目录
18 关系: 协同反应,休克爾方法,化学反应列表,分子轨道对称守恒原理,呋喃,前线轨道理论,环加成反应,硼氢化-氧化反应,罗伯特·伯恩斯·伍德沃德,烯反应,电环化反应,狄尔斯–阿尔德反应,莫比乌斯芳香性,麦克马考反应,重排反应,Σ迁移反应,有机反应,1,3-偶极环加成反应。
协同反应
协同反应(Concerted Reaction)是一类键的断裂和形成同时发生的化学反应。这类反应不受溶剂、催化剂等的影响,反应机理既非离子型又非自由基型,而是往往通过一个环状过渡态进行的(有环状过渡态的协同反应又称周环反应),因而反应具有较高的立体选择性。以前人们对此类反应了解甚少,直到1965年伍德沃德与霍夫曼提出分子轨道对称守恒原理,人们对它才有了较充分的认识,并开始能够预言协同反应发生的可能性与立体专一性。 一般常见的协同反应有电环化反应、环加成反应、σ迁移反应。双分子亲核取代反应也被认为是协同反应的一种。.
查看 周环反应和协同反应
休克爾方法
休克爾方法(),又稱休克爾分子軌域法(,縮寫:HMO),是1930年埃里希·休克爾提出的一個計算分子軌域及--的方式。 休克爾方法屬於原子轨道线性组合(LCAO-MO)的能量计算方法,如:乙烯、苯、丁二烯的分子π軌域的能量的计算。该方法的结论是休克爾規則的基础。休克爾方法有一個擴展的理論,是為羅德·霍夫曼提出的,是用來計算π軌域的三維能量狀態,也被用來測試分子軌道對稱守恆原理。它後來被擴展到含有杂原子的共軛分子,例如:吡啶、吡咯和呋喃。 此理論常做為教學上的例子在許多化學教科書中出現並詳細介紹。.
查看 周环反应和休克爾方法
化学反应列表
此页面旨在是列出各種化学反应名称。.
查看 周环反应和化学反应列表
分子轨道对称守恒原理
分子轨道对称守恒原理(伍德沃德-霍夫曼规则),是凭借轨道对称性来判断周环反应产物立体化学性质的一套规则,由罗伯特·伯恩斯·伍德沃德和罗德·霍夫曼于1965年提出。它主要用于分析电环化反应、环加成反应和σ迁移反应,运用前线轨道理论和能级相关理论来分析周环反应,总结出其立体选择性规则,并根据这些规则判断周环反应是否可以进行,以及反应的立体化学特征。 分子轨道对称守恒原理认为:化学反应是分子轨道进行重组的过程。在协同反应中,由原料到产物,分子轨道的对称性始终不变,是守恒的,因为只有这样,才能用最低的能量形成反应中的过渡态。符合分子轨道对称守恒原理的反应途径被称为是“对称性允许”的,不符合该原理的反应途径则被称为是“对称性禁阻”的。用扩展休克尔方法进行的理论计算支持了该原理所进行的预测,但在某些特殊情况(如施加应力)下,得到的产物不符合分子轨道对称守恒原理。.
呋喃
呋喃(furan)是一种含有一个由四个碳原子和一个氧原子的五元芳环的杂环有机物。含有呋喃环的化合物即為呋喃的同系物。呋喃是一种无色、可燃、易挥发液体,沸点接近于室温。呋喃具有毒性且為2B類可能致癌物質。它常作为合成其他复杂有机物的起始原料。呋喃性质与苯相似,可由松木蒸馏得到,可溶於多種常見的有機溶劑,包括丙酮、醇、醚,微溶於水。為多种重要的工業化學品與藥物的前驅體,如常被作為溶劑使用的四氢呋喃。.
