目录
28 关系: 健神星,反照率,坤神星,天卫十四,天卫二,天卫八,天王星,天王星環,天文學辭彙,太陽系外行星之最列表,小行星881,土卫十一,土卫十四,土卫三,土卫五,土星,地球,哈普克參數,矮行星,灶神星,球面反照率,穀神星,義神星,衝日浪,金星,TrES-2b,木星,2010 WC9。
健神星
健神星是主帶小行星內第四大的小行星,稍微有一些橢圓,直徑大約有300-500公里,並且估計佔有小行星帶3%的質量。 在主帶中,它是黑暗的C型小行星,也是這一區內最大的一顆小行星。C型小行星是主帶外緣最主要的小行星,分佈在2.82天文單位的柯克伍德空隙之外。它黑暗的表面和與太陽的距離大於平均距離,使從地球觀測到的它在大的小行星中顯得很黯淡。事實上,在早先發現的23顆小行星中,它是第三暗的,只有芙女星(13號小行星)和海女星(17號小行星)在衝的時候仍比它暗淡。.
查看 幾何反照率和健神星
反照率
反照率(albedo)通常是指物體反射太陽輻射與該物體表面接收太陽總輻射的兩者比率或分數度量,也就是指反射輻射與入射總輻射的比值。 反照率或反射係數,是從拉丁文的“白反照”("albedo whiteness"),或“反射的陽光”衍伸出來的,意思是漫反射或是表面反射的能力。 它是從表面反射輻射與入射輻射的比率,是無量綱量。其性質以百分比來表示,度量上從完全黑的表面反照率為0,至表面完美的白色反照率為1。 註解:因為它是以全部的反射輻射對入射輻射,所以包括漫反射和鏡面反射。射輻射對入射輻射的它將包括彌漫性和鏡面反射輻射反映。它們共同承擔表面的反射,然而我們通常假設只有完全漫射或只有完全的鏡面反射,以簡化計算。 反照率取決於輻射的頻率。當引用時未加說明,通常是指適當且平均跨越可見光的光譜。一般情況下,反照率取決於入射輻射的方向分布,除了朗伯表面,其分散是以餘弦函數輻射在所有的方向上,因此反照率是獨立分布的事件。在實務上,雙向反射分布函數(BRDF)可能需要精確的表面特徵的散射特性,但反照率是非常有用的一次近似值。 反照率在氣象學、天文學是非常重要的概念,在LEED可持續系統性的評量建築物,計算表面的反射率。地球的整體平均反照率,是行星反照率,因為雲層的覆蓋,是30到35%,但由於不同的地質環境特徵,局部的表面有廣泛的不同。 約翰·海因里希·朗伯在1760年將Photometria這個名詞引入光學。.
查看 幾何反照率和反照率
坤神星
坤神星(106 Dione)是一顆巨大的主帶小行星,是J.C.沃森在1868年10月10日發現的,並且依據希臘神話泰坦族的坤神命名為坤神星;但有時也會被當成希臘神話愛與美的女神阿芙羅狄蒂。它的成分可能類似於穀神星,被歸類為與木星軌道有2:1共振的海丘巴群小行星。 在1983年1月19日,在荷蘭、丹麥和德國觀測到坤神星掩蔽了一顆暗星,推斷出他的直徑是147 ± 3公里,與IRAS獲得的值相吻合。此外,质量为3.3×1018千克,公转周期为2059.923天。 IRAS進行的測量,坤神星的直徑是169.92 ± 7.86公里,並且幾何反照率是0.07 ± 0.01。相較)之下,史匹哲太空望遠鏡的MIPS光度計測量所得的直徑是168.72 ± 8.89,幾何反照率是0.07 ± 0.01。掩星觀測時的結果顯示直徑是176.7 ± 0.4公里。 在2004-2005年間,光度計的觀測顯示坤神星自轉週期是16.26 ± 0.02小時,光度則有0.08 ± 0.02星等的變化。 土星的一顆衛星,土衛四也有相同的名字,但音譯為戴翁尼。.
