它已经穿越了太阳的终端激波。而结合旅行者2号的数据表明,终端激波的形状可能是不规则的,在太阳的北半球稍微凸起,而在南半球稍微凹陷一些。在星际边界探测器(IBEX)的任務中,將試著收集更多有關於太陽系的終端震波資料。.

新!!: 弓形震波和终端激波 · 查看更多 »

費米輝光

費米輝光是顆粒發出的強烈紫外線"".

新!!: 弓形震波和費米輝光 · 查看更多 »

黑寡婦脈衝星

黑寡婦脈衝星(Black Widow Pulsar,編號 B1957+20)是一顆和棕矮星以軌道週期9.2小時互繞組成食雙星的毫秒脈衝星,並且每次環繞有約20分鐘的恆星食。當該脈衝星於1988年發現時是第一個已知的食雙星中的脈衝星。.

新!!: 弓形震波和黑寡婦脈衝星 · 查看更多 »

金星大氣層

金星大氣層是由俄羅斯科學家米哈伊爾·瓦西里耶維奇·羅蒙諾索夫於1761年在聖彼得堡觀測金星凌日時發現的。它比地球大氣層更為厚重與濃密,其表面溫度為740 K或467°C,而氣壓則為93大氣壓,主要為二氧化碳所構成。金星的大氣層中有硫酸形成的不透明雲,因此在地球或金星環繞探測器上不可能以可見光觀測金星表面。金星表面的地形是以雷達成像的方式探測得知。金星大氣層主要由二氧化碳和氮組成,以及少許痕量氣體。 金星的大氣層受到超高速大氣環流和超慢速自轉影響。金星的大氣環流只需要四個地球日就可以環繞金星一周,但金星的恆星日卻有243日。金星的風速最高可達到100 m/s或360 km/h,是金星自轉速度的60倍;而地球最高速的風速度只有地球自轉速度的10%到20%。另一方面,金星的風速隨高度下降而降低,在表面時風速大約是10 km/h。金星兩極則有屬於反氣旋的極地渦旋。每個氣旋都有兩個風眼,並且有特殊的S型雲結構。 金星和地球不同的是它缺乏磁場,而金星的電離層將大氣層和太空以及太陽風分離。電離層將太陽磁場隔離,使金星的磁場環境相當特殊,造成金星的磁層是「誘發磁層」。包含水蒸氣等較輕氣體則持續被太陽風經由誘發磁尾吹出金星大氣層。推測40億年前的金星大氣層與表面有液態水的地球大氣層相當類似。失控溫室效應(Runaway greenhouse effect)造成金星表面的液態水蒸發,並且使其他溫室氣體含量上升。 儘管金星表面的狀況相當嚴苛,在金星大氣層50到65公里高的地方氣壓與溫度卻與地球相若,使金星的高層大氣是太陽系中環境最類似地球的地方,甚至比火星表面更類似。因為溫度和壓力類似,並且在金星上可呼吸空氣(21%的氧和78%的氮)是上升氣體,類似地球大氣層中的氦。因此有人提出可在金星的高層大氣進行探測和殖民。 2013年1月29日,歐洲太空總署科學家宣布金星電離層物質外流的模式與「類似條件下來自彗星彗核的離子尾」類似。.

新!!: 弓形震波和金星大氣層 · 查看更多 »

PSR J0357+3205

PSR J0357+3205是一顆距離地球約1600光年的脈衝星,位於英仙座,由费米伽玛射线空间望远镜發現於2009年。.

新!!: 弓形震波和PSR J0357+3205 · 查看更多 »

恆星運動學

恆星運動學是研究恆星的運動但無須瞭解它們如何獲得運動原因的學門。這不同於恆星動力學,它必須考慮到引力的效應。一顆恆星相對於太陽的運動,可以提供有用的資訊,包括恆星的來源和年齡,以及所繞行星系的結構和演化。 在天文學,已經廣泛的接受恆星誕生於被稱為恆星育嬰室的分子雲內。在這樣的雲氣內形成的恆星會組成有數打至數千顆恆星的疏散星團。這種星團會隨著時間而潰散,分離的恆星將聚集成為另一種稱為星協的恆星集團。如果這些殘餘的恆星通過一些相干的組合在星系中共同漂流,它們就會被稱為移動星群。.

