我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

希爾球

指数 希爾球

希爾球,又稱洛希球,粗略來說,是環繞在天體(像是行星)周圍的空间区域,那裡被它吸引的天體(像是衛星)受到它的控制,而不是被它繞行的較大天體(像是恆星)所控制。因此,行星若要能保留住衛星,則衛星的軌道必須在行星的希爾球內。同樣的,月球也會有它的希爾球,任何位於月球的希爾球內的天體將會成為月球的衛星,而不是地球的衛星。 更精確的說法,希爾球約為一個小天體在面對著一個大許多的天體的重力影響下,只會受到攝動影響的引力球範圍。這是美國天文學家喬治·威廉·希爾以法國天文學家愛德華·洛希的工作為基礎所定義的,由於這個緣故,它有時也被稱為洛希球。 為了說明,以考慮木星環繞著太陽為例,對太空中任何的點,可以計算下面三種力的總和:.

目录

  1. 24 关系: 半人马小行星古在機制天体列表天文單位太阳系女凱龍星環妊神星的卫星不規則衛星彗星土卫五土星的卫星地球喬治·希爾 (天文學家)冥族小天體火星的衛星熱木星麗亞環雙行星HD 106906 b洛希瓣準衛星木卫一星雲假說愛德華·洛希

半人马小行星

半人馬小行星被歸類為軌道不穩定的小行星,並競相以神話中半人馬族的神祇命名。所以選擇這一族的名稱是因為它們的行為一半像小行星,另一半則像彗星。半人馬小行星的軌道會穿越或曾經穿越過一顆或數顆氣體巨星的軌道,並且有數百萬年的動力學生命期。 第一顆類似半人馬小行星的天體是在1920年發現的小行星944(Hidalgo),但是在1977年發現凱龍之前,它們並未被認為是一個新的族群。已知最大的半人馬小行星是1997年發現的女凱龍星,它的直徑達到260公里,大小如同主帶中的一顆中等大小的小行星。 沒有半人馬小行星曾經被拍攝過近照,但有證據顯示在2004年被卡西尼號拍下特寫鏡頭的費貝可能是被土星捕獲的半人馬小行星。另一方面,哈伯太空望遠鏡也已經獲得一些飛龍星表面特徵的資訊。 ,三顆半人馬小行星被發現有彗星狀的彗髮活動:凱龍、厄開克洛斯(Echeclus)和,因此凱龍和厄開克洛斯暨歸屬於小行星也歸屬於彗星。其它的半人馬小行星,像是Okyrhoe被懷疑有類似彗星的活動。任何一顆受到攝動而接近太陽至足夠的距離內時,都可已被預期會成為彗星。.

查看 希爾球和半人马小行星

古在機制

古在機制是在天體力學中導致軌道傾角和離心率的周期性變化,也就是出現近心點參數振盪 (常數值的振幅)的機制。 日本天文學家古在由秀在1962年分析小行星的軌道時描述了這種效應。從此以後,古在共振被發現是型塑行星的不規則衛星軌道,海王星外天體、一些太陽系外行星和多星系統等的一個重要因素。.

查看 希爾球和古在機制

天体列表

天体(Astronomical object),又稱星体,指太空中的物体,更廣泛的解釋就是宇宙中的所有的個体。.

查看 希爾球和天体列表

天文單位

天文單位(縮寫的標準符號為AU,也寫成au、a.u.或ua)是天文學上的長度單位,曾以地球與太陽的平均距離定義。2012年8月,在中国北京举行的国际天文学大会(IAU)第28届全体会议上,天文学家以无记名投票的方式,把天文单位固定为149,597,870,700米。新的天文单位以公尺来定义,而公尺的定义来源于真空中的光速,也就是说,天文单位现在不再与地球與太阳的實際距离挂钩,而且也不再受时间变化的影响(虽然天文单位最初的来源就是日地平均距离)。 國際度量衡局建議的縮寫符號是ua,但英語系的國家最常用的仍是AU,國際天文聯合會則推薦au,同時國際標準ISO 31-1也使用AU,后来的國際標準ISO 80000-3:2006又改成了ua。通常,大寫字母僅用於使用科學家的名字命名的單位符號,而au或a.u.也可以是原子單位或是任意單位;但是AU被廣泛的地區使用作為天文單位的符號。以1天文單位距離的值為單位的天文常數的值會以符號A標示。.

