徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

定义良好

指数 定义良好

在数学裡,术语定义良好(定义良好的 well-defined,名词 well-definition)用于确认用一组基本公理以数学或逻辑的方式定义的某个概念或对象(一个函数,性质,关系,等等)是完全无歧义的,满足它必需满足的那些性质。通常定义是无歧义地表述,明白地满足它们所需的性质。但有时候,使用任意选择的方式来陈述定义是经济的,这时我们便要验证定义与选择无关。另一种情形,所需的性质可能不都是显然的,这时要验证它们。这些问题通常来自函数的定义。 譬如,在群论中,术语“定义良好”经常用于处理陪集时,陪集空间上的函数经常选取一个代表来定义:这时非常重要的是验证无论选取陪集的哪个代表,就像算术运算一样(比如,2加3总是5)我们总得到同样的结果。 f(x_).

16 关系: 叶状结构交换环商空间 (线性代数)前推 (微分)等价类纤维化 (数学)经典力学置换的奇偶性点积预序关系闭形式和恰当形式配丛林登鲍姆-塔斯基代数标架丛映射柱1 − 2 + 3 − 4 + …

叶状结构

在数学上,叶状结构(foliation)研究几何的一个工具。非正式地说,一个叶状结构是一种给流形穿的条纹织物的衣服。在流形的每个足够小的片上,这些条纹给了流形一个局部乘积结构。这个乘积结构不用在局部区域之外一致(也就是不用有良定义的整体结构):沿着一个条纹走足够远可能回到一个不同的邻近的条纹。.

新!!: 定义良好和叶状结构 · 查看更多 »

交换环

在抽象代数之分支环论中,一个交换环(commutative ring)是乘法运算满足交换律的环。对交换环的研究称为交换代数学。 某些特定的交换环在下列类包含链中:.

新!!: 定义良好和交换环 · 查看更多 »

商空间 (线性代数)

在线性代数中,一个向量空间V被一个子空间N的商是将N“坍塌”为零得到的向量空间。所得的空间称为商空间(quotient space),记作V/N(读作 V模N)。.

新!!: 定义良好和商空间 (线性代数) · 查看更多 »

前推 (微分)

假设 φ: M → N 是光滑流形之间的光滑映射;则 φ 在一点 x 处的微分在某种意义上是 φ 在 x 附近的最佳线性逼近。这可以视为通常微积分中全导数的推广。确切地说,它是从 M 在 x 处的切空间到 N 在 φ(x) 处的切空间的一个线性映射,从而可以将 M 的切向量“前推”成 N 的切向量。 映射 φ 的微分也被一些的作者称为 φ 的导数或全导数,有时它自己也之称为前推(pushforward)。.

新!!: 定义良好和前推 (微分) · 查看更多 »

等价类

在数学中,假設在一个集合X上定義一个等价关系(用 \sim來表示),则X中的某個元素a的等价类就是在X中等价于a的所有元素所形成的子集: 等价类的概念有助于从已经构造了的集合构造新集合。在X中的给定等价关系 \sim的所有等价类的集合表示为X/ \sim并叫做X除以\sim的商集。这种运算可以(实际上非常不正式的)被认为是输入集合除以等价关系的活动,所以名字“商”和这种记法都是模仿的除法。商集类似于除法的一个方面是,如果X是有限的并且等价类都是等势的,则X/ \sim的序是X的序除以一个等价类的序的商。商集被认为是带有所有等价点都识别出来的集合X。 对于任何等价关系,都有从X到X/ \sim的一个规范投影映射\pi,给出为\pi(x).

新!!: 定义良好和等价类 · 查看更多 »

纤维化 (数学)