查看 幾何反照率和坤神星
天卫十四
天卫十四(,發音:,)(S/1986 U 5, Belinda)是天王星的一顆內衛星。 天衛十四是從1986年1月13日由旅行者2号 觀測圖像發現的,臨時編號是 S/1986 U 5.
查看 幾何反照率和天卫十四
天卫二
天卫二(烏姆柏里厄爾,Umbriel,国际音标:)是天王星的衛星,以亞歷山大·蒲柏的作品秀髮劫裡的角色烏姆柏里厄爾命名。它與天衛一同時由威廉·拉塞尔在1851年10月24號發現。 天卫二的直徑比天衛一大10公里,但密度相同。 天卫二主要由冰和岩石組成,其中冰占天衛二表面的多數,而它的地幔和核心可能分別由冰和岩石組成。天卫二的構造與天衛四類似,但天衛四的體積比天衛二大35%。 天卫二是天王星所有衛星中最暗的,反射率只有18%。因為天卫二上有多處峽谷,內部可能有變動,因此天衛二可能有過一些地殼變動的事件。 天衛二在早期常常被隕石撞擊,因此表面上有大大小小的隕石坑,在天王星所有衛星裡隕石撞擊坑数量僅次於天衛四。最大的隕石坑直徑至少有210公里。天衛二其中一個表面特徵是在旺達隕石坑(Wunda crater)最低點的一圈明亮圓環。天衛二與天王星其它衛星一樣,可能是由天王星的吸積盤所組成。航海家二號經過天王星时深入研究过天卫二,这也是人類第一及唯一一次對其深入研究。航海家二號在經過天衛二时拍下的照片可以讓天文測繪家繪畫天衛二40%的表面。.
查看 幾何反照率和天卫二
天卫八
天卫八(Uranus VIII),又名「碧安卡」(Bianca, ,與小行星歌女星重名),是环绕天王星运行的一颗內衛星。於1986年1月23日由旅行者2号發現,並曾暫時定名為S/1986 U 9。質量約9.2×1016公斤,平均半徑約為25.7 ± 2 公里。該衛星以威廉·莎士比亚作品《馴悍記》中的角色命名。.
查看 幾何反照率和天卫八
天王星
天王星是從太陽系由内向外的第七顆行星,其體積在太陽系排名第三(比海王星大),質量排名第四(比海王星輕)。其英文名稱Uranus來自古希臘神話的天空之神烏拉諾斯(),是克洛諾斯的父親,宙斯的祖父。与在古代就为人们所知的五顆行星(水星、金星、火星、木星、土星)相比,天王星的亮度也是肉眼可見的,但由於較為黯淡以及緩慢的繞行速度而未被古代的觀測者认定为一颗行星。直到1781年3月13日,威廉·赫歇耳爵士宣布發現天王星,从而在太陽系的現代史上首度擴展了已知的界限。這也是第一顆使用望遠鏡發現的行星。天文學符號為、♅(♅,Unicode編碼U+2645) 天王星和海王星的內部和大氣構成不同於更巨大的氣體巨星,木星和土星。同樣的,天文學家設立了不同的「冰巨行星」分類來安置她們。天王星大氣的主要成分是氫和氦,還包含較高比例的由水、氨、甲烷等結成的「冰」,與可以探测到的碳氫化合物。天王星是太陽系內大气层最冷的行星,最低溫度只有49K(−224℃)。其外部的大气层具有複杂的雲層結構,水在最低的雲層內,而甲烷組成最高處的雲層。相比较而言,天王星的内部则是由冰和岩石所构成。 如同其他的巨行星,天王星也有環系統、磁層和許多衛星。天王星的環系統在行星中非常獨特,因為它的自轉軸斜向一邊,幾乎就躺在公轉太陽的軌道平面上,因而南極和北極也躺在其他行星的赤道位置上。從地球看,天王星的環像是環繞著標靶的圓環,它的衛星則像環繞著鐘的指針(雖然在2007年與2008年該環看來近乎水平)。在1986年,來自太空探测器航海家2號的影像资料顯示天王星實際上是一顆平平無奇的行星,在其可見光的影像中沒有出现像在其他巨行星所擁有的雲彩或風暴。然而,近年內,隨著天王星接近晝夜平分點,地球上的觀測者发现天王星有季節變化的迹象和漸增的天氣活動。天王星上的風速可以達到每秒250公尺。 在西方文化中,天王星是太陽系中唯一以希臘神祇命名的行星,其他行星都依照羅馬神祇命名。.