查看 希爾球和天文單位

太阳系

太陽系Capitalization of the name varies.

查看 希爾球和太阳系

女凱龍星環

女凱龍星環是圍繞直徑約250公里的半人馬小行星女凱龍星(小行星10199)的環系統,包含兩道狹窄但密集的環,寬度分別為6到7公里和2到4公里,相距9公里。女凱龍星環距離女凱龍星幾何中心400公里,約月球和地球距離的千分之一。它們是被歐洲南方天文台設於巴西、阿根廷和智利的天文台群在2013年6月3日的一次恆星掩星事件中發現,並於2014年3月26日公布。使女凱龍星成為唯一已知有環的小行星,並且是太陽系第五個被發現的環系統和太陽系目前擁有環的天體中體積最小者。 女凱龍星環的發現是一項出乎科學家意料的發現,因為一般認為只有在質量更大許多的天體才會有穩定的環系統。在這之前無論是以直接攝影或掩星都沒有發現小行星的環系統。目前仍不知道女凱龍星能維持環系統長期存在的原因,但小型牧羊犬衛星的存在可以限制環系統的範圍。發現的小組暱稱這兩道環是「Oiapoque」和「」,分別是巴西北部和南部靠著海邊的河流,稍後會向IAU提交正式的名稱。.

查看 希爾球和女凱龍星環

妊神星的卫星

位於外太陽系的矮行星妊神星擁有兩颗已知自然衛星:妊衛一和妊衛二。這些小衛星在2005年利用位於夏威夷凱克天文台的大型望遠鏡觀察妊神星時被發現。 妊神星的衛星在多方面都有不尋常之處。它們屬於妊神星族,妊神星的碰撞家族,在數十億年前一次破壞了妊神星冰幔的巨大撞擊所產生的碎冰中形成。妊衛一是較大且較遠的衛星,表面存在大量的水冰,這在古柏帶天體中甚為罕有。妊衛二的質量大約為妊衛一的十分之一,軌道傾角異常地高,其軌道也時常受較大的衛星所影響。.

查看 希爾球和妊神星的卫星

不規則衛星

不規則衛星是天文學中以逆行軌道環繞著行星的天然衛星,通常有著較遠的距離、傾角、和離心率。他們被認為是行星捕獲的,不同於規則衛星是原生的。 從1997年起,已經發現93顆不規則衛星,環繞著4顆巨行星(木星、土星、天王星和海王星)。在1997年之前,包括土星最大的不規則衛星Phoebe、木星最大的不規則衛星Himalia,只有10顆是已知的。天王星最大的不規則衛星Sycorax是在1997年發現的。目前認為不規則衛星原本是在靠近現在位置環繞太陽的日心軌道上,而在母行星形成不久之後就被捕獲。一種替代的理論,認為它們來自古柏帶,但現在的觀測並不支持這種說法。.

