我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

喜帕恰斯

指数 喜帕恰斯

喜帕恰斯(ίππαρχος,Hipparkhos,),或译希帕求斯,古希腊的天文学家,有“方位天文学之父”之稱。 公元前134年,他繪製出包含1025颗恒星的星图,并创立星等的概念,亦发现了岁差现象。。喜帕恰斯也被認為是三角函數的創始者。.

目录

  1. 87 关系: 古希臘天文學參宿四发明年表均輪和本輪塞琉西亞的塞琉古天壇座μ天市右垣三天市左垣七天体测量学天體力學天文学大成天文学家列表天文學天文單位太陽系年表安提基特拉机械寿命密特拉教小行星中國發明希臘化文明希腊数字三角函数平一交食周期人馬座RY伊斯蘭世界的發明依巴谷卫星依內克斯地心说地图地理学地理學指南刍藁增二喜帕恰斯环形山光學史克劳狄乌斯·托勒密克莱奥迈季斯前2世纪石申石氏星經线性插值環形球儀甘德 (天文学家)牛頓旋轉軌道定理順行和逆行衣架星團角宿一视差... 扩展索引 (37 更多) »

古希臘天文學

古希腊天文学是指古典时期用希腊语记录的天文学,涵盖古典希腊时期、希腊化时期、希腊罗马时期、古典时代晚期等时期的天文学。它不局限于地理上的希腊或种族上的希腊人,因为在亚历山大大帝的南征北战之后,希腊语已经成为希腊化世界学术界的通用语言。这一时期的希腊天文学又被称为希腊化天文学,而希腊化时期之前的希腊天文学则被称为古典希腊天文学。在希腊化和罗马时期,许多追随希腊传统的希腊和非希腊天文学家都曾在托勒密埃及的缪塞昂和亚历山大图书馆进行过研究。 古典希腊和希腊化时期天文学家发展的天文学被历史学家认为是天文学史上的一个重要时期。古希腊天文学从一开始就以寻求天象的理性、物理的解释为特征。北天的多数星座以及很多恒星、行星和小行星的名称都来源于古希腊天文学。古希腊天文学主要受到巴比伦天文学的影响,也部分受到的影响;其本身则影响了、阿拉伯伊斯兰天文学和西欧天文学。.

查看 喜帕恰斯和古希臘天文學

參宿四

参宿四(Betelgeuse),也就是拜耳命名法中著名的獵戶座α(α Orionis或α Ori),是全天第九亮星,也是獵戶座第二亮星,只比鄰近的参宿七(獵戶座β)暗淡一點。它有著明顯紅色的半規則變星,視星等在0.2至1.2等之間變化著,是變光幅度最大的一等星。這顆恆星標示著冬季大三角的頂點和冬季六邊形的中心。 在分類上,参宿四是一顆紅超巨星,並且是已知最大和最亮的恆星之一。如果它位於太陽系的中心,它的表面會超越小行星帶,並可能抵達並超越木星的軌道,完全地席捲掉水星、金星、地球和火星。但是,在上個世紀對参宿四的距離估計從180光年至1,300光年不等,因此對其直徑、光度和質量的估計是很難被證實的。目前認為参宿四的距離大約是640光年,平均的絕對星等是-6.05。 而事实上,有关参宿四的质量始终有争议,有的资料显示它的质量不过太阳的14至15倍,但也有的资料认为它的质量达到太阳的18至19倍甚至20倍的,而这种质量的不确定性,正是由于测量距离的不确定性造成的。 在1920年,参宿四是第一顆被測出角直徑的恆星(除太陽之外)。從此以後,研究人員不斷使用不同的技術參數和望遠鏡測量這顆巨星的大小,而且經常產生衝突的結果。目前估計這顆恆星的視直徑在0.043~0.056角秒,作為一個移動的目標,参宿四似乎周期性的改變它的形狀。由於周邊昏暗、光度變化(變星脈動理論)、和角直徑隨著波長改變,這顆恆星仍然充滿了令人費解的謎。参宿四有一些複雜的、不對稱的包層,引起巨大的質量流失,涉及從表面向外排出的龐大冠羽狀氣體,使事情變得更為複雜。甚至有證據指出在它的氣體包層內有伴星環繞著,可能加劇了這顆恆星古怪的行為。 天文學家認為参宿四的年齡只有1,000萬年,但是因為質量大而演化得很快。它被認為是來自獵戶座OB1星協的奔逃星,還包含在獵戶腰帶的参宿一、参宿二、和参宿三等0和B型晚期恆星的集團。以現行恆星演化的晚期階段,預料参宿四在未來的數百萬年將爆炸成為II型超新星,並變成一顆中子星。.

查看 喜帕恰斯和參宿四

发明年表

以下是以时间来排列各项发明:.

查看 喜帕恰斯和发明年表

均輪和本輪

均輪和本輪(Epicycle,希臘語意爲在圈上)是在天文學的托勒密系統中,用來解釋太陽、月球和行星在視運動中的速度和方向變化的幾何模型。最早阿波羅尼奧斯在西元前三世紀結束前首先提出,並在西元二世紀被底比斯地區的托勒密發表在天文學論文的天文學大成這本書中。特別是它解釋了當時所知五顆行星的逆行,其次,它還解釋了從地球上觀察行星顯而易見的距離變化。 雖然之前的希臘天文學家,如西元前二世紀的阿波羅尼奧斯、羅茲的喜帕恰斯就已經廣泛的採用,比托勒密早了近三個世紀,但卻被命名為托勒密系統。古希臘的天文學計算設備安提基特拉機械,已經運用了本輪(周轉圓)的運動,使用四個齒輪計算月球的位置和相位。兩個齒輪使月球的運動非常接近于偏心的克卜勒第二定律,即月球在近地點的移動速度快,在遠地點的移動速度慢。.

查看 喜帕恰斯和均輪和本輪

塞琉西亞的塞琉古

塞琉西亞的塞琉古或稱塞琉古(希臘語: Σέλευκος ,約前190年—?),他是希臘化的巴比倫天文學家,他承繼傳統的古希臘天文學,來發展他的理論。塞琉古可能來自底格里斯河畔塞琉西亞,那裡是美索不達米亞重要的希臘化中心,不然塞琉古就是來自紅海邊的塞琉西亞。他是希臘化時期最有名的日心論提倡者之一,並提出一套有關潮汐的理論。.

查看 喜帕恰斯和塞琉西亞的塞琉古

天壇座μ

天壇座 μ (μ Ara / μ Arae) 是一顆類似太陽的橘黃色恆星,位置在天壇座,距離地球大約50光年。這顆恆星擁有的行星系統已經有4顆行星,其中三顆的質量與木星相當,最內側的一顆是被發現的第一顆「熱海王星」。.

查看 喜帕恰斯和天壇座μ

天市右垣三

天市右垣三也称晋(武仙座κ,又名BD+17 2964,HD 145001、SAO 101951、HR 6008)是在星座武仙座的雙星,位于銀經31.02,銀緯43.64,其B1900.0坐标为赤經,赤緯。西方的固有名稱是 "Marfik"、"Marfak" 或"Marsic",適從阿拉伯文的لمرفق Al-Mirfaq轉換過來的,意思是"肘狀物",,這個名字(或從這而導出的)與蛇夫座λ共用。.

查看 喜帕恰斯和天市右垣三

天市左垣七

天市左垣七 (巨蛇座θ ,縮寫θ Ser),也稱為徐,是在巨蛇座的三合星。 它包含被稱為巨蛇座θ的聯星對 巨蛇座θ AB組成,這兩顆恆星分別被稱為巨蛇座θ1或巨蛇座θ A,和巨蛇座θ2或巨蛇座θ B,連同第三顆視雙星 巨蛇座θ C。 根據依巴谷任務測量恆星視差的結果,巨蛇座θ AB距離太陽約為160光年,巨蛇座θ C約為86光年。.

