我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

單磷酸腺苷

指数 單磷酸腺苷

一磷酸腺苷(英文:Adenosine monophosphate,簡稱AMP),又名5'-腺嘌呤核苷酸或腺苷酸,是一種在核糖核酸(RNA)中發現的核苷酸。它是一種磷酸及核苷腺苷的酯,並由磷酸鹽官能團、戊糖核酸糖及鹼基腺嘌呤所組成。.

目录

  1. 30 关系: 三磷酸腺苷二磷酸腺苷别嘌醇嘌呤受体嘌呤代谢嘌呤核苷酸循环內核函數硫辛酸磷酸鹽磷酸核糖焦磷酸精氨酸糖酵解线粒体载体维生素B细胞核生物化学生物分子列表異戊醇遗传学萤科萬古黴素肌苷腺嘌呤Perkow反应抗肿瘤药核苷酸氨酰-tRNA合成酶泛素50S核糖体亚基61-19-8

三磷酸腺苷

三磷酸腺苷(adenosine triphosphate, ATP;也称作腺苷三磷酸、腺嘌呤核苷三磷酸)在生物化學中是一种核苷酸,作为細胞内能量传递的“分子通货”,储存和传递化学能。ATP在核酸合成中也具有重要作用。它也是RNA序列中的鳥嘌呤二核苷酸,在DNA進行轉錄或複製時可做為替補。.

查看 單磷酸腺苷和三磷酸腺苷

二磷酸腺苷

二磷酸腺苷(adenosine diphosphate,縮寫:ADP)是一種核苷酸。它是在代謝中重要的有機化合物,並是在活細胞中的能量流動是至關重要的。一個ADP分子包括三個重要的結構組件:一個糖骨架連接到一個腺嘌呤分子和鍵合到核糖的5'碳原子上的兩個磷酸盐(phosphate)基團的分子。.

查看 單磷酸腺苷和二磷酸腺苷

别嘌醇

别嘌呤醇(Allopurinol,又名别嘌醇、異嘌呤醇)是主治高尿酸血症(血浆中的尿酸浓度过高)及其并发症痛風病等的药物。.

查看 單磷酸腺苷和别嘌醇

嘌呤受体

嘌呤受體(Purinergic receptors)為一類近來才被標定的膜分子家族,與細胞內許多功能及作用有關,如血管反應力(vascular reactivity)、細胞凋亡(apoptosis)及細胞素分泌 (cytikine secretion)。 對於胞外微作用的影響了解仍有限。 就目前所知它們能夠認出胞外ATP,媒介ATP作為細胞第一傳訊者。 纖維母細胞(Fibroblasts)與平滑肌細胞的有許多共同特徵, 它們都能形成動脈粥狀硬化的斑塊。人類纖維母細胞中,這種受體對影響ATP媒介的高葡萄糖濃度反應。 Category:细胞.

查看 單磷酸腺苷和嘌呤受体

嘌呤代谢

許多生物利用代謝途徑來合成或分解嘌呤。.

查看 單磷酸腺苷和嘌呤代谢

嘌呤核苷酸循环

嘌呤核苷酸循环(Purine Nucleotide Cycle)是一种自天冬氨酸形成延胡索酸的代谢途径以增加三羧酸循环中间产物的量,或是作为联合脱氨的方法之一加快氨基酸脱去氨基的效率。这个循环由约翰·洛温斯坦发现并提出,证明了这个循环在加强骨骼肌中氧化磷酸化的速率上的作用。.

查看 單磷酸腺苷和嘌呤核苷酸循环

內核函數

在計算中,內核函數是為高吞吐量加速器(例如GPU,DSP或FPGA)編譯的例程,與主程序分開。它們有時被稱為着色器,與GPU 共享頂點著色器和像素著色器的執行單元,但不限於在一類設備或圖形API上執行。.

查看 單磷酸腺苷和內核函數

硫辛酸

--> 6,8-二硫辛酸,簡稱硫辛酸(lipoic acid),为含硫八碳脂酸,在6、8位上有二硫键相连(C6和C8上的氢原子被二硫键取代),有氧化、还原二型。6、8位上巯基脱氢为氧化型硫辛酸(两个硫原子通过二硫键相连),加氢变成还原型称为二氢硫辛酸(二硫键还原为巯基)。硫辛酸虽然不属于维生素,但其可作为辅酶参与机体内物质代谢过程中酰基转移,起到递氢和转移酰基的作用(即作为氢载体和酰基载体),具有与维生素相似的功能(类维生素),因此也被生物化学教材列入维生素中讲述。.

