我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

吉洪诺夫空间

指数 吉洪诺夫空间

在拓扑学和相关的数学领域中,吉洪诺夫空间或完全正则空间是特定优良种类的拓扑空间。这些条件是分离公理的个例。 吉洪诺夫空间得名于,他的俄语名(Тихонов)也翻译为 “Tychonov”、“Tikhonov”、“Tihonov”或“Tichonov”。.

目录

  1. 11 关系: 完全豪斯多夫空间一致空间乌雷松引理分离公理积空间紧化紧致开拓扑豪斯多夫空间Tychonoff space正规空间拓撲學術語

完全豪斯多夫空间

在拓扑学中,完全豪斯多夫空间或 Urysohn 空间是满足比熟知的豪斯多夫空间更强些的分离公理的一类拓扑空间。.

查看 吉洪诺夫空间和完全豪斯多夫空间

一致空间

在拓扑学這個數學領域裡,一致空间(uniform space)是指带有一致结构的集合。一致空间是一個拓撲空間,有可以用来定义如完备性、一致连续及一致收敛等一致性質的附加结构。 一致结构和拓扑结构之间的概念区别在於,一致空间可以形式化有关于相对邻近性及点间临近性等特定概念。换句话说,「x 邻近于a 胜过y 邻近于b」之類的概念,在一致空间中是有意义的。而相对的,在一般拓扑空间内,给定集合A 和B,有意义的概念只有:点x 能“任意邻近”A(亦即在A 的闭包內);或是和B相比,A 是x 的“較小邻域”,但点间邻近性和相对邻近性就不能只用拓扑结构來描述了。 一致空间广義化了度量空间和拓扑群,因此成為多数数学分析的根基。.

查看 吉洪诺夫空间和一致空间

乌雷松引理

在拓扑学中,乌雷松引理,有时称为“拓扑学中的第一非平凡事实”,通常用于构造正规空间上不同性质的连续函数。这个定理有广泛的应用,因为所有的度量空间和紧豪斯多夫空间都是正规的。 这个引理是以帕维尔·萨穆伊洛维奇·乌雷松命名的。.

查看 吉洪诺夫空间和乌雷松引理

分离公理

在拓扑学及相关的数学领域裡,通常对于所讨论的拓扑空间加有各种各样的限制条件,分离公理即是指之中的某些限制條件。这些分离公理有时候被叫做吉洪诺夫分离公理,得名于安德烈·尼古拉耶维奇·吉洪諾夫。部分分離公理以字母T開頭,是由德文单词“Trennung”而來,意義是分离。 分離公理之所以稱為公理,是因為以前定義拓撲空間時,有些人會將其也做為公理來定義,而得出較現在意思狹義的拓撲空間。但在拓撲空間的公理化完成後,那些都成了「各種」的拓撲空間。然而,「分離公理」這一詞就這樣固定了下來。.

查看 吉洪诺夫空间和分离公理

积空间

拓扑学和数学的相关领域中,积空间是指一族拓扑空间的笛卡儿积,并配备了一个称为积拓扑的自然的拓扑结构。.

查看 吉洪诺夫空间和积空间

紧化

数学中,紧化(compactification)是将一个拓扑空间扩大为紧的过程或结果。紧化的方法有多种,但每一种方法都是以某种方式添加“无穷远点”控制“跑向无穷远”的点或阻止这样的“逃逸”。.

查看 吉洪诺夫空间和紧化

紧致开拓扑

在数学中,紧致开拓扑是定义在两个拓扑空间之间的所有连续映射的集合上的一种拓扑。紧致开拓扑是函数空间上的常用拓扑之一,在同伦理论和泛函分析中有应用。.

查看 吉洪诺夫空间和紧致开拓扑

豪斯多夫空间

在拓扑学和相关的数学分支中,豪斯多夫空间、分离空间或T2空间是其中的点都“由邻域分离”的拓扑空间。在众多可施加在拓扑空间上的分离公理中,“豪斯多夫条件”是最常使用和讨论的。它蕴涵了序列、网和滤子的极限的唯一性。直观地讲,这个条件可用个双关语来形容:如果某空间中任两点可用开集合将彼此“豪斯多夫”开来,该空间就是“豪斯多夫”的。 豪斯多夫得名于拓扑学的创立者之一费利克斯·豪斯多夫。豪斯多夫最初的拓扑空间定义把豪斯多夫条件包括为公理。.

查看 吉洪诺夫空间和豪斯多夫空间

Tychonoff space

#重定向 吉洪诺夫空间.

查看 吉洪诺夫空间和Tychonoff space

正规空间

在拓扑学和相关的数学分支中,正规空间(Normal space)、T4 空间、T5 空间和 T6 空间是特别优秀的一类拓扑空间。这些条件是分离公理的个例。.

查看 吉洪诺夫空间和正规空间

拓撲學術語

這裡列出的是在數學領域中的一分支拓撲學所常使用的一些術語。雖然在拓撲學的許多子類中,術語上的使用差異並不是很大,但是這裡主要是針對一般拓撲學(或稱點集拓撲)來編寫。這些術語也是其它學門如代數拓扑、微分拓扑和幾何拓扑中的基本術語。 關於一些基本的定義,請參閱拓扑空間的條目,關於拓撲學的簡史,請參閱拓撲學。關於集合以及函數的基本定義,請參閱樸素集合論、公理集合論,和函數。下面所列出的條目對拓撲學的瞭解也有幫助,這些文章中包含了某些一般拓撲學中的特別字彙,我們所列出的有些術語將在以下做更詳盡的解釋。一般拓撲學專題列表和一般拓撲學的例子列表也非常有用。.

查看 吉洪诺夫空间和拓撲學術語