查看 喜帕恰斯和天市左垣七

天体测量学

天体测量学或測天學(Astrometry)是天文学中最古老也是最基礎的一個分支,主要以測量恆星的位置和其他會運動天體的距離和動態。他是傳統科學中的一個子科目,後來發展出以定性研究為主體的位置天文學。天文測量學的歷史,在西方可以追溯到依巴谷(Hipparchus),他編輯了第一本的星表,列出了肉眼可見的恆星並發明了到今天仍沿用的視星等的尺標。現代的天體測量學建立在白塞耳的基本星表上,這是以布拉德雷在西元1750至1762年間的測量為基礎,提供了3,222顆恆星的平均位置。 除了提供天文學家基本的參考座標系作為她們在天文觀測報告之用外,天文測量學也是天體力學、恆星動力學和星系天文學等學門的基礎。在觀測天文學中,天文測量的技術協助鑑別出各種天體獨特的運動。他的設備也用於守時(keeping time),因為協調世界時(UTC)是在確切觀測地球自轉的基礎上,以閏秒的調整與原子時間取得協調與一致。天文測量學也與極端複雜的宇宙距離尺度有所關聯,因為他用於建立視差以估計銀河系內恆星的距離。.

查看 喜帕恰斯和天体测量学

天體力學

天體力學是天文學的一個分支,涉及天體的運動和萬有引力的作用,是應用物理学,特别是牛顿力学,研究天体的力學運動和形狀。研究對象是太陽系內天體與成員不多的恆星系統。以牛頓、拉格朗日與航海事業發達開始,伴著理論研究的成熟而走向完善的。 天體力學可分六個範疇:攝動理論、數值方法、定性理論、天文動力學、天體形狀與自轉理論、多體問題(其內有二體問題)等。 天體力學也用於編制天體曆,而1846年以攝動理論發現海王星也是代表著天體力學發展的標誌之一。天體力學的卓越成就是發展出zh-cn:航天动力学; zh-tw:太空動力學;-,研究和發展出各式人造衛星的軌道。.

查看 喜帕恰斯和天體力學

天文学大成

天文学大成(Almagest或翻譯為至大論)是埃及亚历山大的天文学家托勒密在公元140年前后编纂的一部数学、天文学专著。该书英文名称源于阿拉伯语الكتاب المجسطي, al-kitabu-l-mijisti,意为“伟大的书”。天文学大成首先由希腊语写成,名为Μαθηματικἠ Σύνταξις(Mathematikē Sýntaxis, 数学论文,后书名改为Hē Megálē Sýntaxis,伟大论文)提出了恒星和行星的复杂运动路径。 直到中世纪和文艺复兴早期,该书提出的地心说模型被伊斯兰和欧洲社会接受长达一千多年。天文学大成是古希腊天文学最重要的信息来源。该书对数学学者也很有价值,因为它记载了古希腊数学家依巴谷已经遗失的著作。依巴谷论述了三角法,但是该著作已经丢失,数学家大体上使用托勒密的书籍来当做依巴谷著作和古希腊三角法的资料。.

查看 喜帕恰斯和天文学大成

天文学家列表

以下为世界各地天文学家的列表:.

查看 喜帕恰斯和天文学家列表

天文學

天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).

查看 喜帕恰斯和天文學

天文單位

天文單位(縮寫的標準符號為AU,也寫成au、a.u.或ua)是天文學上的長度單位,曾以地球與太陽的平均距離定義。2012年8月,在中国北京举行的国际天文学大会(IAU)第28届全体会议上,天文学家以无记名投票的方式,把天文单位固定为149,597,870,700米。新的天文单位以公尺来定义,而公尺的定义来源于真空中的光速,也就是说,天文单位现在不再与地球與太阳的實際距离挂钩,而且也不再受时间变化的影响(虽然天文单位最初的来源就是日地平均距离)。 國際度量衡局建議的縮寫符號是ua,但英語系的國家最常用的仍是AU,國際天文聯合會則推薦au,同時國際標準ISO 31-1也使用AU,后来的國際標準ISO 80000-3:2006又改成了ua。通常,大寫字母僅用於使用科學家的名字命名的單位符號,而au或a.u.也可以是原子單位或是任意單位;但是AU被廣泛的地區使用作為天文單位的符號。以1天文單位距離的值為單位的天文常數的值會以符號A標示。.

查看 喜帕恰斯和天文單位

太陽系年表

這是太陽系的天文學年表,列出人類對太陽系的主要發現與研究成果。.

查看 喜帕恰斯和太陽系年表

安提基特拉机械

安提基特拉機械(希臘文:O μηχανισμός των Αντικυθήρων, O mēchanismós tōn Antikythērōn,或譯為安提基瑟拉、安提基西拉)是古希腊时期為了計算天體在天空中的位置而設計的青銅機器,屬於模拟计算机 Quote: Imagine tossing a top-notch laptop into the sea, leaving scientists from a foreign culture to scratch their heads over its corroded remains centuries later.

查看 喜帕恰斯和安提基特拉机械

寿命

寿命的意思是一个生物個體從诞生到死亡所經過的时间,一般将其单位定为“岁”,其值與年相同。寿命的原意不同于年龄,但由于语言上的错误导致有时候年龄可以代替寿命一词。英文的Longevity在人口学中往往等同于预期寿命。 长寿不仅是科学家们讨论的话题,同时也是科幻作品、乌托邦小说的主题。由于存在出生统计的不确和不完整,有时很难确定史上的最年长者。小说、传奇和民间故事都有描写超过现代标准下的人瑞寿命的例子。 此外,壽命一詞也常用來表示一部機械、裝置、設備或零件從開始使用到故障無法使用的時間長短。.

查看 喜帕恰斯和寿命

密特拉教

羅浮宮博物館) 密特拉教(Mithraism),也被稱為密特拉密教、密特拉秘儀(Mithraic mysteries),是一支以主神密特拉斯(Mithras)為信仰中心的秘密宗教,大約西元一世紀至西元四世紀盛行於羅馬帝國境內。宗教靈感來自波斯人對主神密特拉(,原始印度-伊朗語寫法為Mitra)的敬拜,雖然希臘的密特拉斯(Mithras)是與一個新的和獨特的(宗教)形象聯繫著,並且在波斯與希腊、罗马之間信仰傳播階段的连续性是被(學者)所讨论著。Beck, Roger (2002-07-20).

查看 喜帕恰斯和密特拉教

小行星

小行星是太陽系内類似行星環繞太陽運動,但體積和質量比行星小得多的天體。 至今為止在太陽系內一共已經發現了約127萬顆小行星,但這可能僅是所有小行星中的一小部分,只有少數這些小行星的直徑大於100公里。到1990年代為止最大的小行星是穀神星,但近年在古柏帶內發現的一些小行星的直徑比穀神星要大,比如2000年發現的伐樓拿(Varuna)的直徑為900公里,2002年發現的誇歐爾(Quaoar)直徑為1280公里,2004年發現的厄耳枯斯的直徑甚至可能達到1800公里。2003年發現的塞德娜(小行星90377)位於古柏帶以外,其直徑約為1500公里。 根據估計,小行星的數目應該有數百萬,詳見小行星列表,而最大型的小行星現在開始重新分類,被定義為矮行星。.

查看 喜帕恰斯和小行星

中國發明

中国是世界上部分重要发明的发源地,包括古代中国四大发明:造纸、指南针、火药、印刷(包括雕版印刷与活字印刷)。下表包括四大发明以及其他最早出现在中国的发明。中国人独创的发明涉及机械学、水力学、数学,这些学问应用在计时、冶金、天文、农业、工程、乐理、工艺、导航、以及军事上。时至战国时期(前403年至前221年),中国已拥有先进的冶金技术,包括高炉和熔铁炉,而工匠至汉朝(前202年至220年)才掌握百炼钢与铣铁重熔的技巧。后来在宋朝(960年至1279年),复杂经济制度的崛起促使了如纸币的发明。中国人至少在10世纪之前发明的火药引发了一系列独一无二的发明的诞生,如火枪、地雷、水雷、手铳、爆炸炮弹、多节火箭、以及带气动翼及爆炸酬载物的火箭弹。中国古航海家靠著十一世纪发明的指南针及一世纪发明的尾舵等的帮助,让船隻得以穿越远洋到达非洲东部和埃及。至于水力钟表机构,古代中国人自8世纪起已使用擒纵机械,而自11世纪起使用环状传动链条。中国亦建造了由水车舵轮驱动的大型木偶剧院,以及由明轮所驱动的侍酒机器人。 于约前7000年形成的裴李岗文化及彭头山文化代表了最古老的中国新石器时代文化Bellwood (2006), 106.

