目录
107 关系: 基爾霍夫電路定律,基本電學,半导体,半导体器件,卡西米爾效應,印刷电路板,右手定則,变压器,坡印廷向量,太陽發電機,安培力定律,安培定律,丝绸,並聯電路,串聯電路,亥姆霍茲線圈,低壓電,低維固體,圓環坐標系,唐偉章,击穿电压,共模訊號,固体物理学,CPU鎖頻,短路,火花間隙,碳,磁,磁場,移動中的磁鐵與導體問題,等位,简并态物质,类金属,經典物理術語,絕對安培,电子,电现象,电报员方程,电成型材料,电流,电流密度,銅損,莫特絕緣體,螺線管,聖艾爾摩之火,鏡像法,菲利克斯·沙伐,鐵損,行星際磁場,馬克士威方程組的歷史,... 扩展索引 (57 更多) »
基爾霍夫電路定律
基爾霍夫電路定律(Kirchhoff Circuit Laws)簡稱為基爾霍夫定律,指的是兩條電路學定律,基爾霍夫電流定律與基爾霍夫電壓定律。它們涉及了電荷的守恆及電勢的保守性。1845年,古斯塔夫·基爾霍夫首先提出基爾霍夫電路定律。現在,這定律被廣泛地應用於電機工程學。 從馬克士威方程組可以推導出基爾霍夫電路定律。但是,基爾霍夫並不是依循這條思路發展,而是從格奧爾格·歐姆的工作成果加以推廣得之。.
查看 導體和基爾霍夫電路定律
基本電學
基本電學(Basic Electricity),是電學(電力學、電子學、電路學等)的基礎學科。.
查看 導體和基本電學
半导体
半导体(Semiconductor)是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。 材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导电带时,电子就可以在带间任意移动而导电。一般常见的金属材料其导电带与价电带之间的能隙非常小,在室温下电子很容易获得能量而跳跃至导电带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导电带,所以无法导电。 一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 半导体通过电子传导或電洞傳导的方式传输电流。电子传导的方式与铜线中电流的流动类似,即在电场作用下高度电离的原子将多余的电子向着负离子化程度比较低的方向传递。電洞导电则是指在正离子化的材料中,原子核外由于电子缺失形成的“空穴”,在电场作用下,空穴被少数的电子补入而造成空穴移动所形成的电流(一般称为正电流)。 材料中载流子(carrier)的数量对半导体的导电特性极为重要。这可以通过在半导体中有选择的加入其他“杂质”(IIIA、VA族元素)来控制。如果我們在純矽中摻雜(doping)少許的砷或磷(最外層有5個電子),就會多出1個自由電子,這樣就形成N型半導體;如果我們在純矽中摻入少許的硼(最外層有3個電子),就反而少了1個電子,而形成一個電洞(hole),這樣就形成P型半導體(少了1個帶負電荷的原子,可視為多了1個正電荷)。.
查看 導體和半导体
半导体器件
--(semiconductor device)是利用半导体材料的特殊电特性来完成特定功能的--。半導體的導電性介於良導電體與絕緣體之間,这些半导体材料通常是硅、锗或砷化镓,並經過各式特定的滲雜,產生P型或N型半導體,作成整流器、振盪器、發光器、放大器、測光器等元件或設備。 常見的半導體元件有二極體、電晶體等。.
查看 導體和半导体器件
卡西米爾效應
-- 卡西米爾效應(Casimir effect)是由荷蘭物理學家亨德里克·卡西米爾(Hendrik Casimir)於1948年提出的一種現象,此效應隨後被偵測到,並以卡西米爾為名以紀念他。其根據量子場論的「真空不空」觀念——即使沒有物質存在的真空仍有能量漲落,而提出此效應:真空中兩片中性(不帶電)的金屬板會出現吸力;這在古典理論中是不會出現的現象。这种效应只有在两物体的距离非常之小时才可以被检测到。例如,在亚微米尺度上,该效应导致的吸引力成为中性导体之间主要作用力。事实上在10纳米间隙上(大概是一个原子尺度的100倍),卡西米爾效應能产生1个大气压的压力(101.3千帕)。一对中性原子之间的范德瓦耳斯力是一种类似的效应。.
查看 導體和卡西米爾效應
印刷电路板
印刷电路板,又称印制--电路板,印刷线路板,常用英文缩写PCB(Printed circuit board)或PWB(Printed wire board),是电子元件的支撑体,在這其中有金屬導體作为連接电子元器件的線路。 傳統的電路板,採用印刷蝕刻阻劑的工法,做出電路的線路及圖面,因此被稱為印刷電路板或印刷線路板。由於電子產品不斷微小化跟精細化,目前大多數的電路板都是採用貼附蝕刻阻劑(壓膜或塗佈),經過曝光顯影後,再以蝕刻做出電路板。.
查看 導體和印刷电路板
右手定則
右手定則(Right-hand rule)是一個在數學及物理學上使用的定則。是由英國電機工程師約翰·弗萊明(John Fleming)於十九世紀末期發明的定則,用來幫助他的學生轻松地求出移動於磁場的導體所產生的動生電動勢的方向 。 當設定三個相互垂直的向量時,可以有兩種不同的選擇:右手系統或左手系統。因此,假若遇到這類問題時,必需明確地指出是採用哪一種系統。.
查看 導體和右手定則
变压器
變壓器(Transformator;Transformer)是應用法拉第電磁感應定律而升高或降低電壓的裝置。變壓器通常包含兩組或以上的線圈。主要用途是升降交流電的電壓、改變阻抗及分隔電路。電路符號常用T當作編號的開頭。例:T01、T201等.
查看 導體和变压器
坡印廷向量
坡印廷向量(Poynting vector),亦称能流密度矢量,其方向為電磁能傳遞方向,大小為能流密度(单位面积的能量传输速率)。坡印廷矢量的SI单位是瓦特每平方米(W/m2)。它是以其发現者约翰·亨利·坡印廷來命名的。奧利弗·黑維塞 和尼科莱·乌诺夫亦獨立發現所謂的坡印廷向量。.
查看 導體和坡印廷向量
太陽發電機
太陽發電機(Solar dynamo)是太陽磁場引起的物理過程。太陽像許多其它天體,如地球一樣,是整體被磁場滲透的偶極體。依據安培定律,偶極場是電流在恆星內部深處成片狀流動導致的,電流因為太陽在不同層次以不同速率轉動,並且太陽也是很好的導電體(遵循磁流體動力學),而形成片狀(物質的延展)。.
查看 導體和太陽發電機
安培力定律
在靜磁學裏,安培力定律專門描述兩條載流導線相互作用的吸引力或排斥力,又稱為安培力,是由載流導線的電流所產生的磁場(根據必歐-沙伐定律),與對方的移動電荷的速度耦合而形成的勞侖茲力。安培力定律是因安德烈-瑪麗·安培而命名。.
查看 導體和安培力定律
安培定律
安培定律(Ampère's circuital law),又稱安培環路定律,是由安德烈-瑪麗·安培於1826年提出的一條靜磁學基本定律。安培定律表明,載流導線所載有的電流,與磁場沿著環繞導線的閉合迴路的路徑積分,兩者之間的關係為 其中,\mathbb是環繞著導線的閉合迴路,\mathbf是磁場(又稱為B場),d\boldsymbol是微小線元素向量,\mu_0是磁常數,I_是閉合迴路\mathbb所圍住的電流。 1861年,詹姆斯·馬克士威又將這方程式重新推導一遍,使得符合電動力學條件,並且發表結果於論文《論物理力線》內。馬克士威認為,含時電場會生成磁場,假若電場含時間,則前述安培定律方程式不成立,必須加以修正。經過修正後,新的方程式稱為馬克士威-安培方程式,是馬克士威方程組中的一個方程式,以積分形式表示為 其中,\mathbb是邊緣為\mathbb的任意曲面,\mathbf是穿過曲面\mathbb的電流的電流密度,\mathbf是電位移,d\mathbf是微小面元素向量。.
查看 導體和安培定律
丝绸
丝绸是用蚕丝编製而成的纺织品。丝绸著名的光泽外表来自于蠶絲三棱镜般的纤维结构,这令布料能够以不同的角度折射入射光,并将光线散射出去。在中国,丝绸一词也指代人造的、具有与天然丝绸一样光泽的纺织品。.
查看 導體和丝绸
並聯電路
幾個電路元件的兩端分別連接於兩個節點,此種連接方式稱為並聯。連接點稱為節點。以並聯方式連接的電路稱為並聯電路。從並聯電路的電源給出的電流等於通過每個元件的電流的代數和,給出的電壓等於每個元件兩端的電壓。 幾個電路元件沿著單一路徑互相連接,每個節點最多只連接兩個元件,此種連接方式稱為串聯。以串聯方式連接的電路稱為串聯電路。從串聯電路的電源給出的電流等於通過每個元件的電流,給出的電壓等於每個元件兩端的電壓的代數和。 串聯和並聯是兩種常見的基本連接方式。電路元件也可以以其它種方式連接在一起。例如,星形電路或三角形電路。.