查看 希爾球和不規則衛星

彗星

彗星(Comet,有時也被誤記為慧星)是由冰構成的太陽系小天體(SSSB),當他朝向太陽接近時,會被加熱並且開始釋氣,展示出可見的大氣層,也就是彗髮,有時也會有彗尾。這些現象是由太陽輻射和太陽風共同對彗核作用造成的。彗核是由鬆散的冰、塵埃、和小岩石構成的,大小從P/2007 R5的數百米至海爾博普彗星的數十公里不等,但大部分都不會超過16公里。 彗星的軌道週期範圍也很大,可以從幾年到幾百萬年。短週期彗星來自超越至海王星軌道之外的柯伊伯帶,或是與離散盤有所關聯 。長週期彗星被認為起源於歐特雲,這是在古柏帶外面,伸展至最近恆星一半距離上,由冰凍天體構成的球殼。長週期彗星受到路過恆星和銀河潮汐的引力攝動而直接朝向太陽前進。雙曲線軌道的彗星可能在進入內太陽系之前曾經被沿著雙曲線軌跡被拋射至星際空間,則只會穿越太陽系一次。來自太陽系外,在銀河系內可能是常見的系外彗星也曾經被檢測到。 彗星與小行星的區別只在於存在著包圍彗核的大氣層,未受到引力的拘束而擴散著。這些大氣層有一部分被稱為彗髮(在中央包圍著彗核的大氣層),其它的則是彗尾(受到來自太陽的太陽風電漿和光壓作用,從彗髮被剝離的氣體、塵埃、和帶電粒子,通常呈線性延展的部分)。然而,熄火彗星因為已經接近太陽許多次,幾乎已經失去了所有可揮發的氣體和塵埃,所以就顯得類似於小的小行星。小行星被認為與彗星有著不同的起源,是在木星軌道內側形成的,而不是在太陽系的外側。主帶彗星和活躍的半人馬小行星的發現,已經使得小行星和彗星之間的差異變得模糊不清。 ,已經知道的彗星有4,894顆,其中大約有1,500顆是克魯茲族彗星和大約484顆短週期彗星,而且這個數量還在穩定的增加中。然而,這只是潛在彗星族群中微不足道的數量:估計在外太陽系的儲藏所內類似的彗星體數量可能達到一兆顆。儘管大多數的彗星都是暗淡和不夠引人注目的,但平均大概每年會有一顆裸眼可見的彗星,其中特別明亮的就會被稱為"大彗星"。 在2014年1月22日,ESA科學家的報告首次明確的指出在矮行星穀神星,也是小行星帶中最大的天體,有水氣存在。這項檢測是通過赫歇爾太空望遠鏡使用遠紅外線技術完成的。此一發現是出人意料之外的,因為彗星,不是小行星,才會有這種典型的"噴流萌芽和羽流"。根據其中一位科學家的說法:"彗星和小行星之間的區隔是越來越模糊了"。 古代也有彗星出现的记录,古人一般認為彗星是凶兆。.

查看 希爾球和彗星

土卫五

土卫五又稱為「瑞亞」(Rhea),是环绕土星运行的第二大卫星,並為太陽系中第九大的衛星。它是由法國天文學家乔凡尼·多美尼科·卡西尼於1672年所發現的。.

查看 希爾球和土卫五

土星的卫星

土星擁有62顆已確定軌道的天然衛星,其中52顆已命名,大部分體積都很小。另外還有幾百顆已知的“小衛星”,位於土星環內。有7顆衛星的質量足夠大,其重力使其坍縮成近球體形狀(因此若它們是直接環繞太陽公轉,則會歸為矮行星)。土星不但擁有複雜的環系統,其衛星系統也是太陽系中最多種多樣的。特別值得一提的有土衛六,它是太陽系第二大衛星,而且有著類似於地球的大氣層、液態碳氫化合物的湖泊、河流和降雨;另有土衛二,其南極地區底下很可能有液態水。 土星衛星之中有23顆為“規則衛星”,其順行的軌道和土星赤道平面的傾斜度並不高。當中有7顆大衛星、4顆與較大衛星共有軌道的特洛依衛星和一對共軌衛星。最後,兩顆衛星的軌道是在土星環縫中。這些規則衛星都以泰坦巨人族或其他與農神薩圖爾努斯相關的神祇之名來命名。 其餘的38顆較小衛星均為“不規則衛星”,其軌道距離土星更遠,軌道傾角更高,包括順行及逆行衛星。它們很可能是引力捕捉來的微型行星,或是微型行星分裂後的殘餘物,形成各個撞擊衛星群。這些不規則衛星根據軌道特性分爲:因紐特衛星群、諾爾斯衛星群、高盧衛星群,其名稱選自相關神話。 土星環由冰體組成,體積從顯微鏡程度到幾百米不等,各自有著自己圍繞土星的軌道。土星並沒有一個確切的衛星數目,因爲在組成環系統的小物體和被標誌為衛星的大物體之間並沒有明確的界限標準。根據量度對鄰近物質的干擾,至少有150顆位於環以內的“小衛星”被發現,但人們相信這只是總數的一小部分。 確認的衛星會由國際天文聯會賦予永久命名,包括名稱和羅馬數字。1900年之前發現的9顆衛星(土衛九是唯一一顆不規則衛星)以其距離土星的距離編號,而其餘的以其得到永久命名的順序編號。.

查看 希爾球和土星的卫星

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

查看 希爾球和地球

喬治·希爾 (天文學家)

喬治·威廉·希爾(George William Hill,),美國天文學家、數學家。.