新!!: 弓形震波和恆星運動學 · 查看更多 »

水星磁場

水星磁場近似於磁偶極 (意思是這個磁場只有兩個磁極),這是值得注意,而且是全球性的,在水星。 依據水手10號太空船於1974年發現的資料,水星磁場的強度只有地球的1.1% 。磁場的起源可以用發電機原理來解釋,並且因為磁場是足夠強大,可以在附近形成弓形震波,減緩太陽風的速度,誘發磁層。.

新!!: 弓形震波和水星磁場 · 查看更多 »

激波 (天文物理)

波在天文物理的環境中屢見不鮮。一些在天文物理中的激波例子如下:.

新!!: 弓形震波和激波 (天文物理) · 查看更多 »

木卫三

* 注意:在希臘神話方面,名稱叫做伽倪墨得斯。關於天文學方面,名稱叫蓋尼米德,也可以叫做甘尼米德。 木卫三又稱為「蓋尼米德」(Ganymede,),是围绕木星运转的一颗卫星,公转周期约为7天。按距离木星从近到远排序,木卫三在木星的所有卫星中排第七,在伽利略卫星中排第三。它与木卫二及木卫一保持着1:2:4的轨道共振关系。木卫三是太阳系中最大的卫星,其直径大于水星,质量约为水星的一半。 木卫三主要由硅酸盐岩石和冰体构成,星体分层明显,拥有一个富铁的、流动性的内核。人们推测在木卫三表面之下200公里处存在一个被夹在两层冰体之间的咸水海洋。木卫三表面存在两种主要地形。其中较暗的地区约占星体总面积的三分之一,其间密布着撞击坑,地质年龄估计有40亿年之久;其余地区较为明亮,纵横交错着大量的槽沟和山脊,其地质年龄较前者稍小。明亮地区的破碎地质构造的产生原因至今仍是一个谜,有可能是潮汐热所导致的构造活动造成的。 木卫三是太阳系中已知的唯一一颗拥有磁圈的卫星,其磁圈可能是由富铁的流动内核的对流运动所产生的。 其中的少量磁圈与木星的更为庞大的磁场相交迭,从而产生了向外扩散的场线。木卫三拥有一层稀薄的含氧大气层,其中含有原子氧,氧气和臭氧,同时原子氢也是大气的构成成分之一。而木卫三上是否拥有电离层还尚未确定。 一般认为木卫三是由伽利略·伽利莱在1610年首次观测到的。后来天文学家西门·马里乌斯建议以希腊神话中神的斟酒者、宙斯的爱人蓋尼米德为之命名。 从先驱者10号开始,多艘太空船曾近距离掠过木卫三。旅行者号太空船曾经精确地测量了该卫星的大小,伽利略号探测器则发现了它的地下海洋和磁场。此外,一个被称为“木衛二-木星系統任務”的全新的探测木星的冰卫星的计划,预计将会于2020年实施。.

新!!: 弓形震波和木卫三 · 查看更多 »

木星

|G1.

新!!: 弓形震波和木星 · 查看更多 »