查看 導體和並聯電路
串聯電路
幾個電路元件沿著單一路徑互相連接,每個連接點最多只連接兩個元件,此種連接方式稱為串聯。以串聯方式連接的電路稱為串聯電路。連接點稱為節點。從串聯電路的電源給出的電流等於通過每個元件的電流,給出的電壓等於每個元件兩端的電壓的代數和。 幾個電路元件的兩端分別連接於兩個節點,此種連接方式稱為並聯。以並聯方式連接的電路稱為並聯電路。從並聯電路的電源給出的電流等於通過每個元件的電流的代數和,給出的電壓等於每個元件兩端的電壓。 串聯和並聯是兩種常見的基本連接方式。電路元件也可以以其它種方式連接在一起。例如,星形電路或三角形電路。.
查看 導體和串聯電路
亥姆霍茲線圈
亥姆霍茲線圈(Helmholtz coil)是一種製造小範圍區域均勻磁場的器件。由於亥姆霍茲線圈具有開敞性質,很容易地可以將其它儀器置入或移出,也可以直接做視覺觀察,所以,是物理實驗常使用的器件。因德國物理學者赫爾曼·馮·亥姆霍茲而命名。.
查看 導體和亥姆霍茲線圈
低壓電
低壓電(Low Voltage)是相對性的,不同情況下,有不同定義。.
查看 導體和低壓電
低維固體
低維固體是指某些固體表現出明顯的一維或二維特徵,例如分子具有鏈狀結構的三硫化鉭、TTF-就是一維固體,而分子具有片狀結構的石墨夾層或是二硫化鎳就是二維固體。低維固體具有三維固體所沒有的一些物理特性,像是 一維導體對於電子─點陣相互作用是不穩定的,因此在低溫下會變為半導體或絕緣體。.
查看 導體和低維固體
圓環坐標系
圓環坐標系(Toroidal coordinates)是一種三維正交坐標系。設定二維橢圓坐標系包含於 xz-平面;兩個焦點 F_ 與 F_ 的直角坐標分別為 (- a,\ 0,\ 0) 與 (a,\ 0,\ 0) 。將雙極坐標系繞著 z-軸旋轉,則可以得到圓環坐標系。雙極坐標系的兩個焦點,變為一個半徑為 a 的圓圈,包含於圓環坐標系的 xy-平面。稱這圓圈為焦圓,又稱為參考圓。.
查看 導體和圓環坐標系
唐偉章
唐偉章教授(Professor Timothy W. Tong,),香港理工大學校長(於2009年1月1日上任)、第十二屆、第十三屆全國政協委員。.
查看 導體和唐偉章
击穿电压
絕緣體的擊穿電壓(breakdown voltage)是令一部分絕緣體變成電導體的最小電壓。二極體的擊穿電壓是指二極體反向導電的最小反向電壓。.
查看 導體和击穿电压
共模訊號
共模訊號(Common-mode signal)是所有導體上模擬信號中的成份之一。在电信中,传输线模型上的共模訊號稱為縱向電壓(longitudinal voltage)。 在电子学中,若訊號是用二個電壓的差值來傳輸,其共模訊號為電壓和的一半 若參考個別的公共點或是地點,在二線纜線上的二條線上都會有共模訊號,兩者相位相同,大小也相同。技術上,共模電壓是每個導體到個別的公共點(或是地點)向量和的一半。以下的信號源都會產生共模訊號:.
查看 導體和共模訊號
固体物理学
固体物理学是凝聚态物理学中最大的分支。它研究的对象是固体,特别是原子排列具有周期性结构的晶体。固体物理学的基本任务是从微观上解释固体材料的宏观物理性质,主要理论基础是非相对论性的量子力学,还会使用到电动力学、统计物理中的理论。主要方法是应用薛定谔方程来描述固体物质的电子态,并使用布洛赫波函数表达晶体周期性势场中的电子态。在此基础上,发展了固体的能带论,预言了半导体的存在,并且为晶体管的制造提供理论基础。.
查看 導體和固体物理学
CPU鎖頻
CPU鎖頻(CPU locking)是把一顆CPU的倍頻鎖在特定的數字,不能調較。英特爾的CPU有不少被鎖頻,而AMD的則只有後期推出的被鎖頻。其中一個原因是為了防止零售商透過超頻而誇大其速度,從而賣貴一些。 一些主機板支援解鎖功能,但這樣做會導致其產品保養失效,且有可能對CPU造成損害。某些早期的AMD的CPU可以在上方以導體來「建橋」,把兩個點連結起來,多會以鉛芯或銀漆來做。不同型號需要用不同的方法去解鎖。 Category:微處理器 Category:计算机硬件调校.
查看 導體和CPU鎖頻
短路
短路(Short circuit)是指在正常电路中电势不同的两点不正确地直接碰接或被阻抗(或电阻)非常小的導體接通时的情况。短路时电流强度很大,往往会损坏电气设备或引起火灾。 电力系统在运行中,相与相之间或相与地(或中性线)之间发生非正常连接(即短路)时而流过非常大的电流。其电流值远大于额定电流,并取决于短路点距电源的电气距离。例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达额定电流的10~15倍。大容量电力系统中,短路电流可达数万安。这会对电力系统的正常运行造成严重影响和后果。.
查看 導體和短路
火花間隙
火花間隙(spark gap,電路中常見符號SG)其組成為兩個導體構成的電極,兩者之間有一間隙,間隙中可含有氣體,比如空氣。當兩導體之間的電位差高於間隙氣體的崩潰電壓,此時氣體會發生游離,而兩導體間會發生電火花,而使其電阻大幅下降。 在游離氣體之間的路徑尚未中斷前會出現電流;此外尚有一最小值的維持電流(holding current),若低於此,電流可能會中斷。此情形通常發生在電壓下降,然因為氣體加熱膨脹也可能會導致電流中斷。氣體游離的過程通常反應劇烈,而產生劈啪聲,類似小規模的閃電效果。 歷史上,火花間隙常用作電路元件,包括、、X光機等。今日最廣泛的應用是內燃機的火星塞,但也用在避雷器及其他防止瞬間高壓電流的保護裝置上。 Category:開關 Category:开关管 Category:电弧 Category:电击穿.
查看 導體和火花間隙
碳
碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.
查看 導體和碳
磁
磁是一种物理现象,磁学是研究磁现象的一个物理学分支,磁性是物質響應磁場作用的性质。磁性表现在順磁性物質或铁磁性物質(如铁钉)會趨向於朝著磁場較強的區域移動,即被磁場吸引;反磁性物質則會趨向於朝著磁場較弱的區域移動,即被磁場排斥;還有一些物質(如自旋玻璃、反鐵磁性等)會與磁場有更複雜的關係。 依照溫度、壓強等參數的不同,物質會顯示出不同的磁性。表现出磁性的物质通称为磁体,原来不具有磁性的物质获得磁性的过程称为磁化,反之称为退磁。磁鐵本身會產生磁場,但本质上磁场是由电荷运动產生,如磁铁内部未配對电子的自旋,会产生磁场,当这些磁场的方向一致时,宏观上就表现为磁性。.
查看 導體和磁
磁場
在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.
查看 導體和磁場
移動中的磁鐵與導體問題
移動中的磁鐵跟導體問題(moving magnet and conductor problem)是一個源自於19世紀的著名思想實驗,涉及到經典電磁學與狹義相對論(classical electromagnetism and special relativity)的交叉領域。在這問題裏,相對於磁鐵的參考系,導體以均勻速度 v 移動。從磁鐵的參考系與導體的參考系分別觀測,流動於導體的電流相同。這事實遵守基本「相對性原理」:沒有絕對靜止標準,只可以觀測到相對運動。但是,根據馬克士威方程組和勞侖茲力定律,導體的電荷,在磁鐵參考系會感受到磁場力,而在導體參考系會感受到電場力。從不同的參考系觀測,同樣的物理現象竟會出現大相逕庭的描述。這問題與邁克生-莫立實驗啟發了阿爾伯特·愛因斯坦的相對論。.
等位
等位(Equipotential、Isopotential)是表示在空間中的某些區域內的每個點都有相同的位(Potential)。這通常是指純量位(在這裡是指位的水平集),然而這也可以應用在向量位上。在n維空間中的純量位函數之等位是典型的n-1維空間。劈形算符闡明了在向量場之間的關係並聯合了純量位場。 純量位的等位區域在三維空間中是等位面,不過也可以是一個空間中的三維區塊。純量位的梯度不管在哪裡都和等位面垂直,而在等位三維區塊內的話會是零。 導體提供一個直覺的例子:若在導體內或表面上指定a和b兩點,兩點間的電位差是零,則a和b為等位。擴展這個定義,等位就是所有同位點的軌跡。 星體的重力場方向與其重力位的等位面垂直。在靜電學中,電場方向與電位的等位面垂直。.
查看 導體和等位
简并态物质
簡併態物質 在物理是一種自由的集團、非互動的顆粒,由量子力學的效應決定它的壓力和其它物理特徵。它類比於古典力學中的理想氣體,但簡併態物質是離經叛道的理想氣體,它有極高的密度(在緻密星),或存在於實驗室的極低溫度下see http://apod.nasa.gov/apod/ap100228.htmlAndrew G.
查看 導體和简并态物质
类金属
类金属(metalloid)是一个用来分类化学元素的化学名词。基于它们的物理和化学特性,几乎所有元素周期表上的化学元素都可被分类为金属或非金属;但也有一些特性介于金属与非金属之间的元素,称为类金属。硼、硅、锗、砷、锑、碲、钋、砈、Ts等9种元素一般被视为类金属。 “类金属”一词并没有明确的定义,但类金属一般被认为拥有以下特性:.