查看 希爾球和喬治·希爾 (天文學家)

冥族小天體

在天文學中,冥族小天體或类冥小天体(plutino)是與海王星有2:3的平均運動共振的海王星外天體,Plutinos這個名稱是在冥王星之後才有的,使用了義大利文表示小的附加語詞-ino,指像冥王星一樣被困在共振軌道中的小天體。名稱只提到軌道共振,並不涉及其他的物理性質,且原本僅用於描述比冥王星小的共振天體,但現在已將冥王星本身也包含在內。 冥族小天體分布在古柏帶的內層部分,現時已知的古柏帶天體中,有近四分一是冥族小天體。除了冥王星之外,第一顆冥族小天體是在1993年9月16日發現的1993 RO。 最大的幾顆冥族小天體,包括冥王星,有亡神星(90482,Orcus)、伊克西翁(28978,Ixion)、拉達曼迪斯(38083,Rhadamanthus)、和雨神星(38628,Huya)。.

查看 希爾球和冥族小天體

火星的衛星

火星目前已知擁有2顆衛星,分別是火衛一與火衛二,都是火星從小行星帶中捕獲的天體。這2顆衛星都是在1877年由美國天文學家阿薩夫·霍爾所發現的,後來分別以希臘神話神祇福波斯及得摩斯,它們都是戰神阿瑞斯之子。除了上述兩顆衛星外,火星可能還有直徑小於50-100米的衛星,以及一個位於火衛一與火衛二之間的行星環。但是,上述天體還沒有被發現。.

查看 希爾球和火星的衛星

熱木星

熱木星(Hot Jupiters),亦稱為焙燒爐行星(roaster planets)、超級木星(epistellar jovians)和pegasids是一種系外氣體巨行星。它們的質量接近或超過木星(1.9 × 1027 kg),但与太陽系中的情况不同:木星的軌道半徑是5天文單位,成為熱木星的行星軌道與母恆星距离在0.5至0.015天文單位以內,大約只是太陽系內水星到太阳距離的八分之一至金星到太阳距離。.

查看 希爾球和熱木星

麗亞環

土星的衛星麗亞(土衛五)可能有一個稀疏的環系統,包含有三條狹窄、相對來說是密集微粒組成的盤面。此一發現公布在2008年3月6日的《科學雜誌》,這可能是被發現的第一個環繞著衛星的環系統。 在2005年的11月,卡西尼軌道船發現土星的磁氣層在麗亞附近有高能量的電子。根據發現的團隊說明,最好的解釋模式是假設電子被固體的物體吸附在它赤道的盤面上,這些可以包含密集的圓環或弧,而微粒的直徑可以從幾公分至接近1米。.

查看 希爾球和麗亞環

雙行星

雙行星和聯行星是非正式的天文學術語,用來描述一顆有著夠大衛星的行星,因而必須考慮那顆衛星是否也算是行星。一個非官方的定義需要考慮軌道的重力中心(質心)是否落在兩者的表面之外。正式的名稱是聯星系,相似的,也稱為雙小行星(或雙迷你行星)系統,像是安地欧普,和雙開普帶天體(KBO)系統,例如79360 1997CS29和1998 WW31。迄2009年,在太陽系中還沒有被官方認可的雙行星。歐洲太空總署曾經提議將地月系統視為雙行星。在2006年8月召開的國際天文聯合會會員大會也曾經選出冥王星和冥卫一(卡倫)系統是雙行星的一種類型。.

查看 希爾球和雙行星

HD 106906 b

HD 106906 b是一顆位於南十字座的太陽系外行星,母恆星為,距離地球約300光年。該行星為氣體巨行星,質量大約是木星的11倍,與母恆星的距離大約是650天文單位,即接近970億公里。該行星和母恆星極遠的距離讓天文學界相當重視,因為目前恆星與行星形成的星雲假說無法解釋距離母恆星如此遙遠的行星存在。.

