我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

实直线

指数 实直线

實直線有如下含義,它們有互相可作補充的部分:.

目录

  1. 22 关系: 史密斯-沃尔泰拉-康托尔集叶戈罗夫定理同胚吉洪诺夫空间导集希爾伯特轉換开集分离集合凸函数全集离散空间积空间空集紧化绝对连续点集拓扑学芽 (数学)闭开集集合论柯爾莫果洛夫空間正规空间1 − 2 + 3 − 4 + …

史密斯-沃尔泰拉-康托尔集

在数学中,史密斯-沃尔泰拉-康托尔集(SVC),胖康托尔集,或ε-康托尔集是实直线 ℝ 上的无处稠密点集(不包含任何区间),同时具有非零测度。史密斯-沃尔泰拉-康托尔集得名于数学家亨利·史密斯,维多·沃尔泰拉和乔治·康托尔。它同胚于康托尔三分点集,也是一个分形。.

查看 实直线和史密斯-沃尔泰拉-康托尔集

叶戈罗夫定理

在测度论中,叶戈罗夫定理确立了一个可测函数的逐点收敛序列一致连续的条件。这个定理以俄国物理学家和几何学家德米特里·叶戈罗夫命名,他在1911年出版了该定理。 叶戈罗夫定理与紧支撑连续函数在一起,可以用来证明可积函数的卢津定理。.

查看 实直线和叶戈罗夫定理

同胚

在拓扑学中,同胚(homeomorphism、topological isomorphism、bi continuous function)是两个拓扑空间之间的双连续函数。同胚是拓扑空间范畴中的同构;也就是说,它们是保持给定空间的所有拓扑性质的映射。如果两个空间之间存在同胚,那么这两个空间就称为同胚的,从拓扑学的观点来看,两个空间是相同的。 大致地说,拓扑空间是一个几何物体,同胚就是把物体连续延展和弯曲,使其成为一个新的物体。因此,正方形和圆是同胚的,但球面和环面就不是。有一个笑话是说,拓扑学家不能区分咖啡杯和甜甜圈,这是因为一个足够柔软的甜甜圈可以捏成咖啡杯的形状(见图)。.

查看 实直线和同胚

吉洪诺夫空间

在拓扑学和相关的数学领域中,吉洪诺夫空间或完全正则空间是特定优良种类的拓扑空间。这些条件是分离公理的个例。 吉洪诺夫空间得名于,他的俄语名(Тихонов)也翻译为 “Tychonov”、“Tikhonov”、“Tihonov”或“Tichonov”。.

查看 实直线和吉洪诺夫空间

导集

在数学,特别是点集拓扑学中,拓扑空间的子集S的导集(导出集合)是S的所有极限点的集合。它通常記为 S'。 这个概念是格奥尔格·康托尔在1872年介入的,他开发集合论很大程度上就是为了研究在实直线上的导出集合。.

查看 实直线和导集

希爾伯特轉換

在数学和信号处理中,希尔伯特变换(Hilbert transform)是一个对函数 u(t) 产生定义域相同的函数 H(u)(t) 的线性算子。 希尔伯特变换在信号处理中很重要,能够导出信号 u(t) 的解析表示。这就意味着将实信号 u(t) 拓展到复平面,使其满足柯西-黎曼方程。 例如,希尔伯特变换引出了傅里叶分析中给定函数的,也就是。等价地说,它是奇异积分算子与的一个例子。 希尔伯特变换最初只对周期函数(也就是圆上的函数)有定义,在这种情况下它就是与希尔伯特核的卷积。然而更常见的情况下,对于定义在实直线 R(上半平面的边界)上的函数,希尔伯特变换是指与柯西核卷积。希尔伯特变换与有着密切的联系,帕利-维纳定理是将上半平面内的全纯函数与实直线上的函数的傅里叶变换相联系起来的另一种结果。 希爾伯特轉換是以大卫·希尔伯特來命名的,他首先引入了该算子来解决全纯函数的的一个特殊情况。.

查看 实直线和希爾伯特轉換

开集

開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).

查看 实直线和开集

分离集合

在拓扑学和有关的数学分支中,分离集合是给定拓扑空间中以特定方式相互关联的一对子集,粗略的說,既不重疊也不接觸。两个集合是否分离对于连通空间和拓扑空间的分离公理的概念都很重要。 分离集合不应该與分离空间混淆,它们有些关系但並不相同。而可分离空间則是完全不同的拓扑概念。.

查看 实直线和分离集合

凸函数

凸函数是一个定义在某个向量空间的凸子集C(区间)上的实值函数f,如果在其定义域C上的任意两点x,y,以及t\in ,有 也就是说,一个函数是凸的当且仅当其上境图(在函数图像上方的点集)为一个凸集。 如果对于任意的t\in (0,1)有 若對於任意的x,y,z,其中x\le z\le y,都有f(z)\leq \max\, \,\,\, \forall x,y,z \,\,\, x\leq z\leq y,則稱函數f是幾乎凸的。.

查看 实直线和凸函数

全集

数学上,特别是在集合论和数学基础的应用中,全类(若是集合,则为全集)大约是这样一个类,它(在某种程度上)包含了所有的研究对象和集合。.