数学中,尤其是代数拓扑,一个纤维化(fibration)是一个连续映射 对任何空间满足同伦提升性质。纤维丛(在仿紧底上)构成一类重要例子。在同伦论中任何映射和纤维化“一样好”——即任何映射可以分解为到“映射道路空间”的同伦等价复合一个纤维化(参见同伦纤维)。 对 CW复形(或等价地,只用多方体 In)有同伦提升性质的纤维化称为塞尔纤维化,让-皮埃尔·塞尔在其博士论文中部分提出了这个概念。这篇论文牢固地在代数拓扑学中建立了谱序列的使用,并将纤维丛与纤维化的概念从层中清晰地分离出来(这两个概念在早期让·勒雷的处理中是不清晰的)。因为一个层(想象为一个艾达尔空间)可以视为一个局部同胚,那时候这些概念是密切相连的。 “纤维”由定义是 E 的子空间,是 B 中一个点 b 的逆像。如果底空间 B 是道路连通的,有定义可以推出 B 中两个不同点 b1 和 b2 的纤维是同伦等价的。从而我们通常就说纤维 F。纤维化不必有定义更受限的纤维丛时的局部笛卡儿乘积结构,但弱一点仍可从纤维到纤维移动。塞尔谱序列的一个主要令人满意的性质是说明了底 B 的基本群在全空间 E 的同调上的作用。 乘积空间的投影映射容易看出是一个纤维化。纤维丛有局部平凡化性质——这样的笛卡儿乘积结构在 B 上局部存在,就通常足够证明一个纤维丛是一个纤维化。更确切地,如果在 B 一个可数开覆盖上有局部平凡化,则丛是纤维化。仿紧空间上任何覆盖——比如任何度量空间,有一个棵树加细,所以任何这样空间上的纤维丛是纤维化。局部平凡化也蕴含了良定义的“纤维”的存在性(差一个同胚),至少在 B 的每个连通分支上。.

新!!: 定义良好和纤维化 (数学) · 查看更多 »

经典力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

新!!: 定义良好和经典力学 · 查看更多 »

置换的奇偶性

在数学中,当X是一个至少有两个元素的有限集合时,X的置换(即从X到X的双射)可分为大小相同的两类:奇置换与偶置换。如果X固定了任何一个全序,X的一个置换\sigma的奇偶性可以定义为\sigma中反向对个数的奇偶性。所谓反向对即X中二元组x,y使得x且\sigma(x)>\sigma(y)。这里\sigma(x)为置换\sigma中第x位的元素。 一个置换\sigma的符号(sign或signature)记作sgn(σ):如果\sigma是偶数则定义为 +1,如果\sigma是奇数则定义为 -1。符号定义了对称群Sn的交错特征。置换的符号另一个更一般的符号为列维-奇维塔符号(\epsilon_\sigma),定义在X到X的所有映射上,而在非双射映射上取值为0。 置换的符号可以清晰地表达为 这里N(\sigma)是\sigma中反向对的个数。或者,置换\sigma的符号也可通过对换分解定义为 这里m是分解中对换的个数。尽管这样一个分解不是惟一的,所有分解中对换个数的奇偶性是相同的,蕴含着置换的符号是良定义的。.

新!!: 定义良好和置换的奇偶性 · 查看更多 »

点积

在数学中,点积(Skalarprodukt、Dot Product)又称--或标量积(Skalarprodukt、Scalar Product),是一种接受两个等长的数字序列(通常是坐标向量)、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标向量的点积常称为內積(inneres Produkt、Inner Product),见内积空间。 从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。 点积的名称源自表示点乘运算的点号(a·b),标量积的叫法则是在强调其运算结果为标量而非向量。向量的另一种乘法是叉乘(a×b),其结果为向量,称为叉积或向量积。 點积是--的一种特殊形式。.

新!!: 定义良好和点积 · 查看更多 »

预序关系

序关系(简称预序,又称先序,preorder)、在数学中,是一类接近于偏序关系的二元关系,但仅满足自反性和传递性而不满足反对称性。偏序的大多数理论均可扩展到预序。.

新!!: 定义良好和预序关系 · 查看更多 »

闭形式和恰当形式

在数学,特别是向量分析与微分拓扑中,一个闭形式 α 是微分算子 d 的核,即 dα.

新!!: 定义良好和闭形式和恰当形式 · 查看更多 »

配丛

在数学中,带有结构群 G(拓扑群)的纤维丛理论允许产生一个配丛(associated bundle)的操作,将丛的典型纤维由 F1 变成 F2,两者都是具有群 G 作用的拓扑空间。对具有结构群 G 的纤维丛 F,纤维在两个局部坐标系 Uα 与 Uβ 交集上的转移函数(即上链)由一个 Uα∩Uβ 上 G-值函数 gαβ 给出。我们可以构造一个纤维丛 F′ 有同样的转移函数,但可能具有不同的纤维。.