木星的磁層

木星的磁層是太陽風在木星的磁場創造出來的空腔(太陽風的低密度空間),在朝向太陽的方向上延伸超過700萬公里,背向太陽的方向上則幾乎達到土星的軌道。木星的磁層是太陽系的行星磁層中最強大,也是體積最大的連續結構體(僅次于日球)。比起地球的磁層,木星的磁層更寬且更扁平,而且強了數個數量級,它的磁矩大約是地球的18,000倍。早在1950年代末期,無線電波的觀測就首先推測出木星磁場的存在,先鋒10號在1973年更直接測量到木星的磁場。 木星內部的磁場是由液態金屬氫構成的外核電流產生的。木星衛星,埃歐上的火山噴發,產生大量的二氧化硫氣體進入太空,在木星的附近形成巨大的氣體環,木星的磁場迫使這個環以與木星自轉相同的方向與相同的角速度旋轉。這些環攜帶了與電漿在一起的磁場,在過程中它被拉成煎餅狀的結構,稱為磁盤。結果是,木星的磁層是由埃歐的電漿和它自身的旋轉決定了形狀,而不像地球的磁層形狀是由太陽風造成的。磁層中強大的電流在木星的極區形成永駐的極光和強烈多變的無線電波,圍繞著木星的極軸,這意味著木星可以被視為非常微弱的電波脈衝星。木星的極光幾乎包括所有的電磁波頻譜,像是紅外線、可見光、紫外線和軟X射線。 木星的磁層有捕獲粒子並使粒子加速的作用,產生類似地球的范艾倫輻射帶,但強大了千萬倍輻射帶。高能粒子與木星巨大的衛星表面的交互作用,對它們的物理和化學性質有顯著的影響。這些相同的粒子也影響木星稀薄的行星環內的粒子。輻射帶的存在很明顯地會危害探測器和在太空旅行的人類。.

新!!: 弓形震波和木星的磁層 · 查看更多 »

月球探勘者

月球探勘者號(或月球勘探者號;Lunar Prospector)是NASA探索計畫中第三個行星探測任務。本計畫花費總共6280萬美金,任務時間19個月。月球探勘者是以低高度極軌道環繞月球的探測器。月球探勘者的主要任務是對月球表面物質組成、南北極可能的水冰沉積、月球磁場與重力場進行研究。1999年7月31日該衛星撞擊靠近月球南極點的撞擊坑結束任務;原本預期撞擊時揚起的表土可以檢測到水的存在,但並未成功。 月球探勘者號的資料讓科學家可以以此繪製月球表面組成礦物分布圖,並讓我們進一步了解月球的形成和演化。 月球探勘者號是由NASA的(Ames Research Center)主持;衛星承包商是洛克希德·馬丁。 月球探勘者也搭載了舒梅克-李維九號彗星發現人尤金·舒梅克博士(1928年4月28日-1997年7月18日)的部分骨灰。他是至今唯一葬在月球的人。.

新!!: 弓形震波和月球探勘者 · 查看更多 »

戴森球

戴森球(Dyson Sphere)是弗里曼·戴森假想出的包围母恒星的巨大球形结构,它可以捕获大部分或者全部的恒星能量输出。戴森认为戴森球是长期生存技术文明对于能量需求增长的必然需求,并认为寻找其存在的证据可以引导发现的先进和智慧的外星生命。不同类型的戴森球和它们的能量收集能力将对应于在卡尔达肖夫指数水平上的技术进步。 自从该概念提出以后,诸多科幻作品里提出的包围恒星的人工建筑都被冠以“戴森球”之名。后续的设想认为戴森球上不仅有太阳能电站,还有人类殖民地和工业基地存在。.

新!!: 弓形震波和戴森球 · 查看更多 »

星际边界探测器

星际边界探测器(Interstellar Boundary Explorer,简称IBEX)是美国国家航空航天局一颗旨在绘制太阳系和星际空间边界地图的人造卫星。这项任务是NASA小探测器飞行任务的一部分,由飞马座XL火箭于2008年10月19日17:47:23(UTC)成功发射。 IBEX探测器获得的数据多次震惊了科学界,并推翻了旧理论。首次震惊是因为它发现了一次窄带高能中性原子喷射。然后它发现了此带随时间的移动。另一项令人惊讶的发现是未找到弓形激波。推翻弓形激波理论造成了巨大的影响,因为几十年来的研究都是以其为基础的。 这次任务的设计和运行是由美国西南研究院所领导的,此外洛斯阿拉莫斯国家实验室和洛克希德·马丁公司的高技术中心参与了合作,分别负责研制IBEX-Hi和IBEX-Lo传感器。轨道科学公司制造了这个航天器,也是卫星进行实验测试的地点。名义上本次任务至少进行两年,以观测整个太阳系边界。而这已经于2011年完成,之后它的任务延长到了2013年以继续进行观测。 IBEX以面向太阳自旋稳定的轨道绕地球运转。2011年6月,IBEX变轨到了一个更有效的轨道。这个轨道不再接近月球,维持轨道所需燃料也有所减少。.