查看 周环反应和呋喃
前线轨道理论
前线分子轨道理论(Frontier molecular orbital theory)是分子轨道理论的一种具体应用,阐述HOMO/LUMO(最高占用分子轨道/最低未占分子轨道)对分子特性的影响。该理论最早是由福井謙一于1952年提出的。尽管在最初遭到了批评,但福井謙一因对反应机理的贡献,与羅德·霍夫曼分享了1981年的诺贝尔化学奖。福井謙一的主要贡献在前线分子轨道方面,特别是HOMO和LUMO对反应机理的影响。这些理论能够较好地解释分子轨道对称守恒原理的结论。.
查看 周环反应和前线轨道理论
环加成反应
环加成反应(英文:Cycloaddition)是两个或多个不饱和化合物(或同一化合物的不同部分)结合生成环状化合物,并伴随有系统总键级数减少的化学反应。它可以是周环反应或非协同的分步反应。逆过程称为环消除反应。 环加成反应的两种主要类型是狄尔斯-阿尔德反应和1,3-偶极环加成反应。 根据前线轨道理论,两个分子之间的环加成反应符合以下几点:.
查看 周环反应和环加成反应
硼氢化-氧化反应
在有机化学中,硼氢化-氧化反应是烯烃与硼烷加成,再被氧化生成醇的两步有机化学反应。 氢和羟基通过顺式加成生成顺式产物。硼氢化-氧化反应是一个反马氏反应,羟基加成到取代基较少的碳上。在有机合成中,这是一个常用的反应。 反应一般按如下形式进行: 该反应常用四氢呋喃(THF)作为溶剂,有时也用其他的非极性非质子化溶剂。它分为两步:在第一步中,甲硼烷(BH3)与双键加成生成烷基硼,称为烯烃的硼氢化反应。第二步中,烷基硼在碱性条件下与过氧化氢作用生成醇,BH2基团被氧化为羟基,这一步称为烷基硼的氧化反应。.
罗伯特·伯恩斯·伍德沃德
罗伯特·伯恩斯·伍德沃德(Robert Burns Woodward,),美国有机化学家,对现代有机合成做出了相当大的贡献,尤其是在合成和具有复杂结构的天然有机分子结构阐明方面。由於「在有机物合成方面的成就」,伍德沃德榮获1965年诺贝尔化学奖。与其同事罗尔德·霍夫曼共同研究了化学反应的理论问题。后者也获得了1981年的诺贝尔化学奖。.
烯反应
Ene反应,也被叫做Alder-ene反应或烯反应,是一个带有烯丙基氢的烯烃和一个亲烯体之间发生的反应。 这是一个官能团转化反应,包含有双键以及氢迁移,产物是一个双键移动至原烯丙基位置的取代烯烃。反应通式如下: 这类反应通常需要有高活性的反应物或高温,此外,热和路易斯酸可以促进此反应。Ene反应的产物通常能够在其他化学反应的副产物中找到。 将反应物称为烯和亲烯体常常为造成误解,因为亲烯体本身也经常是一个烯。对常见的ene反应来说,烯是富电子的而亲烯体是缺电子的。(这一点与狄尔斯-阿尔德反应不同,仅有很少一部分比较奇怪的ene反应会发生电子需求的反转,即缺电子的烯和富电子的亲烯体) 马来酸酐能够参与很多的ene反应,这是因为两个吸电子的羰基的综合作用使其严重缺电子。.
