我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

广义黎曼猜想

指数 广义黎曼猜想

黎曼猜想是数学中最重要的猜想之一,描述了黎曼ζ函数非平凡零点的分布规律。而其中黎曼ζ函数可以用各种整体L函数(global L-function)替代,由此得到黎曼猜想不同类型的推广。这些推广的猜想描述的是不同L函数非平凡零点分布的规律。许多数学家相信这些猜想是正确的。不过其中仅有部分函数域情形下的推广得到了证明。 整体L函数可以与椭圆曲线、数域(此时称为戴德金ζ函数)、马斯形式(Maass form)或狄利克雷特征(此时称为狄利克雷L函数)相联系。其中,描述戴德金ζ函数的黎曼猜想被称为扩展黎曼猜想(extended Riemann hypothesis,ERH),而描述狄利克雷L函数的黎曼猜想则被称为广义黎曼猜想(generalized Riemann hypothesis,GRH)。(也有许多数学家用“广义黎曼猜想”用作对各种整体L函数推广的总称,而非单指狄利克雷L函数下的情形。).

目录

  1. 12 关系: AKS質數測試希尔伯特-波利亚猜想伊萬·維諾格拉多夫弱哥德巴赫猜想哥德巴赫猜想米勒-拉宾检验狄利克雷级数狄利克雷L函數黎曼猜想黎曼ζ函數輾轉相除法數論主題列表

AKS質數測試

AKS質數測試(又被稱為 Agrawal–Kayal–Saxena質數測試 和 Cyclotomic AKS test)是一個決定型質數測試演算法 ,由三個來自的計算機科學家,、和,在2002年8月6日發表於一篇題為質數屬於P的論文。Manindra Agrawal, Neeraj Kayal, Nitin Saxena, "", Annals of Mathematics 160 (2004), no.

查看 广义黎曼猜想和AKS質數測試

希尔伯特-波利亚猜想

希尔伯特-波利亚猜想(Hilbert–Pólya conjecture)是一个将谱论与黎曼猜想相联系的数学猜想。.

查看 广义黎曼猜想和希尔伯特-波利亚猜想

伊萬·維諾格拉多夫

伊萬·維諾格拉多夫(Ива́н Матве́евич Виногра́дов,),蘇聯數學家,專精於解析數論。.

查看 广义黎曼猜想和伊萬·維諾格拉多夫

弱哥德巴赫猜想

弱哥德巴赫猜想,又称为奇数哥德巴赫猜想、三素数问题,其表述为: 如果强哥德巴赫猜想成立,便可以推出此猜想,故这一猜想被称为“弱”哥德巴赫猜想。(强哥德巴赫猜想成立意味着大于4的偶数都可表示为两个奇素数之和,再加上3就可以使大于7的奇数表示为三个奇素数之和) 1923年,英国数学家哈代与李特尔伍德证明,假设广义黎曼猜想成立,弱哥德巴赫猜想对充分大的奇数是正确的。 1937年,苏联数学家伊万·维诺格拉多夫(Ivan Vinogradov)更进一步,在无需广义黎曼猜想的情形下,直接证明了充分大的奇数可以表示为三个素数之和,被称为维诺格拉多夫定理。不过由于维诺格拉多夫的证明使用了西格尔-瓦尔菲施定理(Siegel–Walfisz theorem),因而无法给出“充分大”的界限。他的学生博罗兹金(K.

查看 广义黎曼猜想和弱哥德巴赫猜想

哥德巴赫猜想

哥德巴赫猜想(Goldbach's conjecture)是數論中存在最久的未解問題之一。这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中。用现代的数学语言,哥德巴赫猜想可以陳述為: 这个猜想与当时欧洲数论学家讨论的整数分拆问题有一定联系。整数分拆问题是一类讨论“是否能将整数分拆为某些拥有特定性质的数的和”的问题,比如能否将所有整数都分拆为若干个完全平方数之和,或者若干个完全立方数的和等。而將一个給定的偶數分拆成兩個質數之和,则被稱之為此數的哥德巴赫分拆。例如, 換句話說,哥德巴赫猜想主張每個大於等於4的偶數都是哥德巴赫數——可表示成兩個質數之和的數。哥德巴赫猜想也是二十世纪初希爾伯特第八問題中的一個子問題。 其實,也有一部分奇數可以用兩個質數的和表示,大多數的奇數無法用兩個質數的和表示,例如:15.