查看 幾何反照率和天王星
天王星環
天王星環是由直徑小於10米的黑暗顆粒物質組成的暗淡環系統,是繼土星環之後,在太陽系內第二個被人類發現的行星環系統。 已知的13個清晰的環中,最亮的是ε環。(re study by Stuart Eves).
查看 幾何反照率和天王星環
天文學辭彙
天文學辭彙是天文學上的一些術語。這項科學研究與關注的是在地球大氣層之外的天體和現象。天文學的領域有豐富的辭彙和大量的專業術語。.
查看 幾何反照率和天文學辭彙
太陽系外行星之最列表
以下是已知的太陽系外行星之最列表。此條目所列出的值都是已確定的:.
小行星881
小行星881(雅典娜星,881 Athene)是一颗主带小行星,是馬克斯·沃夫在1917年7月22日于海德堡发现的。其直径超过12 km,自转周期为13.895小时,幾何反照率为0.237。 小行星881以雅典娜命名 。.
查看 幾何反照率和小行星881
土卫十一
土衛十一又稱為「厄庇墨透斯」(Epimetheus),是土星的一顆內側衛星,它的專屬名稱厄庇墨透斯源自神話,是普羅米修斯的兄弟。.
查看 幾何反照率和土卫十一
土卫十四
土衛十四 又稱為「卡呂普索」(Calypso,; Καλυψώ) ,是土星的一顆天然衛星。它於1980年被發現,是Dan Pascu、P. Kenneth Seidelmann、William A. Baum、和Douglas G. Currie以地基的天文台觀測發現的,臨時名稱是 (1980年發現的第25顆土星衛星)。 在下列的月份中也記錄到一些其它的影像:、 、 、和。 在1983年,它獲得官方以希臘神話的卡呂普索 (Calypso),它也被標示為或Tethys C。 土衛十四(卡呂普索)與土衛三(忒堤斯)共軌,並且駐留在土衛三的拉格朗日點 (L5),跟隨在土衛三後方 60度。這個關係在1981年首度被 Seidelmann ''et al.''確認。 忒堤斯還有另一顆駐留在前方60度另一個拉格朗日點L4上的衛星 (土衛十三,泰勒斯托)。 土衛十三和土衛十四都被稱為土衛三 (忒堤斯) 的特洛伊,類似於特洛伊小行星,是目前所知4顆特洛伊衛星中的半數。 像許多小行星和土星的其它小衛星一樣土衛十三的形狀是不規則的,有巨大和重疊的坑穴,並且也有鬆動的表面物質,坑穴呈現出平滑的外觀。它是太陽系中表面反射率 (在可見光的波長上) 最高的天體之一,在視覺上的幾何反照率是1.34。這非常高的反射率是來自E環,一個由土衛二的南極的間歇泉噴出的、細小、水冰顆粒構成的暗淡的環,的噴砂顆粒。.
查看 幾何反照率和土卫十四
土卫三
土衛三又稱為「忒堤斯」(Tethys),是一顆土星的衛星,由義大利科學家喬凡尼·多美尼科·卡西尼在1684年3月21日所發現的。.
查看 幾何反照率和土卫三
土卫五
土卫五又稱為「瑞亞」(Rhea),是环绕土星运行的第二大卫星,並為太陽系中第九大的衛星。它是由法國天文學家乔凡尼·多美尼科·卡西尼於1672年所發現的。.