查看 周环反应和烯反应
电环化反应
电环化反应是周环反应的一类,反应中共轭体系两端的原子环合形成新的σ键,形成比原来分子少一个π键的产物。它的逆反应也属于电环化反应,有时为了区分,将前者成环反应称为“电环合反应”。电环化反应是立体选择性的反应,通常使用的反应底物是环烯烃和对应的共轭烯烃。它于1960年前后被发现。 为了使π电子环合成为σ键,烯烃末端碳原子的键必须旋转,而旋转的方向可以是两个键朝同一方向旋转,或两个键朝不同方向旋转,分别称为顺旋和对旋。顺旋又可分为顺时针顺旋和反时针顺旋两种,对旋又可分为内向对旋和外向对旋两种,但这个因素一般很少考虑。 根据分子轨道对称守恒原理,为了发生电环化反应,共轭烯烃HOMO两端的两个p轨道必须发生同位相的重叠。由于链形烯烃总π电子数会对HOMO的对称性造成影响,加热或光照也会使分子轨道能级图上的电子排布发生改变,因此电环化反应存在以下选择性的规则,可用于预测某一反应的产物: 光照时HOMO一个电子被激发到LUMO上去,使得反应的选择性颠倒,禁阻变为允许,允许变为禁阻。以上规则只表明反应按照协同反应机理进行时的活化能高低,并不排除反应按照其他机理进行。 电环化反应是可逆反应,正逆反应途径是相同的,因此需要注意基态时,反应平衡朝哪一个方向进行更为有利。 苯并环丁烷发生的电环化反应是电环化反应中研究较多的一类。以下图为例,苯并环丁烷加热顺旋开环,生成一个具有类醌结构的不稳定的双烯体。它可以和强亲双烯体(如顺丁烯二酸酐)发生狄尔斯-阿尔德反应生成内型的加合物。苯并环丁烷的开环反应产率因此与取代基R具有很大的关系,例如,在110°C和甲苯作溶剂的条件下,随着R由甲基、异丁基甲基变为三甲基硅基甲基,产率也随着上升。 Nazarov成环反应是二乙烯基酮环化成为环戊烯酮的电环化反应。很多带正电荷或负电荷的共轭烯烃也可以发生电环化反应,比如,环丙烷正离子广义上也属于4n+2体系,因此也可以在加热时发生对旋开环,生成烯烃。 很多看上去张力很大的化合物,在光照条件下,受分子轨道对称性的限制实际上是稳定的。下面的化合物经过电环化反应与四乙酸铅处理,可以得到无取代的杜瓦苯:.
查看 周环反应和电环化反应
狄尔斯–阿尔德反应
尔斯–阿尔德反应(Diels–Alder reaction)又叫Diels–Alder反应、双烯加成反应,其中狄尔斯又译作第尔斯–阿尔德又译作阿德尔、阿德耳。狄尔斯–阿尔德反应是一种有机反应(具体而言是一种环加成反应),共轭双烯与取代烯烃(一般称为亲双烯体)反应生成取代环己烯。即使新形成的环之中的一些原子不是碳原子,这个反应也可以继续进行。一些狄尔斯–阿尔德反应是可逆的,这样的环分解反应叫做逆狄尔斯–阿尔德反应或逆Diels–Alder反应(retro-Diels–Alder)。 1928年德国化学家奥托·迪尔斯和他的学生库尔特·阿尔德首次发现和记载这种新型反应,他们也因此获得1950年的诺贝尔化学奖。 狄尔斯–阿尔德反应用很少能量就可以合成六元环,是有机化学合成反應中非常重要的碳碳键形成的手段之一,也是现代有机合成里常用的反应之一。反应有丰富的立体化学呈现,兼有立体选择性、立体专一性和区域选择性等。.
莫比乌斯芳香性
在有机化学中,莫比乌斯芳香性是一类被认为存在于许多有机分子中的特殊的芳香性。用分子轨道理论来研究这些化合物发现共同点是其中分子轨道的单环阵列中有一些轨道的重叠有相位差,这与休克尔体系的芳香性特征恰好相反。这些轨道的立体构型让人想起了莫比乌斯带,这种芳香性因此得名。这类化合物中最小的应该是反式苯(trans-benzene)。1964年,埃德加·埃尔布罗内运用休克尔法研究得出了莫比乌斯体系。但第一种化合物是由赖纳·赫格斯的团队于2003年所合成的。 莫比乌斯体系也存在于过渡态中。决定一个过渡态是莫比乌斯体系还是休克尔体系的方法是有4n或4n+2个电子的反应是允许还是禁阻的。这种方法使用了休克尔–莫比乌斯理论。"On Molecular Orbital Correlation Diagrams, the Occurrence of Möbius Systems in Cyclization Reactions, and Factors Controlling Ground and Excited State Reactions.