查看 广义黎曼猜想和哥德巴赫猜想

米勒-拉宾检验

米勒-拉賓質數判定法是一种質數判定法則,利用随机化算法判断一个数是合数还是可能是素数。卡内基梅隆大学的计算机系教授Gary Lee Miller首先提出了基于广义黎曼猜想的确定性算法,由于广义黎曼猜想并没有被证明,其后由以色列耶路撒冷希伯來大學的Michael O.

查看 广义黎曼猜想和米勒-拉宾检验

狄利克雷级数

在数学中,狄利克雷级数是如下形式的无穷级数: 其中s是一个复数,an是一个复数列。 狄利克雷级数在解析数论中有重要的地位。黎曼ζ函数和狄利克雷L函数都可以用狄利克雷级数来定义。有猜测所有的狄利克雷级数组成塞尔伯格类函数都满足广义黎曼猜想。狄利克雷级数的名称来源于数学家約翰·彼得·狄利克雷。.

查看 广义黎曼猜想和狄利克雷级数

狄利克雷L函數

在數學中,狄利克雷L函數是狄利克雷級數的特例,它是形如下式的複變數函數 在此 \chi 是一個狄利克雷特徵,s \in \mathbb 的實部大於一。此函數可解析延拓為整個複平面上的亞純函數。 約翰·彼得·狄利克雷證明對所有 \chi 俱有 L(1,\chi) \neq 0,並藉此證明狄利克雷定理。若 \chi 是主特徵,則 L(s,\chi) 在 s.

查看 广义黎曼猜想和狄利克雷L函數

黎曼猜想

黎曼猜想由德国數學家波恩哈德·黎曼(Bernhard Riemann)於1859年提出。它是數學中一個重要而又著名的未解決的問題(猜想界皇冠)。多年來它吸引了許多出色的數學家為之絞盡腦汁。.

查看 广义黎曼猜想和黎曼猜想

黎曼ζ函數

黎曼ζ函數ζ(s)的定義如下: 設一複數s,其實數部份> 1而且: \sum_^\infin \frac 它亦可以用积分定义: 在区域上,此无穷级数收敛并为一全纯函数(其中Re表示--的实部,下同)。欧拉在1740考虑过s为正整数的情况,后来切比雪夫拓展到s>1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓来扩展到一个定义在复数域(s, s≠ 1)上的全纯函数ζ(s)。这也是黎曼猜想所研究的函数。 虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齊夫定律(Zipf's Law)和(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。.

查看 广义黎曼猜想和黎曼ζ函數

輾轉相除法

在数学中,辗转相除法,又称欧几里得算法(Euclidean algorithm),是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。 两个整数的最大公约数是能够同时整除它们的最大的正整数。辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的差的最大公约数。例如,252和105的最大公约数是21();因为,所以147和105的最大公约数也是21。在这个过程中,较大的数缩小了,所以继续进行同样的计算可以不断缩小这两个数直至其中一个变成零。这时,所剩下的还没有变成零的数就是两数的最大公约数。由辗转相除法也可以推出,两数的最大公约数可以用两数的整数倍相加来表示,如。这个重要的結論叫做貝祖定理。 辗转相除法最早出现在欧几里得的《几何原本》中(大约公元前300年),所以它是现行的算法中歷史最悠久的。这个算法原先只用来处理自然数和几何长度(相當於正實數),但在19世纪,辗转相除法被推广至其他类型的數學對象,如高斯整数和一元多项式。由此,引申出欧几里得整环等等的一些现代抽象代数概念。后来,辗转相除法又扩展至其他数学领域,如纽结理论和多元多项式。 辗转相除法有很多应用,它甚至可以用来生成全世界不同文化中的传统音乐节奏。在现代密码学方面,它是RSA算法(一种在电子商务中广泛使用的公钥加密算法)的重要部分。它还被用来解丢番图方程,比如寻找满足中国剩余定理的数,或者求有限域中元素的逆。辗转相除法还可以用来构造连分数,在施图姆定理和一些整数分解算法中也有应用。辗转相除法是现代数论中的基本工具。 辗转相除法处理大数时非常高效,如果用除法而不是减法实现,它需要的步骤不会超过较小数的位数(十进制下)的五倍。拉梅于1844年证明了这点,同時這也標誌著计算复杂性理论的開端。.

查看 广义黎曼猜想和輾轉相除法

數論主題列表

這是數論的主題列表。參照.

查看 广义黎曼猜想和數論主題列表