查看 單磷酸腺苷和硫辛酸

磷酸鹽

磷酸鹽(phosphate,符号:),是磷酸的鹽,在無機化學、生物化學及生物地質化學上是很重要的物質。.

查看 單磷酸腺苷和磷酸鹽

磷酸核糖焦磷酸

5-磷酸核糖-1α-焦磷酸(Phosphoribosyl pyrophosphate,缩写PRPP)是一种核糖衍生物。它是核糖C1的活化形式,由核糖-5-磷酸与ATP在核糖磷酸焦磷酸激酶催化下生成。 磷酸核糖焦磷酸是重要的代谢中间物,参与嘌呤核苷酸与嘧啶核苷酸的从头合成和补救合成、某些核苷酸类辅酶如辅酶I和辅酶II、以及某些氨基酸如组氨酸和色氨酸的合成。其在细胞内的浓度受到严格调控,且浓度一般较低。 磷酸核糖焦磷酸负责在下列反应中作为磷酸核糖基团的供体: 在嘌呤核苷酸的从头合成中,磷酸核糖焦磷酸受到谷氨酰胺:磷酸核糖焦磷酸氨基转移酶的催化,转变为磷酸核糖胺。.

查看 單磷酸腺苷和磷酸核糖焦磷酸

精氨酸

精氨酸(Arginine)是一種α-胺基酸,亦是20種普遍的自然胺基酸之一。在分子遺傳學上,信使核糖核酸的結構,CGU,CGC,CGA,CGG,AGA和AGG。是在蛋白質合成時核苷酸鹼基或遺傳密碼子代碼為精氨酸的三元組。在哺乳動物生活中,精氨酸被分類為半必要或條件性必要的胺基酸(非必需胺基酸),身體能自行產生,但在壓力或疾病的時候,可能需要更多。也視乎生物的發育階段及健康狀況而定。早產兒體內不能合成精氨酸,使得補充他們營養中的精氨酸變得非常重要。於1886年精氨酸是首先由瑞士化學家恩斯特·舒爾茨從扁豆苗萃取物中分離出來。.

查看 單磷酸腺苷和精氨酸

糖酵解

糖酵解(glycolysis--是把葡萄糖(C6H12O6)转化成丙酮酸(CH3COCOO− + H+)的代谢途径。在这个过程中所释放的自由能被用于形成高能量化合物ATP和NADH。 糖解作用是所有生物细胞糖代谢過程的第一步。糖解作用是一个有10个步骤酶促反应的确定序列。在该过程中,一分子葡萄糖会经过十步酶促反应转变成两分子丙酮酸(严格来说,应该是丙酮酸盐,即是丙酮酸的阴离子形式)。 糖解作用及其各种变化形式发生在几乎所有的生物中,无论是有氧和厌氧。糖酵解的广泛发生显示它是最古老的已知的代谢途径之一。事实上,糖解作用及其并行途径戊糖磷酸途径,构成了反应,这些反应发生在还在不存在酶的条件下进行金属催化的太古宙海洋。糖解作用可能因此源于生命出现之前世界的化学约束。 糖解作用发生在大多数生物体中的细胞的胞质溶胶。最常见的和研究最彻底的糖解作用形式是双磷酸己糖降解途径(Embden-Meyerhof-Parnas途径,简称:EMP途径),这是被Gustav Embden,奥托·迈尔霍夫,和Jakub Karol Parnas所发现的。糖解作用也指的其他途径,例如,脱氧酮糖酸途径()各种异型的和同型的发酵途径,糖解作用一词可以用来概括所有这些途径。但是,在此处的讨论却是局限于双磷酸己糖降解途径(EMP途径)。 整个糖解作用途径可以分成两个阶段:.

查看 單磷酸腺苷和糖酵解

线粒体载体

线粒体载体是存在于线粒体膜中用于将各类化学物质转运进出线粒体的溶质载体家族蛋白质,不同线粒体载体负责转运的物质一般是不同的。这些定位在线粒体内膜中的载体蛋白,除了能转运各种分子还可以参与能量的传递。线粒体载体包括ATP/ADP转位酶(ATP/ADP Translocase)、磷酸载体蛋白(phosphate carrier protein,PHC)、α-酮戊二酸/苹果酸载体蛋白(2-oxoglutarate malate carrier protein,OMC)以及褐色脂肪组织线粒体中的解偶联蛋白等,它们不论在结构上还是在转运机制上都有一定的相似之处。这几种蛋白质都有相关序列,同属一个 蛋白质家族。 这些蛋白质包括:ATP/ADP转位酶(ATP/ADP Translocase)、α-酮戊二酸/苹果酸载体蛋白(2-oxoglutarate malate carrier protein,OMC)、磷酸载体蛋白(phosphate carrier protein,PHC)、柠檬酸转运蛋白(citrate transport protein, CTP)、格雷夫斯病载体蛋白(Graves disease carrier protein,GDC)等等。.