查看 導體和类金属
經典物理術語
這一篇詞彙收集了經典物理內所有最常用的術語,並且簡單地表述了它們的定義。.
查看 導體和經典物理術語
絕對安培
絕對安培(abampere)簡稱aA或abA,也因法國物理學家让-巴蒂斯特·毕奥得名為必歐(biot),簡稱Bi,是厘米-克-秒制電磁單位制(emu)中電流的單位。若一絕對安培的電流通過半徑為1厘米的単匝環形線圈,對圓心形成的磁場為2π奥斯特。一絕對安培等於國際單位制的10安培。 厘米-克-秒制在電磁物理量部份有幾不同的單位,除了電磁單位制外,還包括靜電單位制、高斯單位制及勞侖茲-黑維塞單位制,其中只有電磁單位制使用絕對安培為電流的單位,其他幾個單位制是以靜庫侖每秒或靜安培為電流的單位。 以下是一些和絕對安培有關的單位:.
查看 導體和絕對安培
电子
电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.
查看 導體和电子
电现象
电现象是关于电的物理现象,例如人类熟知的闪电就是自然界中的一种放电现象。此外,随着电学的发展,人们还认识到了摩擦起电、静电感应、电磁感应、壓電效應等各种电现象。.
查看 導體和电现象
电报员方程
电报员方程(或电报方程)是描述电力传输线上電壓和电流与距离和时间的一组对偶线性微分方程。奧利弗·黑維塞19世纪80年代提出的传输线模型中给出了这组方程。该模型说明电磁波在导线上可以被反射,这种波形会沿着传输线出现。该模型对包括高頻传输线(如电报线和射頻導體)、音频(如电话线)、低频(如输电线)以及直流等各种频率的传输线都使适用。.
查看 導體和电报员方程
电成型材料
电成型材料是一种以热塑性聚合物为基体的复合材料。 电成型材料在常温下是刚性塑料,可以获得多种形状,可以取代PVC、PE、PC、EVA等传统的热塑性材料。 电成型材料的特殊之处在于当有电流通过时将获得流动性和延展性,断电后恢复硬度,且这一过程是可逆的。这一特性使其可以快速热成型,并易于在诸多领域中应用。一个明显的优点是可以提高与人体接触的日常用品的舒适度。 电成型材料在可热成型制品中尤其有用,特别是在运动装备领域(例如滑雪靴,鞋底,身体防护)和医疗领域(例如夹板)中。 不应将电成型材料与电活性聚合物混淆,因为二者是基于不同物理原理的两种材料。.
查看 導體和电成型材料
电流
電流(courant électrique; elektrischer Strom; electric current)是电荷的平均定向移动。电流的大小称为电流强度,是指单位时间内通过导线某一截面的电荷,每秒通过1库仑的電荷量稱为1安培。安培是國際單位制七個基本單位之一。安培計是專門測量電流的儀器 。 有很多種承載電荷的載子,例如,導電體內可移動的電子、電解液內的離子、電漿內的電子和離子、強子內的夸克。這些載子的移動,形成了電流。 有一些效應和電流有關,例如電流的熱效應,根據安培定律,電流也會產生磁場,馬達、電感和發電機都和此效應有關。.
查看 導體和电流
电流密度
在電磁學裏,電流密度(current density)是電荷流動的密度,即每單位截面面積電流量。電流密度是一種向量,一般以符號\mathbf表示。採用國際單位制,電流密度的單位是安培/公尺2(ampere/meter2,A/m2)。.
查看 導體和电流密度
銅損
銅損(Copper loss)是指變壓器繞線或是其他電子設備上,因導線流過電流產生的熱。銅損和鐵損一様,都是能量的耗損。不論導線的材質是銅或是其他金屬(例如鋁),導線上的損失都稱為銅損。變壓器的「负载损耗」和銅損有關,但不完全相同,因為未加載的變壓器仍然有銅損。.
查看 導體和銅損
莫特絕緣體
莫特絕緣體(Mott insulator)的命名是為紀念英國物理學家兼1977年諾貝爾物理獎得主內維爾·莫特。 莫特絕緣體是應該分類在常規能帶理論之下的導體,當在特別低溫測量時是绝緣體。這個作用歸結於電子和電子的相互作用,在常規能帶理論上沒有被考慮。 雖然固體的能帶理論在描述材料電子特性上是非常成功的。但在1937年時,和 Evert Johannes Willem Verwey即已指出不同的過渡金屬氧化物可以被能帶理論預測是導體(因為在每單位晶格有奇數個電子)或是绝緣體。內維爾·莫特和魯道夫·佩爾斯也在1937年然後預言這個反常現象可以被解釋用包括電子之間的互作用。.
查看 導體和莫特絕緣體
螺線管
螺線管(英文:solenoid)是個三維線圈。在物理學裏,術語螺線管指的是多重捲繞的導線,捲繞內部可以是空心的,或者有一個金屬芯。當有電流通過導線時,螺線管內部會產生均勻磁場。螺線管是很重要的元件.。很多物理實驗的正確操作需要有均勻磁場。螺線管也可以用為電磁鐵或電感器。 在工程學裏,螺線管也指為一些轉換器(transducer),將能量轉換為直線運動。电磁阀(solenoid valve)是一種綜合原件,內中最重要的組件是機電螺線管。機電螺線管是一種機電原件,可以用來操作氣控閥或液壓閥。螺線管開關是一種繼電器,使用機電螺線管來操作電開關。例如,汽車的起動器螺線管是一種機電螺線管。.
查看 導體和螺線管
聖艾爾摩之火
聖艾爾摩之火(St.)是一種自古以來就常在航海時被海員觀察到的自然現象,經常發生於雷雨中,在如船隻桅杆頂端之類的尖狀物上,產生如火燄般的藍白色閃光。.
查看 導體和聖艾爾摩之火
鏡像法
鏡像法(又称镜像电荷法)是一種解析靜電學問題的基本工具。對於靜電學問題,鏡像法將原本問題的某些元素改換為假想電荷,同時保證仍然滿足定解問題原有的的邊界條件(請參閱狄利克雷邊界條件或諾伊曼邊界條件)。 例如,給定一個由一片無限平面導體和一個點電荷構成的物理系統,這無限平面導體可以被視為一片鏡子,在鏡子裡面的鏡像電荷與鏡子外面的點電荷,所形成的新系統,可以使得導體平面上的電場垂直于導體,與原本系統等價。藉此方法,我們可以將問題簡化,很容易地計算出導體外的電勢、導體的表面感應電荷密度、總感應電荷等等。 镜像法的有效性是的必然结果,该定理指出如果指定了在体积 V 的整个区域内的电荷密度和 V 的所有边界上的电位值,区域 V 内的电位唯一确定。另外,应用此结果到高斯定理的微分形式就能表明,在由导体包围的包含电荷密度为 ρ 的体积 V 中,如果每个导体所带电荷已经给出,那么电场是唯一确定的。拥有电势或电场的信息以及相应边界条件,只要在指定区域的电荷分布满足泊松方程并设定正确的边界值,我们就可以把我们考虑的电荷分布换为更容易分析的结构。.
查看 導體和鏡像法
菲利克斯·沙伐
菲利克斯·沙伐(Félix Savart ,)是法國一位物理學家和醫生。他與讓-巴蒂斯特·必歐共同創建了必歐-沙伐定律。這是靜磁學的一個基本定律,精確地描述載流導線的電流所產生的磁場。沙伐對於聲學也很有研究。他發展出一種聲學儀器,沙伐音輪 (Savart wheel) ,可以用來研究聽覺的最低頻率限度。現在不再常用的音程度量單位,沙伐 (savart) ,也是因他而命名。.
查看 導體和菲利克斯·沙伐
鐵損
鐵損(iron loss,也稱作core loss)是指像變壓器、電感器、交流馬達及交流發電機等有(以下簡稱為鐵芯)的電機設備中,因導磁體受到變動磁場的影響,在鐵芯中損耗的部份能量,損耗的能量會以熱的方式散失,有時則是以噪音的方式散失。 鐵損可分為磁滯損(Hysteresis losses)、渦流損(Eddy-current losses)及異常損(Anomalous losses)3種。.
查看 導體和鐵損
行星際磁場
行星際磁場(IMF)是指存在于太陽系行星际空間的磁場。 因為太陽風是等离子体,它有著磁流体力学的特徵,而不是單純的氣體。例如,它是良好的導電體,所以來自太陽的磁力線會隨著太陽風一起運動。太陽風的動態壓力主導著幾乎通過整個太陽系(或太陽圈),所以磁場會因為向外的運動和太陽自轉的結合,由于太阳自转,磁力线呈螺旋状,在黄道面上,被拉扯形成阿基米德螺线的形式(派克螺旋)。 行星際磁场具有扇形结构,在每个扇形内部,磁场方向指向或背离太阳是一致的,而两个相邻扇形内磁场的极向却是相反的。 依據半球和太陽週期的相位,磁場的螺旋會向內或向外:磁場在太陽圈的南部和北部的螺旋有著一致的形狀,但是方向是相異的。這兩個磁域由一分為二的分隔著(電流被限制在一個彎曲的平面內),這個太陽圈電流片有著與芭蕾舞者裙擺相似的形狀,在形狀上的變化會隨著太陽磁場大約11年的反轉週期而改變。 在行星際物質中的等离子体也反應出太陽磁場在地球軌道附近的強度,並且比當初預期的強度大了100倍。如果太空中是真空的,太陽的10-4泰斯拉磁偶極場將以距離的3次方減少為10-11泰斯拉,但是人造衛星觀測到的強度是100倍,大約是10-9特斯拉。磁流體動力學(MHD)理論預測導電體流體(也就是行星際物質)在磁場中的運動,會反過來引起磁場的電流,並且這種表現很像磁流體動力學發電機。.