查看 幾何反照率和土卫五
土星
土星,為太陽系八大行星之一,至太阳距离(由近到远)位於第六、体积則僅次於木星。並與木星、天王星及海王星同属氣體(類木)巨星。古代中国亦称之填星或鎮星。 土星是中国古代人根据五行学说结合肉眼观测到的土星的颜色(黄色)来命名的(按照五行学说即木青、金白、火赤、水黑、土黄)。而其他语言中土星的名称基本上来自希臘/羅馬神話传说,例如在欧美各主要语言(英语、法语、西班牙语、俄语、葡萄牙语、德语、意大利语等)中土星的名称来自于羅馬神話中的农业之神萨图尔努斯(拉丁文:Saturnus),其他的还有希臘神話中的克洛諾斯(泰坦族,宙斯的父親,一说其在罗马神话中即萨图尔努斯)、巴比倫神话中的尼努尔塔和印度神话中的沙尼。土星的天文学符號是代表农神萨图尔努斯的鐮刀(Unicode: )。 土星主要由氫組成,還有少量的氦與微痕元素,內部的核心包括岩石和冰,外圍由數層金屬氫和氣體包覆著。最外層的大氣層在外观上通常情况下都是平淡的,雖然有时会有長时间存在的特徵出現。土星的風速高達1,800公里/時,明顯的比木星上的風快速。土星的行星磁場強度介於地球和更強的木星之間。 土星有一個顯著的環系統,主要的成分是冰的微粒和較少數的岩石殘骸以及塵土。已經確認的土星的衛星有62顆。其中,土卫六是土星系統中最大和太陽系中第二大的衛星(半徑2575KM,太陽系最大的衞星是木星的木衛三,半徑2634KM),比行星中的水星還要大;並且土卫六是唯一擁有明顯大氣層的衛星。.
查看 幾何反照率和土星
地球
地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.
查看 幾何反照率和地球
哈普克參數
哈普克參數(Hapke parameters)是常用來描述太陽系中無大氣層天體表面的表岩屑定向反射性質半經驗模型中的一組參數。該組參數是由美國匹茲堡大學行星科學家布魯斯·哈普克提出。.
查看 幾何反照率和哈普克參數
矮行星
行星(別稱中行星、準行星、侏儒行星)是具有行星級質量,但既不是行星,也不是衛星的太陽系天體。也就是說,它是直接環繞著太陽,並且自身的重力足以達成流體靜力平衡的形狀(通常是球體),但未能清除鄰近軌道上的其它小天體和物質。 矮行星這個項目是國際天文學聯合會在2006年8月通過環繞太陽天體的三種分類定義的一部分,導致新增加了發現的比海王星離太陽更遠的天體,其大小足以和冥王星匹敵,並且最後質量超過冥王星的天體,例如鬩神星。2006年,在國際天文學聯合會的行星定義上決議將矮行星排除在外,對此學界評價兩極。天文學家麥克·布朗認為這是正確的決定,而他是鬩神星和其它新矮行星的發現者。但拒絕接受這樣定義的阿蘭·斯特恩(Alan Stern),卻是在1991年4月創造矮行星這個名詞的天文學家。 國際天文學聯合會(IAU)目前承認的矮行星有5顆:、冥王星、、和。布朗批評官方的認可:「一個理性的人可能會認為,太陽系裡面只有5顆符合IAU定義的已知矮行星,但這些理性的人將無從修正。」 在另一份有數百顆已知的天體列在其中的清單,被懷疑都是太陽系的矮行星,估計在完整的探索過整個古柏帶之後,可能會發現200顆矮行星,而在探索過古柏帶以外的區域後,矮行星的總數可能超過10,000顆。個別的科學家認定的還有一些,麥克-布朗在2011年8月發表的清單中,從幾乎可以肯定到有可能是矮行星,就有390顆候選天體。布朗目前標示的11顆已知天體 -除5顆是已經被IAU認可的之外,還有(225088) 2007 OR10、、、、(307261) 2002 MS4和—是「幾乎可以確定」的,另外還有12顆是極有可能的Mike Brown, Accessed 2013-11-15。斯特恩也指出還有十多顆已知的矮行星Alan Stern,, August 24, 2012。 然而,只有兩顆天體,穀神星和冥王星,有足夠詳細的觀測資料可以確定它們符合國際天文學聯合會的定義。國際天文學聯合會接受鬩神星是矮行星,是因為它比冥王星更大。他們附帶決議尚未命名的海王星外天體,它們的絕對星等必須大於 +1(這意味著假設幾何反照率 ≤ 1,直徑就必須≥838公里),就會據以假設是矮行星來命名。目前,只有鳥神星和妊神星是依據這個程序被承認是矮行星。國際天文學聯合會還沒有討論其它可能是矮行星天體的相關問題。 在其它行星系統的分類中,並未列出矮行星的特徵。.