查看 單磷酸腺苷和线粒体载体

维生素B

維--生素B也作維--他命B,是B族维生素的总称,它们常常来自于相同的食物来源,如酵母等。維生素B是身體內新陳代謝必需的一環,每種維生素B都參與了關鍵的代謝反應,通常以輔酶的形式存在。 维生素B曾经被认为是像维生素C那样具有单一结构的有机化合物,但是后来的研究证明它其实是一组有着不同结构的化合物,于是它的成员有了独立的名称,如维生素B1,而維生素B成为了一个总称,有的时候也被称为維生素B群、維生素B族或維生素B复合群。.

查看 單磷酸腺苷和维生素B

细胞核

细胞核(nucleus)是存在於真核細胞中的封閉式膜狀细胞器,內部含有細胞中大多數的遺傳物質,也就是DNA。這些DNA與多種蛋白質,如組織蛋白複合形成染色質。而染色質在細胞分裂時,會濃縮形成染色體,其中所含的所有基因合稱為核基因組。細胞核的作用,是維持基因的完整性,並藉由調節基因表現來影響細胞活動。 細胞核的主要構造為核膜,是一種將細胞核完全包覆的雙層膜,可使膜內物質與細胞質、以及具有細胞骨架功能的網狀結構核纖層分隔開來。由於多數分子無法直接穿透核膜,因此需要核孔作為物質的進出通道。這些孔洞可讓小分子與離子自由通透;而如蛋白質般較大的分子,則需要攜帶蛋白的幫助才能通過。核運輸是細胞中最重要的功能;基因表現與染色體的保存,皆有賴於核孔上所進行的輸送作用。 細胞核內不含有任何其他膜狀的結構,但也並非完全均勻,其中存在許多由特殊蛋白質、RNA以及DNA所複合而成的次核體。而其中受理解最透徹的是核仁,此結構主要參與核糖體的組成。核糖體在核仁中產出之後,會進入細胞質進行mRNA的轉譯。.

查看 單磷酸腺苷和细胞核

生物化学

生物化学(biochemistry,也作 biological chemistry),顾名思义是研究生物体中的化学进程的一门学科,常常被简称为生化。它主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核酸等生物大分子的结构和功能。而对于化学生物学来说,则着重于利用化学合成中的方法来解答生物化学所发现的相关问题。 虽然存在着大量不同的生物分子,但实际上有很多大的复合物分子(称为“聚合物”)是由相似的亚基(称为“单体”)结合在一起形成的。每一类生物聚合物分子都有自己的一套亚基类型。例如,蛋白质是由20种氨基酸所组成,而脱氧核糖核酸(DNA)由4种核苷酸构成。生物化学研究集中于重要生物分子的化学性质,特别着重于酶促反应的化学机理。 在生物化学研究中,对细胞代谢和内分泌系统的研究进行得相当深入。生物化学的其他研究领域包括遗传密码(DNA和RNA)、 蛋白质生物合成、跨膜运输(membrane transport)以及细胞信号转导。.

查看 單磷酸腺苷和生物化学

生物分子列表

生物分子列表收录了部分有对应维基百科条目的生物分子,以中文全称拼音首字母排序:.

查看 單磷酸腺苷和生物分子列表

異戊醇

戊醇(英語:isoamyl alcohol)是一種清澈無色的液體,分子式為(CH3)2CHCH2CH2OH。它是八種戊醇的醇類同分異構物中的一種。它是生產香蕉油的主要成分,香蕉油是一種自然界中發現的酯,也是工業中的香料。.