查看 喜帕恰斯和中國發明

希臘化文明

公元前4世紀下半頁,馬其頓的腓力二世統一了整個希臘,其後後繼者亞歷山大大帝在帝國擴張的過程中將希臘文明傳播至東方。公元前4世纪末至公元前2世纪,稱希臘文化(Hellenistic civilization)。希臘語漸漸成為“世界語言”。《聖經》的“七十士譯本”即是在公元前三世紀被譯為希臘文。 公元前323年,亞歷山大大帝駕崩之後,其帝國分裂成四大部分,各自獨立,有馬其頓安提哥那王朝、小亞細亞的阿塔羅斯王朝、敘利亞的塞琉古王朝、埃及的托勒密王朝。猶太人聚居的以色列地區在塞琉古王朝境内。塞琉古王朝在前238年東部的安息(帕提亞)和大夏(巴克特里亞)獨立之後,東部被安息帝國所擾,西面又面臨羅馬帝國的擴張,最終被羅馬帝國和安息瓜分。公元前168年,馬其頓安提哥那王朝被羅馬共和國所滅。 埃及托勒密王朝的亞歷山卓圖書館,此處展示一位藝術家對它的描繪,這是一座偉大並且具重大意義的古代世界圖書館。Cosmos: A Personal Voyage, Sagan, C 1980, http://www.youtube.com/watch?v.

查看 喜帕恰斯和希臘化文明

希腊数字

希腊数字是一套使用希腊字母表示的记数系统,也称为愛奧尼亞數字、米利都数字、亚历山大数字、字母数字。在现代希腊,它们仍被使用在序数词上,并且很大程度上同西方使用罗马数字相似;而在日常使用基数词的时候人们还是使用阿拉伯数字。 希腊最早的记数系统是首字母(acrophony)的阿提卡数字,同罗马数字的运作非常相似(罗马数字就是借鉴了希腊数字),使用以下的公式: \Iota.

查看 喜帕恰斯和希腊数字

三角函数

三角函数(Trigonometric functions)是数学中常见的一类关于角度的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数(\sin)、余弦函数(\cos)和正切函数(\tan或者\operatorname);在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。.

查看 喜帕恰斯和三角函数

平一

平一 (長蛇座γ) 是位於赤道上的長蛇座內的恆星,它的視星等為3.0等,在沒有亮星的長蛇座內是第二亮星。根據依巴谷任務測量的視差,這顆恆星與地球的距離是大約是。 這顆恆星的光譜與恆星光譜的G8III吻合,在光度分類上是III,顯示它在耗盡核心的氫之後已經演化成為巨星。干涉法測量這顆恆星均勻盤面的角直徑是,據此配合估計的距離,它的半徑大約是太陽半徑的13倍,質量估計是太陽質量的3倍,從它表面外層的有效溫度5,019k推測,輻射的亮度是太陽亮度的115倍。這種溫度使它是發出黃色的K-型主序星。儘管它已經演化至較高的階段,但是它的年齡大約仍比太陽年輕3億7200萬年左右。這是因為大質量的恆星以較高的速率消耗核心燃料的緣故。.

查看 喜帕恰斯和平一

交食周期

食的週期是相同的食一再循環發生的時間間隔。食有各種不同的種類,而相同現象的食會再度發生。重複相同食的系列就稱為食的系列。.

查看 喜帕恰斯和交食周期

人馬座RY

人馬座RY是在人馬座的一顆橙色超巨星和北冕座R型變星。雖然,它的光譜表面上看是G-型恆星,但有別於大多數恆星的是它幾乎沒有氫而有大量的碳。這顆恆星的距離非常遙遠,因此其視差、距離和亮度都無法精確的估算。伊巴谷衛星計算的視差是1.29百萬分秒角,由此得到與地球的距離是。它的有效溫度經由計算是7,250K。 它是從地球上以裸眼可以看見的三顆北冕座R型變星之一,另外兩顆是北冕座R和半人馬座V854。它也是一顆脈動變星,週期38天的半規則變星。它的變光曲線已經被研究了一百多年,是這一類型變星的典型,其特徵是亮度在樹情內突然下墜幾個星等,然後在幾個月內逐漸變亮,而這些變化之間的時間間隔是不規則的。雖然還不知道可能的機制和是如何發生,星等下降的原因可能是碳的塵埃雲(最可能是從內部噴出的)遮蔽了恆星。歐洲南方天文台的超大望遠鏡干涉儀已經檢測出廣泛的雲。 上校歐尼斯特·伊里亞德·馬克威克(Ernest Elliott Markwick)駐紮在直布羅陀搜尋變星時,第一次碰到現在稱為人馬座RY的變星。他記錄了它從1893年7月7日至10月23日變暗至11等以下,1894年11月的亮度達到6.4等 愛德華·皮克林寫到:"它是一個顯著的天體",和"幾乎跑了"。當時就注意到它的很奇特,並在1953年和其它少數的恆星被列為北冕座R型變星。 它的起源令人大惑不解,丹齊格(Danziger )推測可能的解釋,當氦雲形成,老年的恆星已經耗盡了氫,或是不知甚麼原因拋棄了氫殼層。雖然注意到但沒有證據顯示這類殼層,他承認,恆星演化的知識還不足以解釋。.

查看 喜帕恰斯和人馬座RY

伊斯蘭世界的發明

伊斯蘭世界技术發明的種類繁多,這個範圍西起安達盧斯及非洲,東至印度次大陸及馬來群島。.

查看 喜帕恰斯和伊斯蘭世界的發明

依巴谷卫星

依巴谷卫星(High Precision Parallax Collecting Satellite,缩写为Hipparcos),全称为“依巴谷高精視差測量衛星”,是歐洲太空總署发射的一颗天体测量卫星,用以測量恆星視差和自行,以古希臘天文學家喜帕恰斯的名字命名。 依巴谷卫星於1989年8月8日由亞利安4號火箭運載升空。它本應於地球同步軌道上運作,但因助推火箭失效,衛星只到達近地點507千米、遠地點35,888千米的狹長橢圓軌道。儘管如此,它仍能完成85%的原任務目標。與該衛星的通訊於1993年8月15日中止。 整個計劃分「依巴谷實驗」和「第谷實驗」兩部分。前者目標是測量120,000顆恆星的五個天文測量參數,精度達2至4毫角秒;後者目標是測量另外400,000顆恆星的天文測量參數及B-V色指數,但位置精度稍遜(20─30毫角秒)。 1996年8月,依巴谷星表和第谷星表正式完成,並於1997年6月由歐洲太空總署出版。這兩個星表的資料用來編製千禧年星圖,包含全天百萬餘顆暗至11等的恆星,以及一萬餘個非恆星天體。 曾有人指出依巴谷卫星的測量數據中,至少在某些天區有大約1毫角秒的系統誤差。利用依巴谷卫星數據所推算的昴星團距離,比採用其他量天方法得出的距離要短10%。直至2004年,這爭論還未有結果。.

查看 喜帕恰斯和依巴谷卫星

依內克斯

依內克斯(inex)是10,571.95日(大約29年少20日)的交食週期。這個週期在1901年首度被克羅梅林(Crommelin)提出,但在大約半個世紀之後才經由G·范登伯格的研究被命名為依內克斯。有人認為喜帕恰斯已經知道這個週期。通常,在一個沙羅序列結束之後,會接續一個依內克斯週期,然後才開始新的沙羅序列。 它相當於:.

查看 喜帕恰斯和依內克斯

地心说

地心说(或稱天动说),是古人認為地球是宇宙的中心,而其他的星球都環繞著它而運行的學說。 由於古代人缺乏足夠的宇宙觀測數據,以及懷著以人為本的觀念,因此他們誤認為地球就是宇宙的中心,而其他的星體都是繞著它而運行的。古希臘的托勒密(Claudius Ptolemy)將地心說的模型發展完善,且為了解釋某些行星的逆行現象(即在某些時候,從地球上看那些星體的運動軌跡,有時這些星體會往反方向行走),因此他提出了本轮的理論,即這些星體除了繞地軌道外,還會沿著一些小軌道運轉。後來,天主教教會接納此為世界觀的「正統理論」。 托勒密的理論能初步的解釋從地球上所看到的現象,但是在文藝復興時代,隨著科學技術的進步,一些支持日心說的證據逐漸出現,且有些證據無法以地心說解釋,地心說逐漸占了下風。在現代世界,支持地心說的人已經寥寥無幾。.