查看 希爾球和HD 106906 b

洛希瓣

洛希瓣是包圍在恆星周圍的空間,在這個範圍內的物質會受到該天體的引力約束而在軌道上環繞著。如果恆星膨脹至洛希瓣的範圍之外,這些物質將會擺脫掉恆星引力的束縛。如果這顆恆星是聯星系統,則這些物質會經由內拉格朗日點落入伴星的範圍內。等位面的臨界引力邊界形狀類似淚滴形,淚滴形的尖端指向另一顆伴星(尖端位於系統的拉格朗日點)。它不同於洛希極限,後者是僅由引力維繫在一起的物質受到潮汐力作用開始崩解的距離;它也與洛希球不同,那是在一個天體周圍的空間,在受到另一個它所環繞的更巨大天體的攝動時,仍能維持小天體的軌道穩定,接近球形的引力球。洛希瓣、洛希極限和洛希球都是以法國天文學家愛德華·洛希的名字命名的。.

查看 希爾球和洛希瓣

準衛星

準衛星是與行星有著1:1軌道共振,在公轉許多次後便會接近行星並留駐的天體。 準衛星繞太陽公轉的軌道週期與行星相同,但是有著不同的離心率(通常更大),如右圖所示。當從行星上观察這顆行星的準衛星時,會出现繞著行星的橢圓行逆行軌跡。 對比於真衛星,準衛星的軌道位於行星的希爾球之外,並且是不穩定的。經過一段時間的發展,傾向於成為其他類型的共振運動,使它們不再逗留在行星的附近,然後可能又會回到準衛星的軌道,等等不一而足。 其他型式的1:1共振軌道包括馬蹄形軌道和環繞著拉格朗日點的蝌蚪形軌道,但是這種軌道的天體在繞行太陽公轉多次之後,不會停留在接近行星的經度上。已知馬蹄形軌道的天體有時會轉移到一個相對較短的準衛星軌道,因此有時會混為一談。這種例子像是。.

查看 希爾球和準衛星

木卫一

木衛一也稱為「埃歐」或「伊俄」(, 或是希臘 Ἰώ),是木星的四顆伽利略衛星中最靠近木星的一顆衛星,直徑為3,642公里,是太陽系第四大衛星。名字來自眾神之王宙斯的戀人之一:埃歐,祂是希拉的女祭司。 埃歐有400座的活火山,是太陽系中地質活動最活躍的天體。極端的地質活動是因為埃歐內部受到木星的牽引,造成潮汐摩擦產生的潮汐熱化所導致的結果。有些火山造成的硫磺和二氧化硫可以攀升到500公里(310英里)的高度。埃歐表面也有超過100座的山峰,是在矽酸鹽的地基上廣泛的壓縮和抬升,產生許多斑點,其中有些山峰比地球上的珠穆朗玛峰還要高。不同於大多數外太陽系的衛星(它們都有厚實的冰層包覆著),埃歐有著鐵或硫化鐵的熔融核心和以矽酸鹽為主的岩石層。埃歐表面大部分的平原都被硫磺和二氧化硫的霜覆蓋著。 埃歐的火山活動建構了其許多表面的特徵。其火山和熔岩流使廣大的表面產生各種變化並且造成各種不同的顏色採繪,有紅、黃、白、黑、和綠色,主要肇因於硫化物。為數眾多的廣闊熔岩流,有些長度達到500公里,也是表面的特徵。這些火山活動的過程提升了視覺對比,讓埃歐的表面好像是一個披薩。這些火山作用為埃歐稀薄的大氣提供了補湊的材料,也為木星巨大的磁層供應了材料。 埃歐在17和18世紀的天文學中扮演了一個重要的角色,它在1610年與其他的伽利略衛星一起被伽利略發現。這個發現促成了太陽系的哥白尼模型被接受,約翰·克卜勒發展出了行星運動定律,和奧勒·羅默首先測定光速。從地球來看,在19世紀後期和20世紀初,埃歐只是一個光點,直到我們有能力解釋它表面大規模的特徵,例如暗紅色的極區和明亮的赤道地區。在1979年,兩艘航海家太空船揭露埃歐是一個地質活躍的世界,有許多火山活動的特徵,大山和年輕的表面,沒有明顯的撞擊坑。伽利略號在1990年和2000年的早期多次執行接近和飛掠過埃歐的任務,得到了埃歐內部結構和表面組成的數據資料。這些太空船也揭露了衛星和木星的磁層之間的關係,和在埃歐圍繞的軌道上存在著輻射傳送帶,即伊俄环。在2007年的前幾個月,新視野號在前往冥王星的旅程中,於飛掠過埃歐時繼續進行探測。.

