目录
大爆炸
--又稱大--靂(Big Bang),是描述宇宙的源起與演化的宇宙學模型,这一模型得到了当今科学研究和觀測最廣泛且最精確的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的。根据2015年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.99 ± 0.21亿年,并经过不断的到达今天的状态。 大爆炸这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如宇宙學原理假设空间的和各向同性)。1922年,苏联物理学家亚历山大·弗里德曼用广义相对论描述了流体,从而给出了这一模型的场方程。1929年,美国物理学家埃德温·哈勃通过观测发现,从地球到达遥远星系的距离正比于这些星系的红移,从而推导出宇宙膨胀的观点。1927年时勒梅特通过求解弗里德曼方程已经在理论上提出了同样的观点,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星系团在视線速度上都在远离我们这一观察点,并且距离越远退行视速度越大 。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去曾经距离很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个密度极高且温度极高的状态,大型粒子加速器在类似条件下所进行的实验结果则有力地支持了这一理论。然而,由于当前技术原因,粒子加速器所能达到的高能范围还十分有限,因而到目前为止,还没有证据能够直接或间接描述膨胀初始的极短时间内的宇宙状态。从而,大爆炸理论还无法对宇宙的初始状态作出任何描述和解释,事实上它所能描述并解释的是宇宙在初始状态之后的演化图景。当前所观测到的宇宙中氢元素的丰度,和理论所预言的宇宙早期快速膨胀并冷却过程中,最初的几分钟内通过核反应所形成的这些元素的理论丰度值非常接近,定性并定量描述宇宙早期形成的氢元素丰度的理论被称作太初核合成。 大爆炸一词首先是由英国天文学家弗雷德·霍伊尔所采用的。霍伊尔是与大爆炸对立的宇宙学模型——穩態學說的倡导者,他在1949年3月BBC的一次广播节目中将勒梅特等人的理论称作“这个大爆炸的观点”。虽然有很多通俗轶事记录霍伊尔这样讲是出于讽刺,但霍伊尔本人明确否认了这一点,他声称这只是为了着重说明这两个模型的显著不同之处。霍伊尔后来为恒星核合成的研究做出了重要贡献,这是恒星内部通过核反应利用氢元素制造出某些重元素的途径。1964年发现的宇宙微波背景辐射是支持大爆炸确实发生的重要证据,特别是当测得其频谱从而绘制出它的黑体辐射曲线之后,大多数科学家都开始相信大爆炸理论了。.
宇宙年表
宇宙年代學,或宇宙年表依據大爆炸宇宙論描述宇宙的歷史和未來,目前的宇宙如何由普朗克時期隨著時間演化的科學模式,使用宇宙的共動坐標系時間參數。宇宙膨脹的模型即是所知的大爆炸,在2015年,估計開始於137.99 ±0.21億年前 。為了方便,將宇宙的演化分成三個階段。.
宇宙形成年表
這是宇宙從137.99±0.21億年的大爆炸和隨後演化與形成到現在的時間表。時間的量度是從大爆炸的那一刻開始。.
重力波背景
重力波背景(Gravitational wave background,簡稱為GWB)是在偵測重力波上,可能偵測到的目標。偵測到重力波背景將會對早期宇宙的研究及高能物理有深遠的影響。重力波背景即是由天體放出來的重力波會形成一個隨機分布的背景。例如:一個質量夠大的恆星在其演化的最終階段會塌陷而形成黑洞或中子星,以超新星爆炸來說,在其最終階段會有一段快速的塌陷,而此時重力波理論上就會被釋放出來。此外,在快速旋轉的中子星中,其會受重力波驅使而有不穩定性。 一直以來都有很多研究在進行重力波背景的量測。在2016年2月11號,雷射干涉重力波天文台(LIGO)及處女座干涉儀(Virgo)共同宣布他們於2015年9月時第一次直接觀測到重力波。他們所觀察到的是兩個黑洞碰撞造成的可觀測重力波,這也是要發現重力波背景的第一步。.