查看 喜帕恰斯和地心说

地图

地图,是根据一定的数学法则,例如墨卡托投影法,将地球或其他星球的自然现象和社会现象通过概括和符号缩绘在平面上的图形。按照統一的設計和要求編制的多幅地圖的彙集被稱作“地圖集”或者“地圖冊”。.

查看 喜帕恰斯和地图

地理学

地理學是關於地球及其特徵、居民和現象的學問。它是研究地球表層各圈層相互作用關係,及其空間差異與變化過程的學科體系。 地理學家在傳統上被視為和地圖學家同一類,認為兩者都研究地名與數字。雖然很多地理學家都經歷過地名學及地圖學的訓練,但兩者都不是他們的關注重點。地理學家研究眾多現象、過程、特徵以及人類和自然環境的相互關係在空間及時間上的分佈。因為空間及時間影響了多種主題例如經濟、健康、氣候、植物及動物,所以地理學是一個高度跨學科性的學科。 地理學作為一個學科可以粗略分為兩個領域:自然地理學及人文地理學。自然地理學調查自然環境及如何造成地形及氣候、水、土壤、植被、生命的各種現象及她們的相互關係。人文地理學專注於人類建造的環境和空間是如何被人類製造、看待及管理以及人類如何影響其占用的空間。因為以上兩者的原因,使用不同的方法令第三領域出現,為環境地理學。環境地理學在自然地理學與人文地理學的研究成果上,評價人類與自然的相互關係,並提出人類征服自然、改造自然以適應自身永續發展的安全狀態和技術(包括生產技術和製度技術)條件。.

查看 喜帕恰斯和地理学

地理學指南

《地理學指南》(Γεωγραφικὴ Ὑφήγησις),又譯《地球形狀概論》(八 卷)。由托勒密于公元约150年所著。書中詳細說明如何採用經度、緯度兩種方法將球體的地球繪製到平面上,並以北為指標,由此後人繪製出了一系列托勒密地圖。 本書最大功績在於托勒密對於地理學應用經緯度來確定山川、城市的位置,並據此確定它們的地理空間位置,開創了近代繪圖學的先例。 托勒密指出,地理學的內容應是對整個地球的已知地區以及與之相關的一切事物作線性描述,即繪製圖形,並用地名和測量一覽表代替地理描述。 這就把地理學與地圖學等同起來,拋棄了描述地理學。.

查看 喜帕恰斯和地理學指南

刍藁增二

| names.

查看 喜帕恰斯和刍藁增二

喜帕恰斯环形山

喜帕恰斯环形山(Hipparchus)是月球正面中央赤道区一座古老的大型撞击坑,约形成于前酒海纪Lunar Impact Crater Database时期,以希腊天文学家、工程师及地理学家喜帕恰斯之名命名,1935年被国际天文学联合会批准接受。1967年月球轨道器5号首次获得了它高分辨率的照片。.

查看 喜帕恰斯和喜帕恰斯环形山

光學史

人类对光學(optics)的研究开始于古代。最晚于公元前700年,古埃及人與美索不達米亞人便开始磨製與使用透鏡;之后前6~5世纪时古希臘哲學家與古印度哲學家提出了很多關於視覺與光線的理論;在,幾何光學開始萌芽。光学「optics」一词源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 中世紀時,穆斯林世界對早期光學做出许多貢獻,在幾何光學與生理光學(physiological optics)方面都有很大的進展。在文藝復興時期與科學革命時期,光學開始出現戲劇性的突破,以衍射光学的出现为标志。這些與之前發展出的光學被稱為「經典光學」。二十世紀发展的光學研究領域,如光譜學與量子光學,一般被稱為「現代光學」。.

查看 喜帕恰斯和光學史

克劳狄乌斯·托勒密

克勞狄烏斯・托勒密(Κλαύδιος Πτολεμαῖος;Claudius Ptolemaeus,,又译托勒玫或多禄某)是一位學者,同时也是数学家、天文学家、地理学家、占星家,公元168年于埃及亚历山大港逝世。身為罗马公民的托勒密生活在埃及行省的亚历山大港,并以希腊语写作,歷史上關於他的記述不多,最為著名的便是他所提出的《地心說》。14世纪時的天文学家Theodore Meliteniotes宣称托勒密出生于埃及的托勒密赫米欧(Ptolemais Hermiou)。这个说法距离托勒密生活的年代已有一段時間,因此目前没有证据显示出他曾在亚历山大港以外的任何地方居住過。 托勒密著有许多科學著作,其中有三部對拜占庭,伊斯蘭世界以及歐洲的科學發展影響頗大。第一部是《天文學大成》(古希臘語:Η μεγάλη Σύνταξις,意謂「巨著」)。第二部是《地理學指南》,是一部探討希臘羅馬地區的地理知識的典籍。而第三部是有關占星學的《占星四書》,書中嘗試改進占星術中繪製星圖的方法,以便融入當時亞里士多德的自然哲學。.

查看 喜帕恰斯和克劳狄乌斯·托勒密

克莱奥迈季斯

克莱奥迈季斯(Κλεομήδης Kleomidis)是一位希腊天文学家,最著名的是他所撰写的《论天体的圆周运动》(Κυκλική θεωρία μετεώρων Kyklikí theoría meteóron)。.

查看 喜帕恰斯和克莱奥迈季斯

前2世纪

前200年至前101年的这一段期间被称为前2世纪。.

查看 喜帕恰斯和前2世纪

石申

石申,一名石申夫,公元前4世纪魏国人,战国天文学家、占星家,著有《天文》八卷。《史记·天官书》记载战国时期的著名天文学家云:“在齐,甘公;楚,唐昧;赵,尹皋;魏,石申。”《晋书·天文志上》则进一步说:“鲁有梓慎,晋有卜偃,郑有裨湛,宋有了韦,齐有甘德,楚有唐昧,赵有尹皋,魏有石申夫皆掌著天文,各论图经。”《史记正义》引南朝梁阮孝绪的《七录》说,“石申,魏人,战国时作《天文》八卷也。”.

查看 喜帕恰斯和石申

石氏星經

原名《天文》,西漢以後被尊稱為《石氏星經》。由戰國時期魏國天文學家、占星家石申所著,共八卷,原著已失傳。.

查看 喜帕恰斯和石氏星經

是國際單位制中時間的基本單位 ,符號是s。有時也會借用英文缩写標示為sec。秒在英文裡的原始詞義是計算小時的六十分之一(分鐘)後,再計算六十分之一。在西元1000至1960年之間,秒的定義是平均太陽日的1/86,400(在一些天文及法律的定義中仍然適用)。在1960至1967年之間,定義為1960年地球自轉一周時間的1/86,400 ,現在則是用原子的特性來定義。秒也可以用機械鐘、電子鐘或原子鐘來計時。 國際單位制詞頭經常與秒結合以做更細微的劃分,例如ms(毫秒,千分之一秒)、µs(微秒,百萬分之一秒)和ns(奈秒,十億分之一秒)。雖然國際單位制詞頭雖然也可以用於擴增時間,例如ks(千秒)、Ms(百萬秒)和Gs(十億秒),但實際上很少這樣子使用,大家都還是習慣用60進位的分、時和24進位的日做為秒的擴充。 秒不但是國際單位制中時間的基本單位,也是公分-克-秒制、米-公斤-秒制、米-公噸-秒制及英制單位下的時間基本單位。.

查看 喜帕恰斯和秒

线性插值

线性插值是数学、计算机图形学等领域广泛使用的一种简单插值方法。.