查看 導體和行星際磁場
馬克士威方程組的歷史
代馬克士威方程組的四個方程式,都可以在詹姆斯·馬克士威的1861年論文《論物理力線》、1865年論文《電磁場的動力學理論》和於1873年發行的名著《電磁通論》的第二冊,第四集,第九章"電磁場的一般方程式"裏,找到可辨認的形式,儘管沒有任何向量標記和梯度符號的蛛絲馬跡。《電磁通論》這本往後物理學生必讀的教科書的發行日期,早於黑維塞、海因里希·赫茲等等的著作。.
香港小學常識科課程
香港小學常識科課程(英文 General Studies)是香港小學教育的四大單元之一。常識科一直都是香港小學教育中除中、英、數以外第四重要的科目。不過,數十年來這科目的轉變很大。 由於常識科所涉獵的範圍非常之廣,它所需要的教學資源非常高;但另一方面,不少傳統的學校和教師仍然視這一科目為一“閒科”(現時,一般小學的上課時間表中,每周有4天是有常識科,合共5節,當中一天是有2節),拒絕對常識科投放資源,或讓常識科的老師進修。.
查看 導體和香港小學常識科課程
論物理力線
《論物理力線》(On Physical Lines of Force)是詹姆斯·馬克士威於1861年發表的一篇論文。在這篇論文裏,他闡述了可以比擬各種電磁現象的「分子渦流理論」,和電位移的概念,又論定光波為電磁波。馬克士威又將各種描述電磁現象的定律整合為馬克士威方程組。.
查看 導體和論物理力線
超導體
超導體(superconductor),指可以在在特定溫度以下,呈現電阻為零的導體。零电阻和完全抗磁性是超导体的两个重要特性。超导体电阻转变为零的温度,称为超导临界温度,据此超导材料可以分为低温超导體和高温超导體。這裡的「高溫」是相对于绝对零度而言的,其實遠低於冰點攝氏0℃。科学家一直在寻求提高超导材料的临界温度,目前高温超导体的最高温度记录是马克普朗克研究所的203K(-70°C)。因为零電阻特性,超導材料在生成强磁场方面有许多應用,如MRI核磁共振成像等。.
查看 導體和超導體
舒曼波
舒曼波是地球电磁场频谱的极低频部分。是一种产生于地表和电离层间的全球性电磁共振,由闪电放电激发。.
查看 導體和舒曼波
阻抗
阻抗(electrical impedance)是电路中电阻、电感、电容对交流电的阻碍作用的统称。阻抗是一个复数,实部称为电阻,虚部称为电抗;其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,容抗和感抗合称为电抗。阻抗將電阻的概念加以延伸至交流電路領域,不僅描述電壓與電流的相對振幅,也描述其相對相位。當通過電路的電流是直流電時,電阻與阻抗相等,電阻可以視為相位為零的阻抗。阻抗的概念不仅存在与电路中,在力学的振动系统中也有涉及。 阻抗通常以符號 Z 標記。阻抗是複數,可以用相量 Z_m \angle \theta 或 Z_m e^ 來表示;其中,Z_m是阻抗的大小,\theta 是阻抗的相位。這種表式法稱為「相量表示法」。 具體而言,阻抗定義為電壓與電流的頻域比率。阻抗的大小 Z_m 是電壓振幅與電流振幅的絕對值比率,阻抗的相位 \theta 是電壓與電流的相位差。採用國際單位制,阻抗的單位是歐姆(Ω),與電阻的單位相同。阻抗的倒數是導納,即電流與電壓的頻域比率。導納的單位是西門子 (單位)(舊單位是姆歐)。 英文術語「impedance」是由物理學者奧利弗·黑維塞於1886年發表論文《電工》給出。於1893年,電機工程師亞瑟·肯乃利(Arthur Kennelly)最先以複數表示阻抗。.
查看 導體和阻抗
開關
開關是指一個可以使電路開路、使電流中斷或使其流到其他電路的電子元件。最常見的開關是讓人操作機器裝置或下達命令的操作開關,其中有一個或數個電子接點。接點的「閉合」(closed)表示電子接點導通,允許電流流過;開關的「開路」(open)表示電子接點不導通形成開路,不允許電流流過。.
查看 導體和開關
铁路制动
铁路制动装置是对铁道机车车辆实施制动的一套系统,其主要作用是控制铁道机车车辆的运行速度,使运行中的列车能迅速地减速、停车,或者在下坡道上使其按限定速度运行,防止列车在下坡时由于车辆的重力作用导致超速;即使是静止状态的机车车辆也需要对其施行制动,以免停放车辆因重力作用或风力吹动而。因此,铁路制动是保障铁路运输安全的一个重要环节,若果列车高速行驶时无法依靠制动来控制速度或使之停车,必定会发生危险甚至造成严重事故。各国铁路业者根据自身的铁路运用管理经验,对列车的要求都有严格规定,这亦是反映制动装置性能和实际制动效果的主要技术指标。 驱动列车运行必须对列车作用以牵引力,而制动列车则必须对列车作用以制动力,制动力是由制动装置产生并且与列车运行方间相反的阻力。从物理学的角度来看,制动的本质其实就是将列车上的动能转移出去,制动装置转移动能的能力被称为制动功率。在一定的制动距离条件下,列车的制动功率是其运动速度的三次函数,即制动功率与运动速度的平方成正比,因此运行速度越高的机车车辆,对于制动装置和制动能力的要求也越高。.
查看 導體和铁路制动
重裝武器
| 《重裝武器》(HEAVY OBJECT,,官方略稱為HO)為鐮池和馬所撰寫的輕小說系列。插畫為。2009年10月出版第一集,至2016年9月已出版了12卷。 2014年10月發布了本作品將會動畫化的消息。2015年8月15日在Comic Market 88發表的宣傳影片,公佈電視動畫在2015年10月播出。.
查看 導體和重裝武器
量子穿隧效應
在量子力學裏,量子穿隧效應(Quantum tunnelling effect)指的是,像电子等微观粒子能夠穿入或穿越位勢壘的量子行為,儘管位勢壘的高度大於粒子的總能量。在經典力學裏,這是不可能發生的,但使用量子力學理論卻可以給出合理解釋。 量子穿隧效應是太陽核聚變所倚賴的機制。量子穿隧效應限制了太陽燃燒的速率,是太陽聚變循環的瓶頸,因此維持太陽的長久壽命。許多現代器件的運作都倚賴這效應,例如,隧道二極管、場致發射、約瑟夫森結、等等。扫描隧道显微镜、原子鐘也應用到量子穿隧效應。量子穿隧理論也被應用在半導體物理學、超導體物理學等其它領域。 至2017年為止,由於對於量子穿隧效應在半導體、超導體等領域的研究或應用,已有5位物理學者獲得諾貝爾物理學獎。.
查看 導體和量子穿隧效應
金星
金星(英語、拉丁語:Venus,天文符號:♀),在太陽系的八大行星中,是從太陽向外的第二顆行星,軌道公轉週期為224.7地球日,它沒有天然的衛星。在中國古代稱為太白、明星或大囂,另外早晨出現在東方稱啟明,晚上出現在西方稱長庚。到西漢時期,《史記‧天官書》作者天文學家司馬遷從實際觀測發現太白為白色,與「五行」學說聯繫在一起,正式把它命名為金星。它的西文名稱源自羅馬神話的愛與美的女神,维纳斯(Venus),古希腊人称为阿佛洛狄忒,也是希腊神话中爱与美的女神。金星的天文符号用维纳斯的梳妆镜来表示。 它在夜空中的亮度僅次於月球,是第二亮的天然天體,視星等可以達到 -4.7等,足以照射出影子。由於金星是在地球內側的內行星,它永遠不會遠離太陽運行:它的離日度最大值為47.8°。 金星是一顆類地行星,因為它的大小、質量、體積與到太陽的距離,均與地球相似,所以經常被稱為地球的姊妹星。然而,它在其它方面則明顯的與地球不同。它有著四顆類地行星中最濃厚的大氣層,其中超過96%都是二氧化碳,行星表面的大氣壓力是地球的92倍。表面的平均溫度高達,是太陽系最熱的行星,比最靠近太陽的水星還要熱。金星沒有將碳吸收進入岩石的碳循環,似乎也沒有任何有機生物來吸收生物量的碳。金星被一層高反射、不透明的硫酸雲覆蓋著,阻擋了來自太空中,可能抵達表面的可見光。它在過去可能擁有海洋,並且外觀與地球極為相似,但是隨著失控的溫室效應導致溫度上升而全部蒸發掉了B.M.