查看 实直线和全集

离散空间

在拓扑学和相关数学领域中,离散空间是特别简单的一种拓扑空间,在其中点都在特定意义下是相互孤立的。.

查看 实直线和离散空间

积空间

拓扑学和数学的相关领域中,积空间是指一族拓扑空间的笛卡儿积,并配备了一个称为积拓扑的自然的拓扑结构。.

查看 实直线和积空间

空集

集是不含任何元素的集合,數學符號為\empty、\varnothing或\。.

查看 实直线和空集

紧化

数学中,紧化(compactification)是将一个拓扑空间扩大为紧的过程或结果。紧化的方法有多种,但每一种方法都是以某种方式添加“无穷远点”控制“跑向无穷远”的点或阻止这样的“逃逸”。.

查看 实直线和紧化

绝对连续

在数学中,绝对连续是一个光滑性质,比连续和一致连续都要严格。函数的绝对连续和测度的绝对连续都有定义。.

查看 实直线和绝对连续

点集拓扑学

点集拓扑学(Point Set Topology),有时也被称为一般拓扑学(General Topology),是数学的拓扑学的一个分支。它研究拓扑空间以及定义在其上的数学结构的基本性质。这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。它的表述形式大概在1940年左右就已经成文化了。通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。.

查看 实直线和点集拓扑学

芽 (数学)

数学上,一个芽(germ),或称芽胚,是从一个拓扑空间到另一个的连续函数的一个等价类(例如从实直线到自身),其中定义域中的一个点x0被特别选出。两个函数f和g是等价的,当且仅当存在一个x0的开邻域U,使得对所有x ∈ U,等式f(x).

查看 实直线和芽 (数学)

闭开集

在拓扑学中,在拓扑空间中的闭开集(Clopen set)是既是开集又是闭集的集合。.

查看 实直线和闭开集

集合论

集合論(Set theory)或稱集論,是研究集合(由一堆構成的整體)的數學理論,包含集合和元素(或稱為成員)、關係等最基本數學概念。在大多數現代數學的公式化中,都是在集合論的語言下談論各種。集合論、命題邏輯與謂詞邏輯共同構成了數學的公理化基礎,以未定義的「集合」與「集合成員」等術語來形式化地建構數學物件。 現代集合論的研究是在1870年代由俄国数学家康托爾及德國数学家理察·戴德金的樸素集合論開始。在樸素集合論中,集合是當做一堆物件構成的整體之類的自證概念,沒有有關集合的形式化定義。在發現樸素集合論會產生一些後,二十世紀初期提出了許多公理化集合論,其中最著名的是包括選擇公理的策梅洛-弗蘭克爾集合論,簡稱ZFC。公理化集合論不直接定義集合和集合成員,而是先規範可以描述其性質的一些公理。 集合論常被視為數學基礎之一,特別是 ZFC 集合論。除了其基礎的作用外,集合論也是數學理論中的一部份,當代的集合論研究有許多離散的主題,從實數線的結構到大基数的一致性等。.

查看 实直线和集合论

柯爾莫果洛夫空間

在拓扑学和相关的数学分支中,T0空間,又稱柯爾莫哥洛夫空間,以數學家安德雷·柯爾莫哥洛夫命名,形成了一类广泛的表现良好的拓扑空间。T0 条件是分离公理之一。.

查看 实直线和柯爾莫果洛夫空間

正规空间

在拓扑学和相关的数学分支中,正规空间(Normal space)、T4 空间、T5 空间和 T6 空间是特别优秀的一类拓扑空间。这些条件是分离公理的个例。.

查看 实直线和正规空间

1 − 2 + 3 − 4 + …

在数学中,1 − 2 + 3 − 4 + …表示以由小到大的接续正整數,依次加後又減、減後又加,如此反复所構成的無窮級數。它是交錯級數,若以Σ符号表示前m项之和,可写作: 此无穷级数发散,即其部分和的序列不会趋近于任一有穷极限。也就是說,單從極限的角度看的話,不存在和。不过,在18世纪中期,莱昂哈德·欧拉写出了一个他承认为悖论的等式: 该等式的严谨解释在很久以后才出现。自1890年起,恩纳斯托·切萨罗、埃米尔·博雷尔与其他一些数学家就在研究有哪些定义良好的方法,可以给发散级数賦予广义和「广义和」是指利用一些特殊的方式,計算--发散级数的「和」,由於发散级数不會有一般定義下的和,因此稱為广义和。——其中包含了对欧拉结果的新解释。这些求和法大部分可简单地指定的“和”為1⁄4。切萨罗求和是少数几种不能计算出之和的方法,因为此级数求和需要某个略强的方法——譬如阿贝耳求和。 级数与格蘭迪級數有紧密的联系。欧拉将这两个级数当作的特例(其中n为任意自然数),这个级数既直接扩展了他在巴塞尔问题上所做的工作,同时也引出了我们现在所知的狄利克雷η函数和黎曼ζ函数。.

查看 实直线和1 − 2 + 3 − 4 + …

亦称为 点集。