查看 喜帕恰斯和线性插值

環形球儀

形球儀(也可以稱為球形等高儀或渾儀,英文縮寫為armilla或armil)是中国古代测定天体位置的一种仪器。由相应天球坐标系各基本圈的环规及瞄准器构成,与浑象(浑天仪,一种仿真天体运行的仪器)不同。其主要用作展示圍繞地球的天體軌跡。浑儀也是最早期的複雜機械儀器,其發展促進了機器的改良和設計。 中國的渾儀西汉落下闳曾制造。《朱子语类》卷二十三錄朱熹與弟子黄义刚曾討論過浑仪的原理,黄义刚曾说:“楼上浑仪可见”,表示朱熹家可能有此種儀器。《宋史·天文志一》亦載:“朱熹家有浑仪,颇考水运制度,卒不可得。” 浑儀是由有刻度的金屬圈組成,這些圓形的骨架代表天體的赤道、黃道、子午圈等。金屬球代表天體,而浑儀的中央通常是地球或太陽。中國古代的渾儀還有代表白道的圓圈和協助觀察用的窺管(作用如同望遠鏡,但沒有鏡片)。由於歷代渾儀增加的圓圈太多,妨礙觀察,元朝郭守敬把圓圈簡化,稱為簡儀。 托勒密利用大型的浑仪作為仔細的觀測工具。浑仪在中世紀末期時再度興起。丹麥天文學家第谷(1546年至1601年)建造了作天文觀測用的大型浑仪。文藝復興時間的科學家和公眾人物的畫像中,通常畫有一浑仪,畫中人其中一隻手放在浑仪上,代表他們擁有高度的智慧和知識。葡萄牙國旗上畫有浑仪。自馬努埃一世起浑仪成為該國之象徵。.

查看 喜帕恰斯和環形球儀

甘德 (天文学家)

德又称甘公,中國東周戰國時代中齊國的天文學家,.

查看 喜帕恰斯和甘德 (天文学家)

牛頓旋轉軌道定理

在經典力學裏,牛頓旋轉軌道定理(Newton's theorem of revolving orbits)辨明哪種連心力能夠改變移動粒子的角速度,同時不影響其徑向運動(圖1和圖2)。艾薩克·牛頓應用這理論於分析軌道的整體旋轉運動(稱為拱點進動,圖3)。月球和其他行星的軌道都會展現出這種很容易觀測到的旋轉運動。連心力的方向永遠指向一個固定點;稱此點為「力中心點」。「徑向運動」表示朝向或背向力中心點的運動,「角運動」表示垂直於徑向方向的運動。 發表於1687年,牛頓在巨著《自然哲學的數學原理》,第一冊命題43至45裏,推導出這定理。在命題43裏,他表明只有連心力才能達成此目標,這是因為感受連心力作用的粒子,其運動遵守角動量守恆定律。在命題44裏,他推導出這連心力的特徵方程式,證明這連心力是立方反比作用力,與粒子位置離力中心點的徑向距離r\,\!的三次方成反比。在命題45裏,牛頓假定粒子移動於近圓形軌道,將這定理延伸至任意連心力狀況,並提出牛頓拱點進動定理(Newton's apsidal precession theorem)。 天文物理學家蘇布拉馬尼揚·錢德拉塞卡在他的1995年關於《自然哲學的數學原理》的評論中指出,雖然已經過了三個世紀,但這理論仍然鮮為人知,有待發展。自1997年以來,唐納德·淩澄-貝爾(Donald Lynden-Bell)與合作者曾經研究過這理論。2000年,費紹·瑪侯嵋(Fazal Mahomed)與F·娃達(F.)共同貢獻出這理論的延伸的精確解。.

查看 喜帕恰斯和牛頓旋轉軌道定理

順行和逆行

順行是行星這種天體與系統內其他相似的天體共同一致運動的方向;逆行是在相反方向上的運行。在天體的狀況下,這些運動都是真實的,由固有的自轉或軌道來定義;或是視覺上的,好比從地球上來觀看天空。 在英文中「direct」和「prograde」是同義詞,前者是在天文學上傳統的名詞,後者在1963年才在一篇與天文相關的專業文章(J.

查看 喜帕恰斯和順行和逆行

衣架星團

布洛契星團,也稱為掛衣架或Collinder 399,是位於狐狸座內的一個星群。 它最早是在波斯天文學家蘇菲(al-Sufi)在西元964年的恆星之書中被提到的,在17世紀Giovanni Hodierna又獨立的發現它。在1920年,D. F. 布洛契,一個非職業的天文學家和星圖製作團體美國變星觀測者協會的會員,製作了包括這個物體的星圖作為校準光度計之用。 這個星群有十顆視星等在5至7等級的恆星,其中六顆排列成一直線,另四顆在南側形成鉤子,像是"掛鉤",另外還有卅多顆更微弱的星被認為也有關聯性。 在黑暗的夜空,能用肉眼直接看見布洛契星團像是一個不能分解的鑲嵌物,使用雙筒望遠鏡或低倍率的望遠鏡很輕易的就可以看出組成"掛衣架"的星群。尋找這個星群最佳的方法是從明亮的牛郎星想像一條橫越銀河接到更明亮的織女的連線,在朝向織女到三分之一的距離上,可以很容易看見掛衣架在銀河的黑暗區域中閃耀著。 這個星團的狀態在近幾年有些改變,在1931年Per Collinder將他歸類為疏散星團,並且在20世紀大多數時間都是如此認定的。以各種不同的標準觀察,在1970年的一項研究認為,其中明亮的六顆星確實是真實的星團,而從1988年迄今,有幾項獨立的研究確定這幾顆恆星不是真實的星團,只是碰巧對準在一條線上。由伊巴谷衛星的觀測提供了更佳的視差和自行數值的研究結果在1997年首度被發表。.

查看 喜帕恰斯和衣架星團

角宿一

--一(α Vir / 室女座α /英语:Spica)位於室女座,是全天空第十五亮的恆星,也是室女座最明亮的恆星。北半球的觀測者在春季夜晚,可以在東南方向的天空看到这颗明亮的1等星。想要找到角宿一,觀測者只需要沿着位于大熊座的北斗七星的斗柄和牧夫座的大角连成的曲线方向往下就可以看到它。角宿一是一顆藍巨星,屬於仙王座β型變星。角宿一距離地球有260光年之遥。.

查看 喜帕恰斯和角宿一

视差

視差是從兩個不同的點查看一個物體時,視位置的移動或差異,量度的大小位是這兩條線交角的角度或半角度。這個名詞是源自希臘文的παράλλαξις(parallaxis),意思是"改變"。從不同的位置觀察,越近的物體有著越大的視差,因此視差可以確定物體的距離。 从目标看两个点之间的夹角,叫做这两个点的视差角,两点之间的距离称作基线。 天文學家使用視差的原理測量天體的距离,包括月球、太陽、和在太陽系之外的恆星。例如,依巴谷衛星測量了超過100,000顆鄰近恆星的距離。這為天文學提供了測量宇宙距離尺度的階梯,是其它測距方法的基礎。在此處,"視差"這個名詞是兩條到恆星的視線交角的角度或半角度。 一些光學儀器,像是雙筒望遠鏡、顯微鏡、和雙鏡頭單眼反射相機,會以略為不同的角度觀看物體,都會受到視差的影響。許多動物的兩隻眼睛有著重疊的視野,可以利用視差獲得深度知覺;此一過程稱為立體視覺。這種效果在電腦視覺用於電腦立體視覺,並有一種裝置稱為視差測距儀,利用它來測量發現目標的距離,也可以改變為測量目標的高度。 一個簡單的,日常都能見到的視差例子是,汽車儀表板上"指針"顯示的速度計。當從正前方觀看時,顯示的正確數值可能是60;但從乘客的位置觀看,由於視角的不同,指針顯示的速度可能會略有不同。.

查看 喜帕恰斯和视差

视星等

视星等(apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(亮度单位)的视星等为-13.98。 但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.45,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。 因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。 由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。 如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。 另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星。 星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。.

