目录
守恆量
在經典力學裏,對於一個動力系統,隨著時間的演進,所有保持不變的物理量都稱為守恆量(conserved quantity),又稱為運動常數。由於很多物理定律會表達某種守恆行為,對應的守恆量時常會出現於真實系統。例如,假設在某系統內涉及的作用力是保守力,則此系統的能量是守恆量。假設涉及的作用力是連心力,則此系統的角動量是守恆量。.
查看 哈密頓系統和守恆量
于尔根·莫泽
于尔根·库尔特·莫泽(Jürgen Kurt Moser,),德国-美国数学家,研究领域包括哈密顿动力系统和偏微分方程。.
查看 哈密頓系統和于尔根·莫泽
非線性系統
在物理科學中,如果描述某個系統的方程其輸入(自變數)與輸出(應變數)不成正比,則稱為非線性系統。由於自然界中大部分的系統本質上都是非線性的,因此許多工程師、物理學家、數學家和其他科學家對於非線性問題的研究都極感興趣。非線性系統和線性系統最大的差別在於,非線性系統可能會導致混沌、不可預測,或是不直觀的結果。 一般來說,非線性系統的行為在數學上是用一組非線性聯立方程來描述的。非線性方程裡含有由未知數構成的非一次多項式;換句話說,一個非線性方程並不能寫成其未知數的線性組合。而非線性微分方程,則是指方程裡含有未知函數及其導函數的乘冪不等於一的項。在判定一個方程是線性或非線性時,只需考慮未知數(或未知函數)的部分,不需要檢查方程中是否有已知的非線性項。例如在微分方程中,若所有的未知函數、未知導函數皆為一次,即使出現由某個已知變數所構成的非線性函數,我們仍稱它是一個線性微分方程。 由於非線性方程非常難解,因此我們常常需要以線性方程來近似一個非線性系統(線性近似)。這種近似對某範圍內的輸入值(自變數)是很準確的,但線性近似之後反而會無法解釋許多有趣的現象,例如孤波、混沌和奇點。這些奇特的現象,也常常讓非線性系統的行為看起來違反直覺、不可預測,或甚至混沌。雖然「混沌的行為」和「隨機的行為」感覺很相似,但兩者絕對不能混為一談;也就是說,一個混沌系統的行為絕對不是隨機的。 舉例來說,許多天氣系統就是混沌的,微小的擾動即可導致整個系統產生各種不同的複雜結果。就目前的科技而言,這種天氣的非線性特性即成了長期天氣預報的絆腳石。 某些書的作者以非線性科學來代指非線性系統的研究,但也有人不以為然:.
查看 哈密頓系統和非線性系統
能量均分定理
在经典統計力學中,能量均分定理(Equipartition Theorem)是一種聯繫系統溫度及其平均能量的基本公式。能量均分定理又被稱作能量均分定律、能量均分原理、能量均分,或僅稱均分。能量均分的初始概念是熱平衡時能量被等量分到各種形式的运动中;例如,一个分子在平移運動时的平均動能應等於其做旋轉運動时的平均動能。 能量均分定理能够作出定量預測。类似于均功定理,对于一个给定温度的系统,利用均分定理,可以計算出系統的總平均動能及勢能,從而得出系统的熱容。均分定理還能分別給出能量各個组分的平均值,如某特定粒子的動能又或是一个彈簧的勢能。例如,它預測出在熱平衡時理想氣體中的每個粒子平均動能皆為(3/2)kBT,其中kB為玻爾兹曼常數而T為溫度。更普遍地,無論多複雜也好,它都能被應用於任何处于熱平衡的经典系統中。能量均分定理可用於推導经典理想氣體定律,以及固體比熱的杜隆-珀蒂定律。它亦能夠應用於預測恒星的性質,因为即使考虑相對論效應的影響,该定理依然成立。 儘管均分定理在一定条件下能够对物理现象提供非常準確的預測,但是當量子效應變得显著時(如在足够低的温度条件下),基于这一定理的预测就变得不准确。具体来说,当熱能kBT比特定自由度下的量子能級間隔要小的時候,該自由度下的平均能量及熱容比均分定理預測的值要小。当熱能比能級間隔小得多时,这样的一個自由度就說成是被“凍結”了。比方說,在低溫時很多種類的運動都被凍結,因此固體在低溫時的熱容會下降,而不像均分定理原測的一般保持恒定。對十九世紀的物理學家而言,這种熱容下降现象是表明經典物理学不再正確,而需要新的物理学的第一個徵兆。均分定理在預測電磁波的失敗(被稱为“紫外災變”)普朗克提出了光本身被量子化而成為光子,而這一革命性的理論對刺激量子力學及量子場論的發展起到了重要作用。.
查看 哈密頓系統和能量均分定理
潮汐加速
潮汐加速是行星與其衛星之間潮汐力的效應。這種“加速”通常都是負面的效應,如果衛星是在順行軌道上運行,會逐漸退行和遠離行星(衛星的角動量增加),相對的,行星的自轉也會減緩(角動量守恆)。這個過程最終會導致質量小的先潮汐鎖定,然後大的也會如此。地月系統是研究這種情況的最佳事件。 衛星軌道週期短於主星(行星)的自轉周期,或是逆行軌道的狀況,稱為潮汐減速,是一種類似的程序(衛星的角動量減少)。.
查看 哈密頓系統和潮汐加速