查看 幾何反照率和矮行星
灶神星
星, 小行星序號為4 Vesta,是太陽系最大的小行星之一,平均直徑。它是海因里希·歐伯斯在1807年3月29日發現的,以羅馬神話中家和壁爐的女神Vesta命名,中文翻譯為灶神星。 灶神星是繼矮行星穀神星之後,質量第二大的主帶小行星 ,佔有主小行星帶總質量的9%。 質量雖然比智神星多一點點,但體積卻比較小,是體積第三大的小行星。灶神星形成岩質行星剩餘的原行星(內部分異)。一、二億年前,灶神星曾經被撞擊,產生了許多碎片,並留下兩個巨大的撞擊坑,而且南半球有著很高的密度。這次事件的一些碎片已經墬落到地球,成為HED隕石,提供了有關灶神星的豐富資訊來源。 灶神星是從地球可以看見的最亮的小行星,它距離太陽最遠時的距離只比穀神星最近的距離遠了一點,不過灶神星的軌道完全都在穀神星的軌道之內。 NASA的''黎明號''太空船在2011年7月16日至2012年9月5日進入環繞灶神星的軌道,進行了將近一年的探測,然後前往穀神星。研究人員繼續分析黎明號收集到的資訊,期望能更了解灶神星的形成和歷史。.
查看 幾何反照率和灶神星
球面反照率
球面反照率(Bond albedo)是由美國天文學家乔治·邦德提出,並以他的姓氏命名。它的定義是天體反射入太空的所有電磁輻射和入射的電磁輻射功率比例。它考慮到了所有相位角上的所有波長電磁輻射。.
查看 幾何反照率和球面反照率
穀神星
星(Ceres,; 小行星序號:1 Ceres)是在火星和木星軌道之間的主小行星帶中最亮的天體。它的直徑大約是,使它成為海王星軌道以內最大的小行星。在太陽系天體大小列表排名第35,是在海王星軌道內唯一被標示為矮行星的天體。穀神星由岩石和冰組成,估計它的質量佔整個主小行星帶的三分之一。穀神星也是主小行星帶唯一已知自身達到流體靜力平衡的天體。從地球看穀神星,它的視星等範圍在+6.7至+9.3之間,因此即使在最亮時,除非天空是非常的黑暗,否則依然是太暗淡而難以用肉眼直接看見。1801年1月1日意大利人朱塞普·皮亞齊在巴勒莫首先發現了穀神星。最初被當成一顆行星,随着越來越多的小天體在相似的軌道上被發現,因此在1850年代被重分類為小行星。 穀神星顯示已經有區分成岩石、核和冰的地函,並且在冰層之下可能留有液態水的內部海洋。表面可能是水冰和不同的水合物礦物,像是黏土和碳酸鹽,的混合。在2014年1月,在穀神星的幾個地區都檢測到排放出的水蒸氣。這是出乎意料之外的,在主小行星帶的大天體床不會發出水蒸氣,因為這是彗星的特徵。 美國NASA的機器人曙光號在2015年3月6日進入繞行穀神星的軌道。從2015年1月,曙光號就以前所未見的高解析度傳回影像,顯示表面有著坑坑窪窪。兩個獨特的亮點(或高反照率特徵)出現在撞擊坑內(不同於早些時候哈伯太空望遠鏡在一個撞擊坑中觀測到的影像。);出現於2015年2月19日的影像,導致考慮可能有冰火山 或釋氣的發想。在2015年3月3日,NASA的一位發言人說,這些點符合含冰或鹽的反光物質,但不太可能是冰。在2015年5月11日,NASA釋放出高解析的影像,顯示不是一個或兩個點,實際上在高解析的影像上有好幾個。在2015年12月9日,NASA的科學家報導,穀神星的亮斑可能是一種類型的鹽類,特別是“滷水”,包括硫酸鎂等硫酸水合物(MgSO4·6H2O);也發現這些斑點與富含氨的黏土相關聯。2015年10月,NASA釋出了由曙光號拍攝的真實色彩穀神星影像。.