查看 喜帕恰斯和视星等

諾曼·羅伯特·普森

諾曼·羅伯特·普森 (Norman Robert Pogson,),出生於英國諾丁漢,天文學家。 他在18歲的時候,己計算出兩顆彗星的軌道。1851年,他在牛津的Radcliffe天文台擔任助手,1860年,他前往印度馬德拉斯出任官方天文學家。在馬德拉斯天文台,他編製了包括11,015顆恆星的Madras星表。此外,他在這段期間亦發現了5顆小行星及6顆變星。 普森最廣為人知的貢獻,便是將星等這個概念數學化。星等最先由古希臘天文學家喜帕恰斯提出,他將全天的恆星由亮至暗分為1等至6等。普森則將1等星定義為比6等星亮100,即每暗一星等,光度減少100^(1/5),即2.512倍,後人將此比例稱為“普森比例”。 計算星等的方程式如下: m為恆星的星等;E為恆星的光亮度(天文学中光亮度概念相当于光辐射度学中的光照度概念,单位:勒克斯) 1868年及1871年,他參加了印度的日食觀測隊。 在他的天文生涯中,一共發現了8顆小行星及21顆變星。他出任馬德拉斯天文台共30年,直至去世。.

查看 喜帕恰斯和諾曼·羅伯特·普森

鬼宿星團

星團,也稱為蜂巢星團(拉丁文是"Praesepe")、M44、NGC 2632或Cr 189,是位於巨蟹座的一個疏散星團。它是最靠近太陽系的疏散星團之一,並且有著比其它鄰近疏散星團更多的恆星。在黑暗的夜空下,裸眼看見的鬼宿星團像是一個模糊的斑塊,因此在遠古時代就有紀載,中國稱他為積尸氣。古代的天文學家托勒密描述他是"巨蟹胸部的集團",並且是伽利略用望遠鏡研究的第一批天體之一 。 這個星團與另一個疏散星團,畢宿星團,有著相似的年齡和自行,因此建議它們有著類似的起源 。這兩個星團的成員都包含紅巨星和白矮星,這些都是恆星演化階段後期的恆星;以及主序帶上光譜分類為A、 F、 G、 K 和 M的恆星。 這個星團的距離通常被引介在160至187秒差距(520至610光年) 。2009年修訂的依巴谷衛星視差目錄,以紅外線擬合的顏色-星等圖反覆運算,最新定出的鬼宿星團成員距離接近182秒差距van Leeuwen, F., A&A, 2009Majaess, D.; Turner, D.; Lane, D.; Krajci, T., JAAVSO, 2011。較佳的年齡估計是6億年 ,這相當於畢宿星團的年齡(〜6億2500萬年) 。這個星團最明亮的核心區域直徑大約7秒差距(22.8光年)。 最容易觀察鬼宿星團的時期在每年的2月到5月,當巨蟹座高懸在北方的天空之際。它的視直徑有95弧分,最適合使用低倍率的望遠鏡或雙筒望遠鏡觀賞。.

查看 喜帕恰斯和鬼宿星團

豺狼座

豺狼座,是现代88星座之一,也是托勒密的48星座之一。此星座是南天星座之一,位於天秤座正南,天蠍座西南,也就是在南天亮星心宿二和南門雙星之間,可惜,它在赤緯-40°附近,北半球不大容易看到。它包含中国古代星座:顿顽,从官,骑官,车骑,积卒,柱,骑阵将军。 基本上本星座没有特别亮的星,但视星等在2-3等的星有30颗左右。亮度在第6等的星共70颗,其中包含几个双星和多星系统。最亮的星豺狼座α是蓝巨星;豺狼座β中國星名為騎官十。.

查看 喜帕恰斯和豺狼座

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

查看 喜帕恰斯和超新星

蜀增一

蜀增一 (巨蛇座λ,λ Ser)是在巨蛇座這個星座頭部的一顆恆星。它的視星等為4.43等,使它成為肉眼可見的恆星。依據依巴谷衛星測量的視差,估計這顆恆星與地球的距離大約是。僅管它與太陽有相似的恆星分類,但它比太陽更大,質量也更重。它的光度幾乎是太陽的兩倍,這些能量是來自這顆恆星的外層大氣層在有效溫度5,884K的輻射。 蜀增一的徑向速度方向是朝向太陽,其值為66.4Kms−1。大約再166,000年,這個系統將接近太陽至的距離,之後再遠離而去。 Morbey和Griffith(1887年)懷疑它有1837(5.03年)的週期變化,但它可能是有限的恆星活動。然而麥克唐納天文台的團隊已經假設它可能有一或多顆行星存在,設定行星的質量在0.16至2木星質量,在0.05和5.2天文單位的距離環繞著蜀增一。.

查看 喜帕恰斯和蜀增一

赤经

赤經(英文Right ascension;縮寫為RA;符號為α)是天文學使用在天球赤道座標系統內的座標值之一,通过天球两极并与天赤道垂直,另一個座標值是赤緯。.

查看 喜帕恰斯和赤经

自行

自行是恆星相對於太陽系的質量中心,隨著時間變化的推移所顯示出在位置在角度上的改變,它的測量是以角秒/年為單位(3600角秒才等同於角度的1度)。反之,徑向速度是在視線方向上天體接近或遠離的速度,隨著時間推展的變化率,通常是測量輻射中的都卜勒頻移。自行不是恆星的本質(即恆星的內稟性質),因為它包含了太陽系本身運動的元素在內。由於光速是有限的,遙遠恆星的真實速度很難觀測得到,觀測自行反映的是恆星當時輻射光的運動。 自行的測量需要排除下列會影響觀測天體位置座標值的因素,這些因素主要有:.

查看 喜帕恰斯和自行

英仙座

英仙座跨越了秋季的银河,所以对于天文爱好者来说,不管是使用双筒望远镜还是其他望远镜,这裡都是搜寻天体的好地方。这个星座有很多耀眼的亮星。即使是在市郊也能看见该星座轮廓。银河在该星系不像在旁边的天鹅座那样明亮,这使得人们能够看见很多亮星团,气体星云和行星状星云。这个星座有两个梅西耶天体:M34与M76(见下)。.

查看 喜帕恰斯和英仙座

雅典执政官列表

雅典自从公元前1068年废除王政以来,权利转往执政官手中。雅典的第一任执政官是墨冬,他是雅典末代国王科德鲁斯的儿子。由于,科德鲁斯在位时,多利亚人从墨伽拉进犯雅典。德尔斐神谕指示入侵者宽宥雅典君主的性命,否则不能赢得战争,多利亚人因而极力避免伤害科德鲁斯。科德鲁斯获悉此神谕后,自愿为国献身。他化装成樵夫,穿粗衣,持钩镰,出城砍柴;在城外遭遇两敌兵,他砍倒其一,遂被另一人所杀。敌军获知死者的真实身份后,知获胜无望,遂撤兵解围,雅典转危为安。雅典人认为科德鲁斯的功德后无来者,遂限制雅典王权,将科德鲁斯的儿子墨冬改任为执政官。 最初,执政官是终身职,先后有13人任这种执政官。公元前753年,执政官的任期改为10年,共有7位这种执政官。自公元前683年起,所有的执政官都改为一年一任。其中名年执政官或称名祖执政官之名,就成了雅典国家文件中最常见的年名。如,关于德拉古立法的时间,亚里士多德写到:“阿里斯忒克穆斯任执政官时,德拉古制定了他的法典。”必须注意。公元前5世纪后期之前的执政官表不可尽信。除个别年份外,从公元前4世纪到公元1世纪的雅典的执政官表基本保存完好。 以下列出雅典创立执政官以来至拉米亚战争前的执政官列表(前1068年-前322年)。.

查看 喜帕恰斯和雅典执政官列表

雙星團

雙星團(也稱為科德韋爾14)是裸眼可見的疏散星團 NGC 869和 NGC 884(經常被錯誤的稱為英仙座h和κ,其實h是鄰近的一顆恆星,而κ就是這兩個星團)的合稱,在英仙座內靠得很近。NGC 869和NGC 884 兩者至地球的距離都是7,600光年。NGC 869的質量約為3,700太陽質量,而NGC 884的質量大約是2,800太陽質量;然而後來的研究顯示這兩個星團有很多的暈星環繞著,所以它們的總質量至少是20,000太陽質量。依據對個別恆星的研究,這兩個星團相對來說都很年輕,大約都只有1,280萬歲。相較之下,昴宿星團的年齡估計是7,500萬至15,000萬歲。這兩個星團各自都有300顆以上的藍白色超巨星。這兩個星團都有藍移,NGC 869以接近地球,NGC 884也以相似的速度,朝向地球接近。星團中最熱主序星的光譜類型是B0。.

