目录
21 关系: Atan2,卡西歐 fx-82ES,卡西歐 fx-82MS,反双曲函数,反余割,复平面,导数,不定积分,三角学,三角函数,三角恒等式,幅角,亚伯拉罕·夏普,圓周率,初等函数,初等数学,分部積分法,表示式,预科微积分,複對數,逆三角函數。
Atan2
在三角函数中,两个参数的函数atan2是正切函数tan的一个变种。对于任意不同时等于0的实参数x和y,atan2(y,x)所表达的意思是坐标原点为起点,指向(x,y)的射线在坐标平面上与x轴正方向之间的角的角度。当y>0时,射线与x轴正方向的所得的角的角度指的是x轴正方向绕逆时针方向到达射线旋转的角的角度;而当y,并且可以在C语言的数学标准库的math.h文件中找到,此外在Java数学库、.NET的System.Math(可应用于C#、VB.NET等语言)、Python的数学模块以及其他地方都可以找到atan2的身影。许多脚本语言,比如Perl,也包含了C语言风格的atan2函数。.
查看 反三角函数和Atan2
卡西歐 fx-82ES
卡西欧 fx-82ES是卡西欧发行的一款科学计算器。该款计算器用于取代原先的型号卡西歐 fx-82MS,并在原型号上进行改进,增加了功能。fx-82ES为卡西欧ES系列计算器的入门级机型,现在fx-82ES已停产并由fx-82ES PLUS取代。.
卡西歐 fx-82MS
卡西欧 fx-82MS是卡西欧发行的一款科学计算器。该款计算器用于取代原先的型号fx-82TL,并在原型号上进行改进,增加了功能。fx-82MS为卡西欧MS系列计算器的入门级机型。.
反双曲函数
反双曲函数是双曲函数的反函数。与反圆函数不同之处是它的前缀是ar意即area(面积),而不是arc(弧)。因为双曲角是以双曲线、通过原点直线以及其对x轴的映射三者之间所夹面积定义的,而圆角是以弧长与半径的比值定义。.
查看 反三角函数和反双曲函数
反余割
#重定向 反三角函数.
查看 反三角函数和反余割
复平面
数学中,复平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。 复平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。 复平面的想法提供了一个复数的几何解释。在加法下,它们像向量一样相加;两个复数的乘法在极坐标下的表示最简单——乘积的长度或模长是两个绝对值或模长的乘积,乘积的角度或辐角是两个角度或辐角的和。特别地,用一个模长为 1 的复数相乘即为一个旋转。.
查看 反三角函数和复平面
导数
导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.
查看 反三角函数和导数
不定积分
在微积分中,一个函数f.
查看 反三角函数和不定积分
三角学
三角学是數學的一個分支,主要研究三角形,以及三角形中边与角之间的关系。三角学定義了三角函數,可以描述三角形边与角的关系,而且都是周期函数,可以用來描述周期性的現象。三角学在西元前三世紀時開始發展,最早是幾何學的一個分支,廣泛的用在天文量測中,三角学也是測量學的基礎。 三角学的基礎是平面三角学,研究平面上的三角形中边与角之间的关系,分为角的度量、三角函数与反三角函数、诱导公式、和与差的公式、倍角、半角公式、和差化积与积化和差公式、解三角形等内容,可能會是單獨的一個科目或是在预科微积分教授,三角函數在純數學及應用數學中的許多領域中出現,例如傅立葉分析及波函數等,是許多科技領域的基礎。 三角学也包括球面三角學,研究球面上,由大圓的弧所包圍成的球面三角形,位在曲率為正值常數的曲面上,是橢圓幾何的一部份,球面三角學是天文學及航海的基礎,也在测量学、制图学、结晶学、仪器学等方面有广泛的应用。負曲率曲面上的三角学則是雙曲幾何中的一部份。.
查看 反三角函数和三角学
三角函数
三角函数(Trigonometric functions)是数学中常见的一类关于角度的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数(\sin)、余弦函数(\cos)和正切函数(\tan或者\operatorname);在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。.
查看 反三角函数和三角函数
三角恒等式
在数学中,三角恒等式是对出现的变量的所有值都为實的涉及到三角函数的等式。这些恒等式在表达式中有些三角函数需要简化的时候是很有用的。一个重要应用是非三角函数的积分:一个常用技巧是首先使用使用三角函数的代换规则,则通过三角恒等式可简化结果的积分。.