查看 幾何反照率和穀神星
義神星
義神星(5 Astraea),平均直徑119千米,由亨克(K.
查看 幾何反照率和義神星
衝日浪
衝日浪(opposition surge,有時稱為衝日效應、衝日尖峰或西利格效應)是當照明直接來自觀測者的後方,而在粗糙的表面,或有許多顆粒物體產生的亮光。這個名詞廣泛的應用在天文學,一般是指天體,如行星、月球或彗星,在觀測時的相位角接近零時,亮度突然明顯增加的現象。它會如此命名是因為在衝時月球和火星反射的光,比簡單的朗伯反射率所預測的亮度出現顯著的增加。對這種觀測的現象提出了兩種物理機制:陰影的隱匿性和相干的反向散射。.
查看 幾何反照率和衝日浪
金星
金星(英語、拉丁語:Venus,天文符號:♀),在太陽系的八大行星中,是從太陽向外的第二顆行星,軌道公轉週期為224.7地球日,它沒有天然的衛星。在中國古代稱為太白、明星或大囂,另外早晨出現在東方稱啟明,晚上出現在西方稱長庚。到西漢時期,《史記‧天官書》作者天文學家司馬遷從實際觀測發現太白為白色,與「五行」學說聯繫在一起,正式把它命名為金星。它的西文名稱源自羅馬神話的愛與美的女神,维纳斯(Venus),古希腊人称为阿佛洛狄忒,也是希腊神话中爱与美的女神。金星的天文符号用维纳斯的梳妆镜来表示。 它在夜空中的亮度僅次於月球,是第二亮的天然天體,視星等可以達到 -4.7等,足以照射出影子。由於金星是在地球內側的內行星,它永遠不會遠離太陽運行:它的離日度最大值為47.8°。 金星是一顆類地行星,因為它的大小、質量、體積與到太陽的距離,均與地球相似,所以經常被稱為地球的姊妹星。然而,它在其它方面則明顯的與地球不同。它有著四顆類地行星中最濃厚的大氣層,其中超過96%都是二氧化碳,行星表面的大氣壓力是地球的92倍。表面的平均溫度高達,是太陽系最熱的行星,比最靠近太陽的水星還要熱。金星沒有將碳吸收進入岩石的碳循環,似乎也沒有任何有機生物來吸收生物量的碳。金星被一層高反射、不透明的硫酸雲覆蓋著,阻擋了來自太空中,可能抵達表面的可見光。它在過去可能擁有海洋,並且外觀與地球極為相似,但是隨著失控的溫室效應導致溫度上升而全部蒸發掉了B.M.
查看 幾何反照率和金星
TrES-2b
TrES-2b或稱克卜勒1b(Kepler-1b),是一個環繞著天龍座恆星GSC 03549-02811(TrES-2)的太陽系外行星,距太陽系750光年。TrES-2b於2011年被確認是表面最暗的系外行星,它的反照率小於1%。該行星的質量和半徑代表它是組成成分類似木星的類木行星,但它極為靠近母恆星,因此是典型的熱木星。本行星系位於克卜勒太空望遠鏡的視野中。 多個計畫持續對 TrES-2b 進行研究,並持續獲得許多參數。2007年的研究獲得許多該行星和母恆星的參數。2008年研究總結母恆星 TrES-2 是一個聯星系統,這對測定行星與恆星參數有重要影響。.
木星
|G1.
查看 幾何反照率和木星
2010 WC9
(非正式名稱ZJ99C60)是一顆次公里級阿波羅型近地小行星,直徑約。於2010年由卡特林那巡天系統首次觀測了11天,其後於2018年5月以短於月球距離飛近地球時才再次被發現 。.