新!!: 定义良好和配丛 · 查看更多 »

林登鲍姆-塔斯基代数

在数理逻辑中,逻辑理论T的林登鲍姆-塔斯基代数A由这个理论的句子p的等价类构成,其等价关系~定义为 就是说,在T中句子q能演绎自p,p能演绎自q。 在A中的运算继承自T中能获得的那些运算,典型的是合取和析取,在这里它们在这些类上是良定的。当T中存在否定的时候,A是布尔代数,假定逻辑是经典逻辑。反或来说,对于所有布尔代数A,有(经典)句子逻辑的一个理论T使得T的林登鲍姆-塔斯基代数同构于A。换句话说,所有布尔代数都是(不別同构之異)林登鲍姆-塔斯基代数。 在直觉逻辑的情况下,林登鲍姆-塔斯基代数是海廷代数。 有时简称为林登鲍姆代数,这个构造得名于阿道夫·林登鲍姆(1904年-1941或1942年)和阿尔弗雷德·塔斯基。.

新!!: 定义良好和林登鲍姆-塔斯基代数 · 查看更多 »

标架丛

数学中,标架丛(Frame bundle)是一个与任何向量丛 E 相伴的主丛。F(E) 在一点 x 的纤维是 Ex 的所有有序基或曰标架。一般线性群通过基变更自然作用在 F(E) 上,给出标架丛一个主 GLk(R)-丛结构,这里 k 是 E 的秩。 一个光滑流形的标架丛是与其切丛相伴的丛。因此它有经常称为切标架丛(tangent frame bundle)。.

新!!: 定义良好和标架丛 · 查看更多 »

映射柱

在数学的代数拓扑分支中,拓扑空间 X 与 Y 之间函数 f 的映射柱(mapping cylinder)是将任何一个映射用一个在如下意义下等价的上纤维化代替的方法: 给定映射 f\colon X \to Y,映射柱由一个空间 M_f 与一个上纤维化 \tilde f\colon X \to M_f 以及满同伦等价 M_f \to Y(事实上,Y 是M_f 的形变收缩)组成,使得复合 X \to M_f \to Y 等于 f。 这样空间 Y 被一个同伦等价的空间M_f 取代,映射 f 被提升映射 \tilde f 代替。等价地,图表 被图表 与这两个图表之间的一个同伦等价取代。 这个构造用于将拓扑空间之间的映射用拓扑等价的上纤维化取代。注意逐点一个上纤维化是一个闭包含映射。.

新!!: 定义良好和映射柱 · 查看更多 »

1 − 2 + 3 − 4 + …

在数学中,1 − 2 + 3 − 4 + …表示以由小到大的接续正整數,依次加後又減、減後又加,如此反复所構成的無窮級數。它是交錯級數,若以Σ符号表示前m项之和,可写作: 此无穷级数发散,即其部分和的序列不会趋近于任一有穷极限。也就是說,單從極限的角度看的話,不存在和。不过,在18世纪中期,莱昂哈德·欧拉写出了一个他承认为悖论的等式: 该等式的严谨解释在很久以后才出现。自1890年起,恩纳斯托·切萨罗、埃米尔·博雷尔与其他一些数学家就在研究有哪些定义良好的方法,可以给发散级数賦予广义和「广义和」是指利用一些特殊的方式,計算--发散级数的「和」,由於发散级数不會有一般定義下的和,因此稱為广义和。——其中包含了对欧拉结果的新解释。这些求和法大部分可简单地指定的“和”為1⁄4。切萨罗求和是少数几种不能计算出之和的方法,因为此级数求和需要某个略强的方法——譬如阿贝耳求和。 级数与格蘭迪級數有紧密的联系。欧拉将这两个级数当作的特例(其中n为任意自然数),这个级数既直接扩展了他在巴塞尔问题上所做的工作,同时也引出了我们现在所知的狄利克雷η函数和黎曼ζ函数。.

新!!: 定义良好和1 − 2 + 3 − 4 + … · 查看更多 »

重定向到这里:

Well-defined定义明确明确定义良好定义良定良定义良定的

传出传入
嘿!我们在Facebook上吧! »