查看 反三角函数和三角恒等式
幅角
数学中,复數的辐角是指复数在复平面上对应的向量和正向实数轴所成的有向角。复数的辐角值可以是一切实数,但由于相差360^\circ(即弧度2 \pi)的辐角在实际应用中没有差别,所以定义复数的辐角主值为辐角模360^\circ(2 \pi)后的余数,定义取值范围在0^\circ到360^\circ(2 \pi)之间。复数的辐角是复数的重要性质,在不少理论中都有重要作用。.
查看 反三角函数和幅角
亚伯拉罕·夏普
亚伯拉罕·夏普(Abraham Sharp;),是一位英国数学家和天文学家。.
圓周率
圓周率是一个数学常数,为一个圆的周长和其直径的比率,约等於3.14159。它在18世纪中期之后一般用希腊字母π指代,有时也拼写为“pi”()。 因为π是一个无理数,所以它不能用分数完全表示出来(即它的小数部分是一个无限不循环小数)。当然,它可以用像\frac般的有理数的近似值表示。π的数字序列被認為是随机分布的,有一种统计上特别的随机性,但至今未能证明。此外,π还是一个超越数——它不是任何有理数系数多项式的根。由於π的超越性质,因此不可能用尺规作图解化圆为方的问题。 几个文明古国在很早就需要计算出π的较精确的值以便于生产中的计算。公元5世纪时,南朝宋数学家祖冲之用几何方法将圆周率计算到小数点后7位数字。大约同一时间,印度的数学家也将圆周率计算到小数点后5位。历史上首个π的精确无穷级数公式(即π的莱布尼茨公式)直到约1000年后才由印度数学家发现。在20和21世纪,由于计算机技术的快速发展,借助计算机的计算使得π的精度急速提高。截至2015年,π的十进制精度已高达1013位。当前人类计算π的值的主要原因为打破记录、测试超级计算机的计算能力和高精度乘法算法,因为几乎所有的科学研究对π的精度要求都不会超过几百位。 因为π的定义中涉及圆,所以π在三角学和几何学的许多公式,特别是在圆形、椭球形或球形相關公式中广泛应用。由于用於特征值这一特殊作用,它也在一些数学和科学领域(例如数论和统计中计算数据的几何形状)中出现,也在宇宙学,热力学,力学和电磁学中有所出现。π的广泛应用使它成为科学界内外最广为人知的常数之一。人们已经出版了几本专门介绍π的书籍,圆周率日(3月14日)和π值计算突破记录也往往会成为报纸的新闻头条。此外,背诵π值的世界记录已经达到70,000位的精度。.
查看 反三角函数和圓周率
初等函数
初等函数(基本函數)是由常函数、幂函数、指数函数、对数函数、三角函数和反三角函数经过有限次的有理运算(加、减、乘、除、有限次乘方、有限次开方)及有限次函数复合所产生、并且在定义域上能用一个方程式表示的函数。 一般来说,分段函数不是初等函数,因为在这些分段函数的定义域上不能用一个解析式表示。.
查看 反三角函数和初等函数
初等数学
初等数学(Elementary mathematics),简称初数,是指通常在小学或中学阶段所教的数学内容,与高等数学相对。.
查看 反三角函数和初等数学
分部積分法
分部積分法是種積分的技巧。它是由微分的乘法定則和微積分基本定理推導而來的。其基本思路是将不易求得结果的积分形式,转化为等价的但易于求出结果的积分形式。.
查看 反三角函数和分部積分法
表示式
表示式亦称表達式、運算式或數學表達式,在數學領域中是一些符號依據上下文的規則,有限而定義良好的組合。數學符號可用於標定數字(常量)、變量、操作、函數、括號、標點符號和分組,幫助確定操作順序以及有其它考量的邏輯語法。.
查看 反三角函数和表示式
预科微积分
在数学教育中,预科微积分是在高中或大学阶段进行代数和三角学的教育,以对微积分的学习进行准备。学校经常将代数和三角作为两门独立的课程。 与预科代数和代数的关系不同,预科微积分中只提到一小部分的微积分概念,有时还会涉及到一些在之前的教育中没有提到的代数概念。预科微积分会提到圆锥曲线、向量、矩阵、幂函数以及其他一些微积分所需要的前置知识。.
查看 反三角函数和预科微积分
複對數
複對數(complex logarithm)為複分析中複指数函数的「反函數」,就像實數函數的自然對數ln x是指数函数ex的反函數一様。因此复数z的对数是使以下關係式成立的複數w:ew.
查看 反三角函数和複對數
逆三角函數
#重定向 反三角函数.
查看 反三角函数和逆三角函數
亦称为 Arccsc,Arcsec。