目录
尤金·宾汉
尤金·库克·宾汉(Eugene Cook Bingham,),也译作宾厄姆,美国化学家。曾任拉法耶特学院化学系教授与系主任。宾汉和马尔克斯·雷纳一起开创了流变学这一学科,并于1929年创造了“rheology”(流变学)这一名词。宾汉在流变学的理论研究和实际应用方面均有较多贡献,最著名的是提出宾汉模型,在模型中,当应力小于某一临界值时,流体呈现纯弹性体特征,应变速率为零。当应力大于临界值时,流体呈现为牛顿流体。符合这一描述的流体,即被称为“宾汉流体”。在宾汉担任美国化学会米制委员会主席时,曾发起在美国推广米制的运动 。1948年宾汉逝世后,流变学协会每年颁发宾汉奖章,为流变学领域的最高奖赏之一。.
查看 宾汉流体和尤金·宾汉
巴格诺尔德数
巴格诺尔德数(Bagnold number,Ba)是在間質性牛頓流體中的,其碰撞應力和黏滯應力之間的比值,最早是由找到。 巴格诺尔德数定義如下: 其中.
查看 宾汉流体和巴格诺尔德数
黏度
黏度(Viscosity),是黏性的程度,是材料的首要功能,也称动力粘度、粘(滞)性系数、内摩擦系数。不同物质的黏度不同,例如在常温(20℃)及常压下,空气的黏度为0.018mPa·s(10^-5),汽油为0.65mPa·s,水为1 mPa·s,血液(37℃)为4~15mPa·s,橄榄油为102 mPa·s,蓖麻油为103 mPa·s,蜂蜜为104mPa·s,焦油为106 mPa·s,沥青为108 mPa·s,等等。最普通的液体黏度大致在1~1000 m Pa·s,气体的黏度大致在1~10μPa·s。糊状物、凝胶、乳液和其他复杂的液体就不好说了。一些像黄油或人造黄油的脂肪很黏,更像软的固体,而不是流动液体。 黏滯力是流體受到剪應力變形或拉伸應力時所產生的阻力。在日常生活方面,黏滯像是「黏稠度」或「流體內的摩擦力」。因此,水是「稀薄」的,具有較低的黏滯力,而蜂蜜是「濃稠」的,具有較高的黏滯力。簡單地說,黏滯力越低(黏滯係數低)的流體,流動性越佳。 黏滯力是粘性液體內部的一種流動阻力,並可能被認為是流體自身的摩擦。黏滯力主要來自分子間相互的吸引力。例如,高粘度酸性熔岩產生的火山通常為高而陡峭的錐狀火山,因為其熔岩濃稠,在其冷卻之前無法流至遠距離因而不斷向上累加;而黏滯力低的鎂鐵質熔岩將建立一個大規模、淺傾的斜盾狀火山。所有真正的流體(除超流體)有一定的抗壓力,因此有粘性。 沒有阻力對抗剪切應力的流體被稱為理想流體或無粘流體。 黏度\mu定義為流體承受剪應力時,剪應力與剪應變梯度(剪應變隨位置的變化率)的比值,数学表述为: 式中:\tau为剪应力,u为速度场在x方向的分量,y为与x垂直的方向坐标。 黏度較高的物質,比較不容易流動;而黏度較低的物質,比較容易流動。例如油的黏度較高,因此不容易流動;而水黏度較低,不但容易流動,倒水時還會出現水花,倒油時就不會出現類似的現象。.
查看 宾汉流体和黏度
胀流性
胀流性,又称为剪切增稠(shear thickening),是指剪切速率或者剪应力增加到某一个数值时,液体中形成了新的结构,引起了阻力的增加,导致液体的表观粘度增大,同时伴随着体积的胀大的现象。 胀流性流体是非牛顿流体中的一种,与之相反的是剪切稀化流体。 具有胀流性的流体称为胀流性流体(dilatant fluid),大多数固体含量多的流体都是属于这一类的。这类流体在静止时,流体中的固体粒子处在堆砌得很紧密的状态,粒子间空隙很小并充满液体。当作用在悬浮液上的剪应力很大或者剪切速率很快的时候,粒子的移动速度较快,粒子间的空隙增大,悬浮体系的总体积增大,粒子间移动时的润滑作用减小,阻力增大,引起了流体表观粘度增大,从而致使在流动过程中能耗增大,增加剪切力并不能成比例的增大剪切速率。这种性质正好与剪切稀化流体的流动性质相反。 常见的胀流性流体有陶瓷泥浆,糖果配料,玉米淀粉以及沙水混合物等含高度抗絮凝固体的流体。.
查看 宾汉流体和胀流性
亦称为 宾汉塑性流体。