查看 周环反应和莫比乌斯芳香性
麦克马考反应
麦克马考反应(McCormack reaction)是一种用于合成有机磷化合物的环加成反应。该反应以杜邦公司的化学家W. B. 麦克马考(W.
查看 周环反应和麦克马考反应
重排反应
重排反应(Rearrangement reaction)是分子的碳骨架发生重排生成结构异构体的化学反应,是有机反应中的一大类。重排反应通常涉及取代基由一个原子转移到同一个分子中的另一个原子上的过程,以下例子中取代基R由碳原子1移动至碳原子2: 分子间重排反应也有可能发生。 通常不用弯箭头表示的电子转移图来描述重排反应的机理。例如在Wagner-Meerwein重排反应中,烃基迁移的实际机理很可能涉及烃基沿键的类似流动性的转移,而非离子性的断键与成键。而在周环反应中,以轨道间相互作用来解释机理要比用电子转移来描述清晰得多。因此虽然在很多情况下可以画出重排反应的电子转移图机理,但它们极有可能与真实机理有较大偏差。 一些典型的重排反应:.
查看 周环反应和重排反应
Σ迁移反应
σ迁移反应(Sigmatropic reaction)是反应物一个σ键沿着共轭体系从一个位置转移到另一个位置的一类周环反应。通常反应是分子内的,同时伴随有π键的转移,但底物总的π键和σ键数保持不变。一般情况下σ迁移反应不需催化剂,但少数反应会受到路易斯酸的催化。 σ迁移反应符合分子轨道对称守恒原理,是协同反应的一种,也就是说原有σ键的断裂,新σ键的生成,以及π键的转移都是经过环状过渡态协同一步完成的。以Cope重排反应为例:.
查看 周环反应和Σ迁移反应
有机反应
有机反应即涉及有机化合物的化学反应,是有机合成的基础。几种基本反应类型为:加成反应、消除反应、取代反应、周环反应、重排反应和氧化还原反应。在有机合成当中,有机反应被广泛的应用于各种人造分子的合成。比如药物,塑料,食品添加剂和合成纤维等等。 早期的有机反应,包括有机燃料的燃烧反应,以及制造肥皂所用的皂化反应。当今有机反应已愈发复杂,其中几个获得诺贝尔化学奖的反应为:1912年的格氏反应、1950年的狄尔斯-阿尔德反应、1979年的维蒂希反应、2005年的烯烃复分解反应和2010年的赫克反应。.
查看 周环反应和有机反应
1,3-偶极环加成反应
1,3-偶极环加成反应(1,3-dipolar cycloaddition),或被称为Huisgen反应,Huisgen环加成反应,是发生在1,3-偶极体和烯烃、炔烃或其衍生物之间的一个协同周环的环加成反应。烯烃类化合物在反应中称亲偶极体(dipolarophile)。德国化学家Rolf Huisgen首个应用此类反应以制取五元杂环化合物。 1,3-偶极环加成反应与狄尔斯-阿尔德反应有些相似。根据前线轨道理论,基态时1,3-偶极体的LUMO和亲偶极体的HOMO,以及基态时1,3-偶极体的HOMO和亲偶极体的LUMO,都是为分子轨道对称守恒原理所允许的,因此反应可以发生。1,3-偶极环加成反应因此也分为三类:一类是由1,3-偶极体出HOMO,称为HOMO控制的反应;一类是由1,3-偶极体出LUMO,称为LUMO控制的反应;还有一类就是两种情况都存在,称为(HOMO-LUMO)控制的反应。 以前曾认为1,3-偶极环加成反应是经过一个双自由基的中间体完成的,但现在大多认为1,3-偶极环加成反应经过五元环的过渡态,是总电子数6π体系的协同反应。它受溶剂的极性影响很少,而且是立体专一的顺式加成反应。 分子内或逆向的1,3-偶极环加成反应都是可以发生的。 常见的1,3-偶极环加成反应:.