查看 導體和金星
色散关系
在物理科学和電機工程學中,色散关系描述波在介质中传播的色散现象的性质。色散关系将波的波长或波數与其頻率建立了联系。由这组关系,波的相速度和群速度有了方便的确定介质中折射率的表达式。克拉莫-克若尼關係式可以描述波的传播、的频率依赖性,這關係比與幾何相關和與材料相關的色散关系更具一般性。 色散的原因可能是几何边界条件(波导、浅水)或是波与传输介质间的相互作用。基本粒子(被认为是物質波)即使在没有集合约束和其他介质存在下也会有非平凡的色散关系。 在存在色散的情况下,波速不再唯一定义,从而产生了相速度和群速度的区别。.
查看 導體和色散关系
電
電是靜止或移動的電荷所產生的物理現象。在大自然裏,電的機制給出了很多眾所熟知的效應,例如閃電、摩擦起電、靜電感應、電磁感應等等。 很久以前,就有許多術士致力於研究電的現象,但所得到的結果乏善可陳。直到十七和十八世紀,才出現了一些在科學方面重要的發展和突破,不過在那時,電的實際用途並不多。十九世紀末,由於電機工程學的進步,電才進入了工業和家庭裡。從那時開始,日新月異、突飛猛進的快速發展帶給了工業和社會巨大的改變。作為能源的一種供給方式,電有許多優點,這意味著電的用途幾乎是無可限量。例如,交通、取暖、照明、電訊、計算等等,都必須以電為主要能源。進入二十一世紀,現代工業社會的骨幹仍是電能。.
查看 導體和電
電學
電學(英文:electricity, electrical science),涵蓋一切以電為研究基礎的學科。19世紀末隨著電報、電力系統的應用逐漸奠定了此工程的學科基礎,並廣泛地應用在各個領域。在技職教育上,以基本電學作為起始基礎教育學科,電機工程包括許多「次領域」如:電路學、電子學、電力學、電磁學等等,並且與其他物理科學領域有相互關係。.
查看 導體和電學
電容
在電路學裡,給定電壓,電容器儲存電荷的能力,稱為電容(capacitance),標記為C。採用國際單位制,電容的單位是法拉(farad),標記為F。電路圖中多半以C開頭標示電容,例:C01、C02、C03、C100等。 平行板電容器是一種簡單的電容器,是由互相平行、以空間或介電質隔離的兩片薄板導體構成。假設這兩片導板分別載有負電荷與正電荷,所載有的電荷量分別為-Q\,\!、+Q\,\!,兩片導板之間的電位差為V,則這電容器的電容C為 1法拉等於1庫侖每伏特,即電容為1法拉的電容器,在正常操作範圍內,每增加1伏特的電位差可以多儲存1庫侖的電荷。 電容器所儲存的能量等於充電所做的功。思考前述平行板電容器,搬移微小電荷元素\mathrmq從帶負電薄板到帶正電薄板,每對抗1伏特的電位差,需要做功\mathrmW: 將這方程式積分,可以得到儲存於電容器的能量。從尚未充電的電容器(q.
查看 導體和電容
電導率
电导率(electric conductivity)是表示物质传输电流能力强弱的一种測量值。當施加電壓於導體的兩端時,其電荷載子會呈現朝某方向流動的行為,因而產生電流。電導率 \sigma\,\! 是以歐姆定律定義為電流密度 \mathbf\,\! 和電場強度 \mathbf\,\! 的比率: 有些物質會有異向性 (anisotropic) 的電導率,必需用 3 X 3 矩陣來表達(使用數學術語,第二階張量,通常是對稱的)。 電導率是电阻率 \rho\,\! 的倒數。在國際單位制中的單位是西門子/公尺 (S·m-1): 電導率儀 (electrical conductivity meter) 是一種是用來測量溶液電導率的儀器。.
查看 導體和電導率
電位移
在電磁學裏,電位移是出現於馬克士威方程組的一種向量場,可以用來解釋電介質內自由電荷所產生的效應。電位移\mathbf以方程式定義為 其中,\varepsilon_是電常數,\mathbf是電場,\mathbf是電極化強度。.
查看 導體和電位移
電勢
在静電學裡,電勢(electric potential)定義為處於電場中某个位置的單位電荷所具有的電勢能。電勢又稱為電位,是純量。其數值不具有絕對意義,只具有相對意義,因此為了便於分析問題,必須設定一個參考位置,並把它設為零,稱為零勢能點。通常,會把無窮遠處的電勢設定為零。那麼,電勢可以定義如下:假設檢驗電荷從無窮遠位置,經過任意路徑,克服電場力,緩慢地移動到某位置,則在這位置的電勢,等於因遷移所做的機械功與檢驗電荷量的比值。在國際單位制裏,電勢的度量單位是伏特(Volt),是為了紀念意大利物理學家亞歷山德羅·伏打(Alessandro Volta)而命名。 電勢必需滿足帕松方程式,同時符合相關邊界條件;假設在某區域內的電荷密度為零,則帕松方程式約化為拉普拉斯方程式,電勢必需滿足拉普拉斯方程式。 在電動力學裏,當含時電磁場存在的時候,電勢可以延伸為「廣義電勢」。特別注意,廣義電勢不能被視為電勢能每單位電荷。.
查看 導體和電勢
電磁場的動力學理論
《電磁場的動力學理論》(A Dynamical Theory of the Electromagnetic Field)是一篇詹姆斯·馬克士威發於1864年的論文,這篇論文是他所寫的第三篇關於電磁學的論文。在這篇論文裏,他首次系統性地陳列出馬克士威方程組。馬克士威又應用了先前在他的1861年論文《論物理力線》裏提出的位移電流的概念,來推導出電磁波方程式。由於這導引將電學、磁學和光學聯結成一個統一理論。這創舉現在已被物理學術界公認為物理學史的重大里程碑。 這篇論文明確地闡明,能量儲存於電磁場內。因此,它在歷史上首先建立了場論的基礎概念。.
查看 導體和電磁場的動力學理論
電磁場的數學表述
在電磁學裏,有幾種電磁場的數學表述,這篇文章會講述其中三種表述。.
查看 導體和電磁場的數學表述
電磁干擾
電磁干擾(英文:Electromagnetic Interference,簡稱EMI)是指任何在传导或電磁場伴隨著電壓、電流的作用而產生會降低某個裝置、設備或系統的性能,或可能對生物或物質產生不良影響之電磁現象。 电磁干扰也是变频器驱动系统的一个主要问题。在许多国家,尤其在欧洲,对任何系统可能散发的电磁干扰有严格的限制。.
查看 導體和電磁干擾
電磁鐵
電磁鐵是可以通电流來产生磁力的装置,在電力普及的社會中是一項不可缺少的工具,屬非永久磁鐵,與永久磁鐵同為磁鐵的一.
查看 導體和電磁鐵
電磁波譜
在電磁學裏,電磁波譜包括電磁輻射所有可能的頻率。一個物體的電磁波譜專指的是這物體所發射或吸收的電磁輻射(又稱電磁波)的特徵頻率分佈。 电磁波谱频率从低到高分別列为无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。可见光只是电磁波谱中一个很小的部分。電磁波譜波長有長到數千公里,也有短到只有原子的一小段。短波長的極限被認為,幾乎等於普朗克長度,長波長的極限被認為,等於整個宇宙的大小,雖然原則上,電磁波譜是無限的,而且連續的。.
查看 導體和電磁波譜
電熱
電熱(Electric heating)或電加熱,是指將電能轉換為熱能的方式。常見的應用包括有、烹饪、热水器與工業生產上。是利用電產生輻射能後對人或物體加熱。 每種電熱裝置的內部都有簡單的,它根據焦耳加熱原理在工作:電流流經電阻器時會產生熱。現代的電熱裝置使用線作為主動元件,合適的加熱元件材料是採用耐熱、耐火、電絕緣性佳的陶瓷來支撐鎳鉻合金線。 熱泵是利用電動馬達驅動(製冷循環)的高效能電加熱器。熱泵能從來源提取能量,例如地面或外部空氣,並引導它進入一個內部空間加熱。某些熱泵系統還可以顛倒,將熱空氣被排到地面或外部,而使內部空間冷卻。熱泵可以提供三或四的(COP),然而這與設備的效能,及室內室外的溫差有關。.
查看 導體和電熱
電荷密度
在電磁學裏,電荷密度是一種度量,描述電荷分佈的密度。電荷密度又可以分類為線電荷密度、面電荷密度、體電荷密度。 假設電荷分佈於一條曲線或一根直棒子,則其線電荷密度是每單位長度的電荷密度,單位為庫侖/公尺 (coulomb/meter) 。假設電荷分佈於一個平面或一個物體的表面,則其面電荷密度是每單位面積的電荷密度,單位為庫侖/公尺2。假設電荷分佈於一個三維空間的某區域或物體內部,則其體電荷密度是每單位體積的電荷密度,單位為庫侖/公尺3。 由於在大自然裏,有兩種電荷,正電荷和負電荷,所以,電荷密度可能會是負值。電荷密度也可能會跟位置有關。特別注意,不要將電荷密度與電荷載子密度 (charge carrier density) 搞混了。 電荷密度與電荷載子的體積有關。例如,由於鋰陽離子的半徑比較小,它的體電荷密度大於鈉陽離子的體電荷密度。.