查看 喜帕恰斯和雙星團

老人星

老人星(α Car / 船底座α)亦叫南極老人星,壽星,是船底座主星,在中国传统天文系统里是位于井宿的老人星官裡唯一肉眼可见的恒星。雖然老人星距離地球超過300光年,不過視星等為−0.72等,是南半球船底座最明亮的恆星,也是全天空中第二亮的恆星,僅次於天狼星。而它實際的絕對星等則為−5.71等。.

查看 喜帕恰斯和老人星

進動

進動(precession)是自轉物體之自轉軸又繞著另一軸旋轉的現象,又可稱作旋進。在天文學上,又稱為「歲差現象」。 常見的例子為陀螺。當其自轉軸的軸線不再呈鉛直時,即自转轴与对称轴不重合不平行时,會發現自轉軸會沿著鉛直線作旋轉,此即「旋進」現象。另外的例子是地球的自轉。 對於量子物體如粒子,其帶有自旋特徵,常將之類比於陀螺自轉的例子。然而實際上自旋是一個內稟性質,並不是真正的自轉。粒子在標準的量子力學處理上是視為點粒子,無法說出一個點是怎樣自轉。若要將粒子視為帶質量球狀物體來計算,以電子來說,會發現球表面轉速超過光速,違反狹義相對論的說法。 自旋的進動現象主要出現在核磁共振與磁振造影上。其中的例子包括了穩定態自由旋進(進動)造影。 進動是轉動中的物體自轉軸的指向變化。在物理學中,有兩種類型的進動,自由力矩和誘導力矩,此處對後者的討論會比較詳細。在某些文章中,"進動"可能會提到地球經驗的歲差,這是進動在天文觀測上造成的效應,或是物體在軌道上的進動。.

查看 喜帕恰斯和進動

Hipparchus

#重定向 喜帕恰斯.

查看 喜帕恰斯和Hipparchus

NGC 869

NGC 869 是位於英仙座的一個疏散星团,距離7,600光年,年齡可能有1,300萬年,它和位於英仙座 OB1星協最西邊的疏散星團NGC 884合稱為雙星團。這兩個星團相距只有數百光年,在物理上有會相互影響。喜帕恰斯是最早記錄下這兩個星團的人,但很可能古人早就已經知道這兩個星團。 這個雙星團是業餘天文學家喜愛的目標,經常會使用小型望遠鏡觀察或拍攝。它很容易找到,以裸眼就可以在英仙座和仙后座之間看見,在冬季的銀河中間就像是一個明亮的光斑。 在小望遠鏡中,這個星團在富含恆星的星野中呈現出美麗的亮星集團。星團中主要的亮星呈現藍色,但有幾顆橙色的恆星夾雜其中,增添了視覺上的感受。 有時稱它為英仙座h,但這個名稱也可能是指附近某一顆較昏暗的恆星。.

查看 喜帕恰斯和NGC 869

柳宿增三

柳宿增三 (α Cnc / Acubens)是在巨蟹座的一個恆星系,它的固有名稱是Acubens (Açubens),較罕用的是Al Zubanah,源自阿拉伯的الزبانة az-zubānah,意思為 "爪(蟹的)"。較少用的名稱還有Sertan,源自السرطان saraţān "the crab".

查看 喜帕恰斯和柳宿增三

极坐标系

在数学中,极坐标系(Polar coordinate system)是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。.

查看 喜帕恰斯和极坐标系

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

查看 喜帕恰斯和恒星

恒星年

恆星年是太陽在天球上返回到對恆星而言的相同位置上的時間。恆星年是地球的軌道週期。一恆星年等於365.25636042 平太陽日,即365日6小時9分鐘10秒。一個真實的週期數總與兩個天體相對的週期數相差整整一週。回歸年比恆星年短20分鐘又24秒。 「恆星年」是地球圍繞太陽公轉的真正週期,也就是地球圍繞太陽公轉360°。.

查看 喜帕恰斯和恒星年

恆星天文學年表

*本表為恆星天文學年表,以下譯自英文維基同名條目。.

查看 喜帕恰斯和恆星天文學年表

歲差 (天文)

歲差(axial precession,字面意義為「(自轉)軸進動」),在天文學中是指一個天體的自轉軸指向因為重力作用導致在空間中緩慢且連續的變化。例如,地球自轉軸的方向逐漸漂移,追蹤它搖擺的頂部,以大約25,800年的週期掃掠出一個圓錐(在占星學稱為大年或柏拉圖年)。「歲差」這個名詞通常只針對長期運動,其他在地軸準線上的變動 -章動和極移- 規模要小了許多。 在歷史上,地球的歲差被稱為分點歲差,這是因為 分點沿著黃道相對於背景的恆星向西移動,與太陽在黃道上的運動相反。在非技術的討論中仍沿用此一名詞,這點在詳細的數學中是不存在的。在歷史上, Western Washington University Planetarium, accessed 30 December 2008,記載喜帕恰斯發現分點歲差,雖然確實的時代和日期並不清楚,但由托勒密認為是他所做的天文觀測推測,期間在西元前147年至127年。 在19世紀的前半世紀,由於對行星之間引力計算能力的改進,人們發現黃道本身也有輕微的移動,在1863年之際這稱為行星歲差,而占主導地位的部份稱為日月歲差(lunisolar precession)。它們合起來稱為綜合歲差,並且取代了分點歲差。日月歲差是太陽和月球對地球赤道隆起的引力作用造成的,引發地軸相對於慣性空間的轉動。 行星歲差(actually an advance)是由於其它行星對地球和軌道面(黃道)的引力有小角度造成的,導致黃道面相對於慣性空間的移動。日月歲差比行星歲差強大了500倍。除了月球和太陽,其它行星也會造成地軸的運動在慣性空間中產生微小的變化,在對比時會造成對日月歲差和行星歲差的誤解,所以國際天文聯合會在2006年將主要的部分重新命名為赤道歲差,而較微弱的成份命名為黃道歲差,但是兩者的合稱仍是綜合歲差。.

查看 喜帕恰斯和歲差 (天文)

沙罗周期

沙羅週期是18年11天又8小時(大約6585日)的食的週期,可以用來預測太陽和月球的食。經過一個沙羅週期,太陽、地球和月球回到相似的幾何對應位置上,於是將發生幾乎相同的食。.

查看 喜帕恰斯和沙罗周期

月球環形山列表 (G-K)

这是月球环形山列表的一部份,此表列举出英文名称以字母G,H,I,J 及 K 开头的环形山。.

查看 喜帕恰斯和月球環形山列表 (G-K)

月球運動論

月球運動論的目的是計算月球的運動。月球有許多不規律(或是攝動)的運動,歷史上科學家曾多次嘗試去了解並計算它們,經歷屢次失敗下這一課題曾經是歷史上的世紀難題,但月球運動已是當今 (參見近代的發展) 的模型中精確度最高的,它所達到的精確度水準,也成為測試新物理理論的靈敏儀器。 月球運動論包括:.

查看 喜帕恰斯和月球運動論

月球距離

月球距離 (LD) 是天文學上從地球到月球的距離,從地球到月球的平均距離是384,401公里 (238,856英里)。因為月球在橢圓軌道上運動,實際的距離隨時都在變化著。 高精準的月球距離是測量雷射雷達的光線往返於地球和放置在月球上的錐稜鏡所花費的時間。 月球雷射測距實驗測出月球以平均每年3.8公分的螺旋路徑逐漸遠離地球。巧合的是,在月球上的反光角錐直徑也是3.8公分。 第一位嘗試測量月球距離的人是西元前2世紀的喜帕恰斯,他只是簡單的使用三角學。測量出的距離與實際距離的誤差大約是26,000公里,或6.8%。 NASA的近地天體目錄中,小行星和彗星的距離包括以測量的數值。.