新!!: 弓形震波和星际边界探测器 · 查看更多 »

海王星

海王星是太陽系八大行星中距离太阳最远的,體積是太陽系第四大,但質量排名是第三。海王星的質量大約是地球的17倍,而類似雙胞胎的天王星因密度較低,質量大約是地球的14倍。海王星以羅馬神話中的尼普顿(Neptunus)命名,因為尼普顿是海神,所以中文譯為海王星。天文學的符號(♆,Unicode編碼U+2646),是希臘神話的海神波塞頓使用的三叉戟。 作爲一個冰巨行星,海王星的大氣層以氫和氦為主,還有微量的甲烷。在大氣層中的甲烷,只是使行星呈現藍色的一部分原因。因為海王星的藍色比有同樣份量的天王星更為鮮豔,因此應該還有其他成分對海王星明顯的顏色有所貢獻。 海王星有太陽系最強烈的風,測量到的風速高達每小時2,100公里。 1989年航海家2號飛掠過海王星,對南半球的大黑斑和木星的大紅斑做了比較。海王星雲頂的溫度是-218 °C(55K),因為距離太陽最遠,是太陽系最冷的地區之一。海王星核心的溫度約為7,000 °C,可以和太陽的表面比較,也和大多數已知的行星相似。 海王星在1846年9月23日被發現, 是唯一利用數學預測而非有計畫的觀測發現的行星。天文學家利用天王星軌道的攝動推測出海王星的存在與可能的位置。迄今只有航海家2號曾經在1989年8月25日拜訪過海王星。2003年,美國國家航空暨太空總署提出有如卡西尼-惠更斯號科學水準的海王星軌道探測計畫,但不使用熱滋生反應提供電力的推進裝置;這項計劃由噴射推進實驗室和加州理工學院一起完成。.

新!!: 弓形震波和海王星 · 查看更多 »

日球層頂

日球層頂(Heliopause),也稱為太陽風層頂,是天文學中表示出自太陽的太陽風遭遇到星際介質而停滯的邊界。 太陽風在星際介質(來自銀河的氫和氦氣體)內吹出的氣泡被稱為太陽圈,在這氣泡的邊界外面就是太陽風再也推不動的龐然巨物星際介質。這個邊界通常稱為日球層頂,並且被認為是太陽系的外層邊界。 在日球層頂內的邊界稱為終端震波,是太陽風的微粒從超音速被星際介質減低到亞音速的區域。在終端震波和日球層頂中間的區域就是日鞘。 在日球層頂之外,星際介質和日球層頂的交互作用在太陽前進方向的前方產生弓形震波。 在弓形震波和日球層頂之間存在著一層,因為星際物質和日球層頂邊緣作用形成的炙熱氫氣組成的氫氣牆。 日球層頂被假設在繞銀河的軌道上前進的前方是比較小的,他的大小會因為太陽風的速度和星際介質區域性的密度的變化而改變,已經知道最遠的地方還在矮行星冥王星軌道之外。依據NASA的公告,現在還在服務中的旅行者1号和旅行者2号探测器,已經在2005年5月24日和2006年5月23日先後抵達了終端震波,並期待著兩艘太空船都能抵達日球層頂。另一方面,星際邊界探測器(IBEX)預計在2008年發射,在二年內抵達日球層頂並傳送回影像。 當太陽發射出的微粒遭遇到星際間的物體時,會減速並釋能量。許多的微粒累積在日球層頂附近,由於他們減速所積蓄的能量造成的衝激波。 日球層頂的另一種可以選擇或被接受的定義是:太陽系磁層的磁層頂和銀河系的電漿交會的地區。.

新!!: 弓形震波和日球層頂 · 查看更多 »

重定向到这里:

弓形激波弓型震波弓激波艏震波

传出传入
嘿!我们在Facebook上吧! »