查看 導體和電荷密度
電阻器
電阻器(Resistor),泛指所有用以產生電阻的電子或電機配件。電阻器的運作跟隨歐姆定律,其電阻值定義為其電壓與電流相除所得的比值。 其中 電阻器是電子電路中常見的元件,實際的電阻可以由許多不同的材質構成,包括薄膜、水泥或是高電阻系數的鎳鉻合金()。電阻器也可整合到積體電路中,特別是類比IC,也可以整合到混合式集體電路或印刷電路中。 電阻器的機能可以用其電阻來表示,常用的電阻器阻值範圍超過9個數量級。電阻器阻值有一定的誤差範圍,在電子電路中使用電阻器時,需考慮使用電阻器的允許誤差和應用是否符合,若是一些精密的電路,可能也需要考慮電阻器的溫度係數。電阻器也會標示其最大功率,此數值需大於電阻器在電路中預期的能量消耗,尤其在電力電子應用中更需考慮。大功率的電阻器一般會需要散熱片。在高壓電路中也需考慮電阻器可承受的最大電壓,電阻器的工作電壓一般沒有下限,但電阻器的電壓若超過其最大電壓,可能在電流流過時使電阻器燃燒。 實際的電阻器會有串聯的雜散電感及並聯的雜散電容。在高頻應用時這些規格就相當重要。在低噪音放大器或是的應用中,電阻的雜訊也需要考慮。電阻器的雜散電感、雜訊及溫度係數都和電阻器製造商使用的技術有關。一般廠商生產的一系列電阻器會使用某特定技術,不會針對個別電阻器標示使用的技術。一系列電阻器也可能以其形狀因數來區分,也就是零件的大小,以及引腳或端子的位置,這些在實際電路板佈線時都需考慮到。.
查看 導體和電阻器
電離煙霧探測器
電離煙霧探測器是一种含有镅-241的火灾报警装置。探測器內的鋂半衰期為432.2年,因此在19年後就含有3%的鎿,32年後則有5%。衰變產生的輻射通過電離室,也就是兩片電極間充滿空氣的區間,電極間有著少量的電流。煙霧進入電離室後會吸收輻射出來的α粒子,減少電離的程度,因此改變流通的電流,從而觸發警報。.
查看 導體和電離煙霧探測器
電氣隔離
電氣隔離(Galvanic isolation)是指在電路中避免電流直接從某一區域流到另外一區域的方式,也就是在兩個區域間不建立電流直接流動的路徑。雖然電流無法直接流過,但能量或是資訊仍可以經由其他方式傳遞,例如電容、电磁感应或電磁波,或是利用光學、聲學或是機械的方式進行。 電氣隔離常用在二個電路的接地在不同電勢,但彼此需要交換資訊或是能量的場合。電氣隔離因為讓二個電路可以不共用接地導體,可以避免不想要的電流在二個電路之間流動,也就切斷了。電氣隔離也用在電氣安全上,避免意外產生的電流流到人員身上,因而造成觸電。.
查看 導體和電氣隔離
電擊穿
電擊穿(Electrical breakdown)指的是加在介質上的電壓超過擊穿電壓後,絕緣體的電阻迅速下降,繼而使得一部分絕緣體變為導體的現象。電擊穿可以只在瞬間存在,例如常見靜電放電;也可能持續一段時間,例如在配電電路中發生的電弧現象等。 在有效的擊穿電壓下,電擊穿現象可以發生在固體、流體、氣體或者真空等不同的介質中。但是有些介質則比較特殊,例如介電質,其束縛電荷不會流過介電質,只會從原本位置移動微小距離,從而產生極化。 电擊穿后,P-N結消失,但只要停止通電,P-N結會自動恢復,电擊穿的終點是熱擊穿,熱擊穿則無法恢復,半導體即被損壞。 3KV/mm是空氣的絕緣度 超過3KV以上空氣的絕緣就會被打穿.
查看 導體和電擊穿
集總電路
集總電路(Lumped circuit)是由許多由電源、電阻、電容、電感等集總元件( Lumped element) 所組成之電路。 在電路理想化的電路模型分析,各點之間的信號是瞬間傳遞的,電路元件的所有電流過程都集中於在元件內部空間的各個點上,此為集總電路之特性。 每個集總元件基本現象時可用數學方式表示,並建立多種實際元件的理想模型。而電阻、電容、電感、電壓源和電流源都只是儲存或消耗電能磁場的元件,因此都視為集總元件,而且因為只有兩個端口,所以也稱之為二端元件(或者單口元件),除此之外,集總電路還需要理想變壓器、耦合電感、受控源等四端元件(雙口元件)。.
查看 導體和集總電路
雙球坐標系
雙球坐標系(Bispherical coordinates)是一種三維正交坐標系。設定二維雙極坐標系包含於 xz-平面。設定這雙極坐標系的兩個焦點 F_ 與 F_ 包含於 z-軸。將雙極坐標系繞著 z-軸旋轉,則可以得到雙球坐標系。在這二維雙極坐標系裏,坐標 \sigma 的等值曲線是圓圈。 經過旋轉後,圓圈變成一個環面,而圓圈的圓心變成一個包含於 xy-平面的圓圈,稱為環心圓。稱環心圓至環面的距離為環小半徑。.
查看 導體和雙球坐標系
雙極坐標系
二維雙極坐標系(Bipolar coordinates)是一個正交坐標系。學術界上有三種常用的雙極坐標系。除了在這裏討論的坐標系以外,另外兩種是雙心坐標系與雙角坐標系。 這裡所要討論的雙極坐標系建立於阿波羅尼奧斯圓。\sigma\,\! 的等值曲線是圓圈。 \tau\,\! 的等值曲線也是圓圈。兩組圓圈互相垂直相交。雙極坐標系有兩個焦點 F_\,\! 與 F_\,\! ,其直角坐標 (x,\ y)\,\! 通常分別設定為 (- a,\ 0)\,\! 與 (a,\ 0)\,\! 。所以,這兩個焦點都處於直角坐標系的 x-軸。 雙極坐標系是好幾種三維正交坐標系的原始模。往 z-軸方向延伸,則可得到雙極圓柱坐標系。繞著 x-軸旋轉,即可得到雙球坐標系。繞著 y-軸旋轉,就可得到圓環坐標系。.
查看 導體和雙極坐標系
雙極圓柱坐標系
雙極圓柱坐標系(Bipolar cylindrical coordinates)是一種三維正交坐標系。往 z-軸方向延伸二維的雙極坐標系 ,則可得到雙極圓柱坐標系。雙極坐標系的兩個焦點 F_ 與 F_ ,其直角坐標 (x,\ y) 分別設定為 (- a,\ 0) 與 (a,\ 0) 。延伸至三維空間,這兩個焦點分別變成兩條直線,L_ 與 L_ ,稱為焦線。.
查看 導體和雙極圓柱坐標系
Ε
Epsilon(大寫 Ε、小寫 ε 或 ϵ;έψιλον;中文音译:伊普西龙、艾普西龙、艾普塞朗),是第五個希臘字母。Epsilon 的希臘語是 ἒ ψιλόν,意思是「簡單的 e」;源自腓尼基字母 He,又从 epsilon 发展出了罗马字母 E 和西里尔字母 Е。在希腊数字系统中,E 表示 5。 小寫的ε用於:.
查看 導體和Ε
抖动
抖動(Jitter),又可稱為時基誤差,指的是电子学和電信领域中,周期信号与真实周期之间的差异,通常是相当于參考時鐘信號而言。 時基誤差會影響數位類比轉換器的類比輸出。在通訊連結(如USB,PCI-E,SATA,OC-48)中,尤其是採樣訊號的還原過程中,是不希望發生抖動的。Wolaver, Dan H.
查看 導體和抖动
技术
技術可以指人類對機器、硬體或人造器皿的運用,但它也可以包含更廣的架構,如系統、組織方法學和技巧。它是知識進化的主體,由社會形塑或形塑社會。如電腦等新技術的增生使人們相信技術是社會進化的決定性力量,換句話說,它是驅動改變的自發性動力。最好放棄化約主義的觀點,而將技術視為包含了社會、政治、歷史及經濟因素等一起作用而造成改變之多面向社會網絡的一組成元素不論有形或無形。 最初,人類會把石塊等自然界的材料,製作成一些簡單的工具,這已是技術的起源。而史前人類發現生火的方法,也增添了食物的來源和種類;輪子的發明則令人類的運輸變得更為方便。這些都是古時技術的例子。現今的發明,如印刷機、電報、電話、電腦、手機、網路和網際網路,為人類提供了新的通信途徑。不過,技術並不總是用在改善生活的用途上;無論是原始的棍棒還是大殺傷力的核武器,都是為追求破壞性能而發明的。 技術對社會的影響不容忽視,就連現今全球的經濟都離不開技術發展的成果。而許多技術生產、加工的過程中,可能會產生一些無用途的副產品,成為污染排放的來源,並耗用了大量的自然資源,引致不同的環境問題。新技術的發展,亦會帶來一些新的倫理問題,或是改變大眾的習慣。其中的例子包括,原來用作描述機器運作的效率一詞,近來也被廣泛用在表示人的工作能力上。 對於技術的發展,哲學上亦有不同的論調。其中新卢德主义和大致上都反對現代技術在社會的應用,認為技術並未真正改善人類的生活之餘,還破壞了環境,疏遠人與人之間的關係。與之相反,超人文主义和的意識形態則認為技術有助人類進步,以及可以突破人類遇到的限制。.