查看 喜帕恰斯和月球距離

月食

--,是一种當月球運行進入地球的陰影(陰影又分本影和半影兩部份)時,原本可被太陽光照亮的部份,有部份或全部不能被直射陽光照亮,使得位於地球的觀測者無法看到普通的月相的天文現象。月食發生時,太陽、地球、月球恰好或幾乎在同一條直線上,因此月食必定發生在滿月的晚上(農曆十五、十六、或十七),如《说文》所說“日蝕则朔,月蝕则望”。地球陰影位於地球公轉軌道面(黃道面)內,此平面與月球軌道面(白道面)並不重合,黃白道面交角約5度;大多數滿月時,月球不在黃道面內,而是或偏北或偏南,不在地球陰影內,因此並不是每個滿月時,都發生月蝕。每年全球至少發生兩次月蝕。最近一次月全蝕发生于2018年1月31日。.

查看 喜帕恰斯和月食

星座

弗雷德里克·德·威特在1670年绘制的星座图 星座是指天上一群群的恒星组合。自从古代以来,人类便把三五成群的恒星与他们神话中的人物或器具联系起来,称之为“星座”。星座几乎是所有文明中确定天空方位的手段,在航海领域应用颇广。对星座的划分完全是人为的,不同的文明对于其划分和命名都不尽相同。星座一直没有统一规定的精确边界,直到1930年,國際天文學聯合會为了统一繁杂的星座划分,用精確的邊界把天空分為八十八個正式的星座,使天空多数恆星都屬於某一特定星座。這些正式的星座大多都以中世紀傳下來的古希臘傳統星座為基礎。与此相对地,有一些广泛流传但是沒有被认可为正式星座的星星的组合叫做星群,例如北斗七星(参见恒星统称列表)。 在三維的宇宙中,這些恆星其實相互間不一定有實際的關係,不過其在天球這一個球殼面上的位置相近,而其实它们之间可能相距很远。如果我们身处银河中另一太阳系,我们看到的星空将会完全不同。自古以來,人们对于恆星的排列和形狀很感興趣,並很自然地把一些位置相近的星聯繫起來組成星座。.

查看 喜帕恰斯和星座

星圖

星圖或天體圖是夜空的地圖;亦即是「星星的地圖」。 天文學家用網格來劃分,使它們更容易使用。它們被用來識別和定位恆星、星座和星系。自古以來,人類就利用星圖來導航。請注意,星圖與星表或天體目錄不同,後者適用於特定用途的天體清單或表單。不同的星圖工具還包括星盤和活動星圖。.

查看 喜帕恰斯和星圖

星圖與星表年表

星圖與星表年表.

查看 喜帕恰斯和星圖與星表年表

星团

恆星集團或恆星雲是恆星的集團,可以區分為兩種類型:球狀星團是由成千上萬顆老年恆星被萬有引力緊密束縛在一起的恆星集團;而疏散星團一般只有數百顆恆星,而且通常都很年輕的恆星組成,是結構較為鬆散的恆星集團。疏散星團在銀河系中運動時會受到巨大分子雲的影響,而隨著時間的流易逐漸瓦解,但星團中的成員即使不再受彼此間的引力約束,但仍將繼續維持大致相同的運動方向在空間中移動;然後他們會被稱為星協或是移動星群。 肉眼可見的恆星集團包括昴宿星團、畢宿星團和蜂巢星團。.

查看 喜帕恰斯和星团

星等

星等(magnitude),為天文学术语,是指星体在天空中的相对亮度。一般而言,这也指“视星等”,即为从地球上所见星体的亮度。在地球上看起来越明亮的星体,其视星等数值就越低。常见情况下人们使用可见光来衡量视星等,但在科学探测中,红外线等其它波段也有用到。不同波段探测到的星等数据会有所不同。一颗星星的星等,取决于它离地球的距离、它本身的光度(即为绝对星等)、星际尘埃遮蔽等多重因素。一般人的肉眼能够分辨的极限大约是6.5等。.

查看 喜帕恰斯和星等

星群

星群是天文學中出現在地球的星空中一種非正式星座型態的恆星集團。像星座一樣,它們基本上是由一些在相同方向上的恆星組成,但沒有物理上的實質關聯性,經常在與地球的距離上有著顯著的不同。一個星群可以由同一個星座的恆星組成,也可以是來自多個不同星座的恆星。它們主要由簡單的形狀或少數的恆星構成,使它們的樣式很容易辨認,因此對正在學習辨認星座與在觀看夜空的初學者特別有用。.

查看 喜帕恰斯和星群

星盘

星盘(Astrolabe,ἁστρολάβον astrolabon 'star-taker') 是古代天文学家,占星师和航海家用来进行天文测量的一项重要的天文仪器,用途非常广泛,包括定位和预测太阳、月亮、金星、火星相关天体在宇宙中的位置,确定本地时间和经纬度,三角测距等。.

查看 喜帕恰斯和星盘

數是一個用作計數、標記或用作量度的抽象概念,是比同质或同属性事物的等级的简单符号记录形式(或称度量)。代表數的一系列符號,包括數字、運算符號等統稱為記數系統。在日常生活中,數通常出現在在標記(如公路、電話和門牌號碼)、序列的指標(序列號)和代碼(ISBN)上。在數學裡,數的定義延伸至包含如如分數、負數、無理數、超越數及複數等抽象化的概念。 起初人們只覺得某部分的數是數,後來隨著需要,逐步將數的概念擴大;例如畢達哥拉斯認為,數必須能用整數和整數的比表達的,後來發現无理数無法這樣表達,引起第一次數學危機,但人們漸漸接受無理數的存在,令數的概念得到擴展。 數的算術運算(如加減乘除)在抽象代數這一數學分支內被廣義化成抽象數字系統,如群、環和體等。.

查看 喜帕恰斯和数

数学用表

数学用表是计算器普及之前,用于简化并加快运算速度的表格。数学用表中列出了大量不同变量进行计算后的结果,使用者可以通过查表直接得到运算结果。最常见的数学用表是乘法表,多数人在早期的数学课上就学习了这一表格: 例如要查找7×8的结果,可以查询第7行第8列并得到结果56。.

查看 喜帕恰斯和数学用表

托勒密王國

托勒密王國(Πτολεμαϊκὴ βασιλεία)或稱托勒密埃及,是亞歷山大大帝逝世之後,統治埃及和周圍地區的一個希臘化王國。王國建立者為亞歷山大大帝的將領托勒密一世,他在公元前304年自立為國王並宣稱自己是埃及法老。托勒密王朝統治埃及直到公元前30年埃及女王克麗奧佩脫拉七世兵败自杀為止,歷經274年。王國疆域最鼎盛時包含埃及、昔蘭尼、安那托利亞南部、敘利亞南部和一些愛琴海島嶼,領土最南時可達努比亞。亞歷山卓是托勒密王國的首都,也是當時是希臘化世界的重要文明中心以及貿易樞紐。 埃及托勒密王朝一裔中兄妹或姊弟通婚很多。男性後裔常稱托勒密,女性的名稱常有克利奥帕特拉、贝勒尼基和阿尔西诺伊。其中最後的女王克利奥帕特拉七世是最爲後世所知的。托勒密王國因內部王室紛爭、境內埃及人叛亂、以及外國入侵等等種種原因逐漸衰弱,最終被羅馬共和國占領。但所留下的希臘化文明一直延續到埃及被穆斯林征服為止。.

查看 喜帕恰斯和托勒密王國

1504年3月1日月食

1504年3月1日發生了一次月食(從美洲觀察到是發生於2月29日夜晚),為月全食。 克里斯托弗·哥伦布利用德國天文學家約翰·繆勒製作的星曆表成功預測了此次月食,以此威脅牙买加土著居民,迫使其繼續為他和飢餓的船員供應補給。.

查看 喜帕恰斯和1504年3月1日月食

亦称为 伊巴谷。

视星等諾曼·羅伯特·普森鬼宿星團豺狼座超新星蜀增一赤经自行英仙座雅典执政官列表雙星團老人星進動HipparchusNGC 869柳宿增三极坐标系恒星恒星年恆星天文學年表歲差 (天文)沙罗周期月球環形山列表 (G-K)月球運動論月球距離月食星座星圖星圖與星表年表星团星等星群星盘数学用表托勒密王國1504年3月1日月食