查看 希爾球和木卫一

星雲假說

星雲假說是在天體演化學的場合要解釋太陽系的形成與演化最被廣泛接受的模型。它建議太陽系是在星雲物質中形成的,這個理論最早是伊曼努爾·康德於1755年發表在自然史和天空理論。起初使用在太陽系的行星系統形成過程,現在更應用在宇宙的工作中。被廣泛接受的變體現代星雲假說是太陽星雲盤假說(solar nebular disk model,SNDM)或簡單的太陽星雲模型。這個星雲假說提供太陽系各種性質的解釋,包括行星軌道接近圓形和共軌道面,和它們的運動方向與太陽自轉方向的一致性。一些星雲假說的元素反映在現代的行星形成,但大多數的元素已經被取代。 依據星雲假說,形成恆星的雲是大質量和濃稠的分子氫-巨分子雲(giant molecular cloud,GMC)。這些雲是引力不穩定,並且物質在內部密集叢生的合併,然後旋轉、坍縮形成恆星。恆星形成是一個複雜的過程,總是先在年輕恆星周圍形成氣體的原行星盤。在某些情況下這可能孕育行星,但尚不清楚。因此,行星系統的形成被認為是恆星形成的自然結果。一顆類似太陽的恆星通常需要100萬年的十來形成,從原行星盤發展出行星系統還需要再1000萬年。 - 原行星盤是餵養中心恆星的吸積盤。起初很熱,稍後盤面逐漸變冷,成為所謂的金牛T星階段;此時,可能是岩石和冰的小塵埃顆粒形成。顆粒最終可能凝聚成公里尺度的微行星。如果盤有足夠的質量,增長會開始失控,導致迅速 -100,000年到300,000年- 形成月球到火星大小的原行星。臨近恆星,原行星會經過暴力的合併,生成幾顆類地行星。這個階段可能要經歷1億年至10億年。 巨行星的形成是一個更複雜的過程。它被認為要越過凍結線才會發生,在哪裡元行星主要由各種類型的冰組成。其結果是,它們會比原行星盤內側的巨大許多倍。原行星形成後的演化並不完全清楚,有些原行星會繼續成長,最終達到5-10地球質量-臨界值,必須開始從盤中吸積氫和氦。由核心積累氣體在開始時是很緩慢的,需要持續數百萬年,但是在原行星的質量達到30地球質量(),它就會以失控的速率加速吸收。像木星和土星這樣的行星,被認為只要一萬年就能累積如此大量的質量。當氣體耗盡時,吸積就停止了。在形成的期間或形成之後,行星都可以長距離的遷移。冰巨星像是天王星和海王星,被認為是失敗的核心,形成得太晚而盤面幾乎已經消失了。.

查看 希爾球和星雲假說

愛德華·洛希

愛德華·艾伯特·洛希 (Édouard Albert Roche,1820-1883),法國數學家與天文學家,他最傑出的表現是在天體力學的領域,他的名字被冠在洛希球、洛希極限和洛希瓣等觀念上。 他誕生於蒙彼利埃,並就讀於蒙彼利埃大學,稍後他並成為該校的教授,於1849年開始擔任Faculté des科學講座。洛希利用數學研究拉普拉斯的星雲假說並將得到的結果發表在他任職的的蒙特利埃研究會的學報上,直到1877年。其中最重要的是彗星(1860年)和星雲假說(1873年)本身。洛希的研究解釋了強大引力場中小顆粒群集的效應。 他在歷史上最著名的理論或許是關於土星的行星環如何形成的理論,當一顆巨大的衛星過度接近土星時會被重力拉扯而分離。他描述了一種計算聚集在一起的物體在何種距離內就會被潮汐力扯碎掉,這個距離就是所知的洛希極限。 他另一個著名的著名的工作是在軌道力學上的發展。洛希瓣描述一個小物體環繞著另兩個物體時會被何者捕獲的限制,而洛希球類似於重力場球對天體的影響,在受到另一個大質量天體的攝動時如何影響它環繞的軌道。 Category:法國天文學家 Category:潮汐力.

查看 希爾球和愛德華·洛希