查看 導體和技术
楞次定律
在電磁學裏,楞次定律(Lenz's law)能夠找到由电磁感应產生的电动势和感應電流的方向。對於電磁感應所涉及的非保守力,這定律可以視為能量守恆定律的延伸。楞次定律是由德国物理学家海因里希·楞次在1834年发现的,其内容为 : 只使用法拉第電磁感應定律,並不容易決定感應电流方向。楞次定律給出了一種既簡單又直觀地能夠找到感應電流方向的方法。.
查看 導體和楞次定律
橢圓偏振技術
橢圓偏振技術(ellipsometry)是一種多功能和強大的光學技術,可用以取得薄膜的介電性質(複數折射率或介電常數)。它已被應用在許多不同的領域,從基礎研究到工業應用,如半導體物理研究、微電子學和生物學。橢圓偏振是一個很敏感的薄膜性質測量技術,且具有非破壞性和非接觸之優點。 分析自樣品反射之偏振光的改變,橢圓偏振技術可得到膜厚比探測光本身波長更短的薄膜資訊,小至一個單原子層,甚至更小。橢圓儀可測得複數折射率或介電函數張量,可以此獲得基本的物理參數,並且這與各種樣品的性質,包括形態、晶體質量、化學成分或導電性,有所關聯。它常被用來鑑定單層或多層堆疊的薄膜厚度,可量測厚度由數埃(Angstrom)或數奈米到幾微米皆有極佳的準確性。 之所以命名為橢圓偏振,是因為一般大部分的偏振多是橢圓的。此技術已發展近百年,現在已有許多標準化的應用。然而,橢圓偏振技術對於在其他學科如生物學和醫學領域引起研究人員的興趣,並帶來新的挑戰。例如以此測量不穩定的液體表面和顯微成像。.
查看 導體和橢圓偏振技術
橢圓坐標系
橢圓坐標系(Elliptic coordinate system)是一種二維正交坐標系。其坐標曲線是共焦的橢圓與雙曲線。橢圓坐標系的兩個焦點 F_ 與 F_ 的直角坐標 (x,\ y) ,通常分別設定為 (- a,\ 0) 與 (a,\ 0) ,都處於直角坐標系的 x-軸。.
查看 導體和橢圓坐標系
橢圓柱坐標系
橢圓柱坐標系(Elliptic cylindrical coordinates)是一種三維正交坐標系 。往 z-軸方向延伸二維的橢圓坐標系,則可得到橢圓柱坐標系;其坐標曲面是共焦的橢圓柱面與雙曲柱面。橢圓柱坐標系的兩個焦點 F_ 與 F_ 的直角坐標,分別設定為 (- a,\ 0,\ 0) 與 (a,\ 0,\ 0) ,都處於直角坐標系的 x-軸。.
查看 導體和橢圓柱坐標系
歐姆
欧姆是電阻值的計量單位(在中国大陆简称为「欧」);在國際單位制中是由電流所推導出的一種單位,其記號是希臘字母Ω(唸作Ohm)。 为了纪念德國物理學家格奥尔格·欧姆而命名;他定義了電壓和電流之間的關係,1A的電流通過1\Omega的電阻會產生1V的壓降,這個關係式也稱為歐姆定律。.
查看 導體和歐姆
毕奥-萨伐尔定律
在靜磁學裏,必歐-沙伐定律(--)以方程式描述,電流在其周圍所產生的磁場。採用靜磁近似,當電流緩慢地隨時間而改變時(例如當載流導線緩慢地移動時),這定律成立,磁場與電流的大小、方向、距離有關。必歐-沙伐定律是以法國物理學者讓-巴蒂斯特·必歐與菲利克斯·沙伐命名。 必歐-沙伐定律表明,假設源位置為\mathbf'的微小線元素\mathrm\boldsymbol'有電流I,則\mathrm\boldsymbol' 作用於場位置\mathbf的磁場為 其中,\mathrm\mathbf是微小磁場(這篇文章簡稱磁通量密度為磁場),\mu_0是磁常數。 已知電流密度\mathbf(\mathbf'),則有: 其中,\mathrm^3'為微小體積元素,\mathbb'是積分的體積。 在空氣動力學中,以渦度對應電流、速度對應磁場強度,便可應用必歐-沙伐定律以計算渦線 (vortex line)導出的速度。.
查看 導體和毕奥-萨伐尔定律
氧化铝
氧化鋁(Aluminium oxide)是白色固体,是鋁和氧的化合物,分子式為AlO。在礦業、製陶業和材料科學上又稱為礬土。常见纯度为99.5%和96%。 1961年,通用电气(GE)生产出了「Lucalox」,一种用于钠灯中的透明矾土。.
查看 導體和氧化铝
汉斯·奥斯特
汉斯·克海斯提安·奥斯特(Hans Christian Ørsted,),丹麦物理学家、化学家和文學家。在物理學領域,他首先发现載流導線的電流會產生作用力於磁針,使磁針改變方向。在化學領域,他發現了鋁元素。十九世紀後期,在科學方面的後康德哲學和演進,由於他的寫作而更見雛形。他創建了「思想實驗」這名詞,他也是第一位明確地描述思想實驗的現代思想家。.
查看 導體和汉斯·奥斯特
法國航空447號班機空難
法國航空447號班機原定由巴西里約熱內盧加利昂國際機場飛往法國巴黎戴高樂機場。2009年6月1日,該航班一架空中巴士A330-203客機(註冊編號:F-GZCP),載有216名乘客以及12名機組人員,在巴西圣佩德罗和圣保罗岛屿附近坠毁,機上人員全數罹難。此空難為法國航空成立以來最嚴重的空難,亦是A330最嚴重及首次商業飛行空難,更是天合联盟自成立以来死亡人数最多的空难。 事發後五天,巴西海軍找到飛機的大型殘骸及兩具屍體,但揭露空難原因的飛行紀錄儀直到2011年5月在大西洋海底才找到.
法拉第弔詭
法拉第弔詭(Faraday paradox)是一個關於法拉第感應定律的物理實驗。於1831年,物理學大師麥可·法拉第推斷出法拉第感應定律(簡稱「法拉第定律」),但是,在應用這定律來解釋法拉第弔詭的過程中,他遇到了很多困難。這在本文會有詳細相關敘述。.
查看 導體和法拉第弔詭
洛伦兹力
在電動力學裏,勞侖茲力(Lorentz force)是運動於電磁場的帶電粒子所感受到的作用力。勞侖茲力是因荷蘭物理學者亨德里克·勞侖茲而命名。根據勞侖茲力定律,勞侖茲力可以用方程式,稱為勞侖茲力方程式,表達為 其中,\mathbf是勞侖茲力,q是帶電粒子的電荷量,\mathbf是電場强度,\mathbf是帶電粒子的速度,\mathbf是磁感应强度。 勞侖茲力定律是一個基本公理,不是從別的理論推導出來的定律,而是由多次重複完成的實驗所得到的同樣的結果。 感受到電場的作用,正電荷會朝著電場的方向加速;但是感受到磁場的作用,按照右手定則,正電荷會朝著垂直於速度\mathbf和磁場\mathbf的方向彎曲(詳細地說,假設右手的大拇指與\mathbf同向,食指與\mathbf同向,則中指會指向\mathbf的方向)。 勞侖茲力方程式的q\mathbf項目是電場力項目,q\mathbf \times \mathbf項目是磁場力項目。處於磁場內的載電導線感受到的磁場力就是這勞侖茲力的磁場力分量。 勞侖茲力方程式的积分形式为 其中,\mathbb是積分的體積,\rho是電荷密度,\mathbf是電流密度,\mathrm\tau是微小體元素。 勞侖茲力密度\mathbf是單位體積的勞侖茲力,表達為:.
查看 導體和洛伦兹力
涡流制动
涡流制动(Eddy current brake,缩写:ECB)是一种非摩擦制动方式。涡流制动是基于法国物理学家莱昂·傅科发现的涡电流现象,基本原理是将磁铁按照N、S极交替布置,并与金属导体保持一定的间隙,当磁铁与导体相对运动时产生电磁感应,导体内产生闭合的漩涡状感应电流(涡电流),由涡电流产生的磁场使主磁场发生畸变,磁力线发生偏转,产生与运动方向相反的切向分力,亦即是制动力,阻力的 方向可由弗莱明左手法则判定,同时涡电流在具有一定电阻的导体内部流动时将电磁能转化为热能而导致导体发热。涡流制动的主要优点是无机械磨损、制动力在很大速度范围内保持稳定,因此适用于重型汽车、高速列车、起重机械等场合。.