查看 單磷酸腺苷和異戊醇

遗传学

遗传学是研究生物体的遗传和变异的科学,是生物学的一个重要分支Hartl D, Jones E (2005)。史前时期,人们就已经利用生物体的遗传特性通过选择育种来提高谷物和牲畜的产量。而现代遗传学,其目的是寻求了解遗传的整个过程的机制,则是开始于19世纪中期孟德尔的研究工作。虽然孟德尔并不知道遗传的物理基础,但他观察到了生物体的遗传特性,某些遗传单位遵守简单的统计学规律,这些遗传单位现在被称为基因。 基因位于DNA上,而DNA是由四类不同的核苷酸组成的链状分子,DNA上的核苷酸序列就是生物体的遗传信息。天然DNA以双链形式存在,两条链上的核苷酸互补,而每一条链都能够作为模板来合成新的互补链。这就是生成可以被遗传的基因的复制方式。 基因上的核苷酸序列可以被细胞翻译以合成蛋白质,蛋白质上的氨基酸序列就对应着基因上的核苷酸序列。这种对应性被称为遗传密码。蛋白质的氨基酸序列决定了它如何折叠成为一个三维结构,而蛋白质结构则与它所发挥的功能密不可分。蛋白质执行细胞中几乎所有的生物学进程来维持细胞的生存。DNA上的一个基因的改变可以改变其编码的蛋白质的氨基酸,并可能改变此蛋白质的结构和功能,进而对细胞甚至整个生物体造成巨大的影响。 虽然遗传学在决定生物体外形和行为的过程中扮演着重要的角色,但此过程是遗传学和生物体所经历的环境共同作用的结果。 例如,虽然基因能够在一定程度上决定一个人的体重,人在孩童时期的所经历的营养和健康状况也对他的体重有重大影响。.

查看 單磷酸腺苷和遗传学

萤科

萤科(學名:Lampyridae)是鞘翅目(甲虫)里面的一个科,该科在全世界有2000多种。俗稱螢火蟲。 该科裡很多种虫能发光,但并不是全部都可以。通常,只要有发光器官的甲虫,就会被称为萤火虫。所以,狭义的萤火虫单指萤科,而广义的萤火虫则包括光萤科(Phengodidae)和其他科的一些种。 螢火蟲幼蟲是屬於肉食性,最常吃到的是蝸牛。.

查看 單磷酸腺苷和萤科

萬古黴素

萬古黴素(Vancomycin,INN)是一種糖肽類抗生素,用來治療許多细菌感染的抗细菌药抗生素,治療皮膚感染、敗血症、心內膜炎, 骨關節感染以及因耐甲氧西林金黄色葡萄球菌(MRSA)引起的脑膜炎時,通常建議採用靜脈注射藥物作為第一線治療;而投藥時,劑量將依患者的血液濃度作調整。萬古黴素也是一種治療嚴重偽膜性結腸炎的口服藥,然而口服時藥效將會大為降低。,用來預防和治療革蘭氏陽性菌所造成的感染。傳統上,萬古黴素被用作「」,用來治療所有抗生素均無效的嚴重感染。但由於越來越多的抗萬古黴素耐藥性病菌的出現,其地位漸漸被利奈唑胺和達托黴素所取代。 常見的副作用包含注射至局部時的疼痛、过敏,有時候也可能引發聽力問題、低血壓或骨髓抑制等問題;對母乳餵養的患者似乎沒有問題,而對於懷孕患者的影響尚不明確,但目前沒有證據顯示會造成危害。萬古黴素係為一種糖肽類抗生素,藉由阻斷細胞壁生成來發揮作用。 萬古黴素於1954年上市,在最基本的健康照護系統中最必要的藥物清單世界卫生组织基本药物标准清单登錄有案,是一種常見藥物 ,一劑靜脈注射的批發價約在1.70-6美元左右;因為在美國靜脈注射劑型相當昂貴 ,靜脈注射的投藥方式可能會被取代。萬古黴素目前由土壤細菌Amycolatopsis orientalis培養得來。.

查看 單磷酸腺苷和萬古黴素

肌苷

肌苷(Inosine),也称为次黄苷、次黄嘌呤核苷等。是由次黄嘌呤于核糖结合而成的核苷类化合物。在嘌呤的从头合成(de novo synthesis)中,肌苷酸(IMP)可以作为合成腺苷酸(AMP)和鸟苷酸(GMP)的前体。 Category:核苷.

查看 單磷酸腺苷和肌苷

腺嘌呤

腺嘌呤(Adenine,簡稱A,旧称维生素B4)是一種嘌呤,在生物化學上具有許多不同的功用。於細胞呼吸中,是以富有能量的腺苷三磷酸(ATP),以及輔因子煙醯胺腺嘌呤二核苷酸(NAD)、黃素腺嘌呤二核苷酸(FAD)等形式發生作用。並且在蛋白質生物合成過程裡作為DNA與RNA的組成物。.