查看 導體和涡流制动
渦電流
渦電流(Eddy Current,又稱為傅科電流)現象,在1851年被法國物理學家萊昂·傅科所發現。是由於一個移動的磁場與金屬導體相交,或是由移動的金屬導體與磁場垂直交會所產生。簡而言之,就是電磁感應效應所造成。這個動作產生了一個在導體內循環的電流。 磁场变化越快,感应电动势就越大,涡流就越强;涡流能使导体发热。在磁场发生变化的装置中,往往把导体分成一组相互绝缘的薄片或一束细条,以降低涡流强度,从而减少能量的损耗;但在需要产生高温时,又可以利用涡流取得热量,如高频电炉原理。 渦電流可以應用在,无损检测與監看多種金屬製品的結構,如飛機機身與零件的表面及近表面的检测等。 在--槳的時候,帶起水面的局部漩渦,也是一種類似渦電流的情形。.
查看 導體和渦電流
渦電流檢測
渦電流檢測(Eddy-current testing),也被簡稱為ET,是多種使用電磁方法的非破壞檢測其中的一種檢測方式。.
查看 導體和渦電流檢測
溫度係數
溫度係數(temperature coefficient)是指在溫度變化1K時,特定物理量的相對變化。 以下的公式中,R為特定的物理量,T為量測物理量時的溫度,T0為參考溫度,ΔT為量測溫度及參考溫度的溫度差,α為(線性)溫度係數。則物理量可以用以下公式表示: 此處α的因次為溫度的倒數(1/K或K−1)。 以上式子的物理量和溫度成線性關係,若物理量和溫度的多項式或對數成正比,也可以在一定溫度範圍內計算溫度係數,近似此範圍內的物理量變化。若物理量是隨溫度指數增長或指數衰減(例如阿伦尼乌斯方程),只能在一個很小的溫度範圍內計算溫度係數。 溫度係數會隨應用領域的不同而不同,例如核能、電子學或磁學均有其溫度係數。物體的彈性模量也會隨溫度而變化,一般彈性模量會隨溫度升高而下降。.
查看 導體和溫度係數
漂移速度
漂移速度(Drift Velocity),是指一個粒子(例如電子)因為電場的關係而移動的平均速度。 實際上,當沒有電場存在,導體中的電子以费米速度作隨機移動。 電場使這個隨機運動過程獲得單一方向的淨速度。 因為電流和漂移速度成正比,經多番推導後可得出其量值亦和電場量值成正比例,當中的推導過程可以歐姆定律解釋。 漂移速度可以用以下公式表達:.
查看 導體和漂移速度
有限位勢壘
在量子力學裏,有限位勢壘是一種位勢。在壘外,位勢為 0 ,在壘內,位勢為有限值 。有限位勢壘問題專門研討在這種位勢的作用中,一個粒子的量子行為。如圖右,最簡單的有限位勢壘是方形壘,壘高是一個常數。在這條目裏,只研討這種位勢壘。 通常,在經典力學裏,一維的有限位勢壘問題會設定一個粒子,從位勢壘的左邊,往位勢壘移動。假若,粒子的能量大於位勢壘的位勢。則這粒子,在經過位勢壘的時候,因為動能的轉換為位能,速度會降低,但方向不會改變。當移動至位勢壘外時,速度又會回復至原本值。假若,粒子的能量小於位勢壘的位勢,則在與位勢壘彈性碰撞之後,這粒子會改變方向,以同樣的速率,往回移動。粒子絕對無法存在於位勢壘內或越過位勢壘。 在量子力學裏,粒子的量子行為,是取決於其波函數。由於粒子沒有被有限位勢壘束縛,粒子的能量不是離散能量譜的特殊容許值,而是大於 0 的任意值,因此不需要求算粒子的能量。在這裏,主要研究的是粒子的一維散射 。這是一個很有意思的領域。假若,粒子的能量大於位勢壘的位勢。由於往位勢壘傳播的波函數,並不是完全地透射過位勢壘,仍舊有一部分反射回來。所以,反射的機率幅大於 0 ,粒子被反射回來的機率大於 0 。假若,粒子的能量小於位勢壘的位勢,雖然波函數會呈指數地遞減,在位勢壘內,機率幅仍舊大於 0 。所以,這粒子存在於位勢壘內的機率大於 0。不止這樣,機率幅在位勢壘外的另一邊也大於 0 。假若,位勢壘的位勢並不大大的超過粒子的能量,位勢壘的壘寬也並不很寬,則粒子穿越位勢壘的機率會是很顯著的,稱這效應為量子穿隧效應。透射的可能性,稱為透射係數;反射的可能性,則稱為反射係數。.
查看 導體和有限位勢壘
海王星
海王星是太陽系八大行星中距离太阳最远的,體積是太陽系第四大,但質量排名是第三。海王星的質量大約是地球的17倍,而類似雙胞胎的天王星因密度較低,質量大約是地球的14倍。海王星以羅馬神話中的尼普顿(Neptunus)命名,因為尼普顿是海神,所以中文譯為海王星。天文學的符號(♆,Unicode編碼U+2646),是希臘神話的海神波塞頓使用的三叉戟。 作爲一個冰巨行星,海王星的大氣層以氫和氦為主,還有微量的甲烷。在大氣層中的甲烷,只是使行星呈現藍色的一部分原因。因為海王星的藍色比有同樣份量的天王星更為鮮豔,因此應該還有其他成分對海王星明顯的顏色有所貢獻。 海王星有太陽系最強烈的風,測量到的風速高達每小時2,100公里。 1989年航海家2號飛掠過海王星,對南半球的大黑斑和木星的大紅斑做了比較。海王星雲頂的溫度是-218 °C(55K),因為距離太陽最遠,是太陽系最冷的地區之一。海王星核心的溫度約為7,000 °C,可以和太陽的表面比較,也和大多數已知的行星相似。 海王星在1846年9月23日被發現, 是唯一利用數學預測而非有計畫的觀測發現的行星。天文學家利用天王星軌道的攝動推測出海王星的存在與可能的位置。迄今只有航海家2號曾經在1989年8月25日拜訪過海王星。2003年,美國國家航空暨太空總署提出有如卡西尼-惠更斯號科學水準的海王星軌道探測計畫,但不使用熱滋生反應提供電力的推進裝置;這項計劃由噴射推進實驗室和加州理工學院一起完成。.
查看 導體和海王星
无线电
無線電,又稱无线电波、射頻電波、電波,或射頻,是指在自由空間(包括空氣和真空)傳播的電磁波,在電磁波譜上,其波長長於紅外線光(IR)。頻率範圍為300 GHz以下 ,其對應的波長範圍為1公釐以上。就像其他電磁波一樣,無線電波以光速前進。經由閃電或天文物體,可以產生自然的無線電波。由人工產生的無線電波,被應用在無線通訊、廣播、雷達、通訊衛星、導航系統、電腦網路等應用上。 無線電發射機,藉由交流電,經過振盪器,變成高頻率交流電,產生電磁場,而經由電磁場可產生無線電波。無線電波像磁鐵,有同性相斥、異性相吸的現象。同類電子會互相排斥,因此當無線電波射出時,會將前方電波往前推,當連續電波一直射出來時,電波就會在空氣中傳播。 無線電技術是通過無線電波傳播信號的技術,其原理在於,導體中電流強弱的改變會產生無線電波。利用這一現象,通過調製可將信息加載於無線電波之上。當電波通過空間傳播到達收信端,電波引起的電磁場變化又會在導體中產生電流。通過解調將訊息從電流變化中提取出來,就達到了資訊傳遞的目的。 麥克斯韋最早在他遞交給英國皇家學會的論文《電磁場的動力理論》中闡明了電磁波傳播的理論基礎。他的這些工作完成於1861年至1865年之間。 海因里希·魯道夫·赫茲在1886年至1888年間首先通過試驗驗證了麥克斯韋爾的理論。他證明了無線電輻射具有波的所有特性,並發現電磁場方程可以用偏微分方程表達,通常稱為波動方程。 1906年聖誕前夜,范信達在美國麻薩諸塞州採用外差法實現了歷史上首次無線電廣播。范信達廣播了他自己用小提琴演奏「平安夜」和朗誦《聖經》片段。位於英格蘭切爾姆斯福德的馬可尼研究中心在1922年開播世界上第一個定期播出的無線電廣播娛樂節目。.
查看 導體和无线电
无机化学
无机化学是研究无机化合物的化学分支学科。通常,无机化合物与有机化合物相对,指不含C-H键的化合物,因此一氧化碳、二氧化碳、二硫化碳、氰化物、硫氰酸盐、碳酸及碳酸盐等都属于无机化学研究的范畴。但这二者界限并不严格,之间有较大的重叠,有机金属化学即是一例。.
查看 導體和无机化学
教育電視廣播電台
教育電視廣播電台,簡稱教育電視台、教視、NETV,是中華民國教育部國立教育資料館旗下曾經存在的電視台,也是中華電視公司(華視)的前身。教育電視台是實驗性質的電視台,而且可收視地區不廣,所以並不被大多數的台灣電視史專書認為是台灣第一家電視台。.
查看 導體和教育電視廣播電台
拋物柱面坐標系
拋物柱面坐標系(Parabolic cylindrical coordinates)是一種三維正交坐標系。往 z-軸方向延伸二維的拋物線坐標系 ,則可得到拋物柱面坐標系。其坐標曲面是共焦的拋物柱面。拋物柱面坐標可以應用於許多物理問題。例如,物體邊緣的位勢論。.
查看 導體和拋物柱面坐標系
亦称为 導電體,載流導線。