查看 單磷酸腺苷和腺嘌呤

Perkow反应

Perkow反应(Perkow reaction) 亚磷酸三烷基酯与卤代酮反应生成烯基二烷基磷酸酯和卤代烃。 此反应常为 Michaelis-Arbuzov 反应的副反应。.

查看 單磷酸腺苷和Perkow反应

抗肿瘤药

抗肿瘤药(Anticancer Drugs,Antitumor Drugs,Antineoplastic Agents)也称为抗癌药、抗恶性肿瘤药,是指治疗恶性肿瘤的药物。此类药物通过多种途径杀灭或抑制癌细胞来达到治疗恶性肿瘤的目的。根据药理作用的不同可以将抗肿瘤药分为细胞毒性药物和非细胞毒性药物,前者以DNA毒性药物为主,后者以分子靶向抗肿瘤药物为主。常用的抗肿瘤药有:顺铂、多柔比星、紫杉醇、伊马替尼等。 传统的细胞毒性药物由于对癌细胞缺乏足够的选择性,在杀伤癌细胞的同时,对正常的组织细胞也产生不同程度的损伤作用。而随着肿瘤分子生物学和转化医学的发展,抗肿瘤药已从传统的细胞毒性药物向非细胞毒性药物发展。非细胞毒性药物具有高选择性和高治疗指数的特点,临床优势明显。.

查看 單磷酸腺苷和抗肿瘤药

核苷酸

核苷酸(Nucleotide)为核酸的基本组成单位。核苷酸由一個含氮鹼基作為核心,加上一個五碳糖和一個或者多个磷酸基團組成。含氮碱基有五种可能,分别是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶。五碳糖为脱氧核糖者称为脱氧核糖核苷酸(DNA的單體),五碳糖为核糖者称为核糖核苷酸(RNA的單體)。 根据构成核酸的核苷酸数量分为寡核苷酸(少于或等于15个核苷酸)和多核苷酸(15个核苷酸以上)。.

查看 單磷酸腺苷和核苷酸

氨酰-tRNA合成酶

氨酰tRNA合成酶(aminoacyl tRNA synthetase,通常简写为aaRS)是一类催化特定氨基酸或其前体与对应tRNA发生酯化反应而形成氨酰tRNA的酶。由于每一种的氨基酸与tRNA的连接都需要专一性的氨酰tRNA合成酶来催化,因此氨酰tRNA合成酶的种类与标准氨基酸的数量一样都为20种。 氨酰tRNA合成酶也是自然界中最古老的蛋白质之一。.

查看 單磷酸腺苷和氨酰-tRNA合成酶

泛素

泛素(ubiquitin)是一种存在于大多数真核细胞中的小蛋白。它的主要功能是标记需要分解掉的蛋白质,使其水解。当附有泛素的蛋白质移动到桶状的蛋白酶的时候,蛋白酶就会将该蛋白质水解。泛素也可以标记跨膜蛋白,如受体,将其从细胞膜上除去。 1974年,G.格鲁斯坦第一次从小牛胸腺中提取8.5kd的多肽(胸腺生成素),后来在哺乳类的组织、鱼类、昆虫等均有发现。 泛素由76个氨基酸组成,分子量大约8500道尔顿。它在真核生物中具有高度保守性,人类和酵母的泛素有96%的相似性。 人类基因组约有1万9千个编码基因,蛋白转录后经剪接、修饰,可达几十万种,包括细胞的结构蛋白、激素、酶、转录因子等,有序的调节生命活动。蛋白酶降解,如胰蛋白酶将小肠内的食物蛋白消化成小肽、氨基酸,被小肠吸收;细胞内吞作用将外来蛋白吞入细胞,在食物泡内被溶酶体的消化酶吸收,不耗能量。.

查看 單磷酸腺苷和泛素

50S核糖体亚基

50核糖体亚基是原核细胞内70S核糖体中的较大亚基。该亚基由一条5S rRNA、一条23S rRNA及约34个核糖体蛋白质分子构成,在原核翻译中负责在tRNA转运来的氨基酸分子之间形成肽键。50S核核糖体亚基是某些抗生素(如氯霉素、氯洁霉素及截短侧耳素等)的结合位点,这些抗生素可通过阻断蛋白质生物合成来杀灭细菌。.

查看 單磷酸腺苷和50S核糖体亚基

61-19-8

#重定向 單磷酸腺苷.

查看 單磷酸腺苷和61-19-8

亦称为 5'-腺嘌呤核苷酸,AMP,腺嘌呤核苷酸,腺苷酸。