我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

双重否定除去

指数 双重否定除去

在命題邏輯裡,雙重否定除去(或雙重否定介入)此一推理規則允許導入(雙重否定介入)或除去(雙重否定除去)一對否定來導出等價的公式。這是基於如 和 在語義上的等價。 形式上,雙重否定除去為 形式上,雙重否定介入為 這兩個規則可以重述如下(以相繼式的形式): 應用演繹定理於這兩個推理規則中可產生一對有效的條件公式: 兩者可以結合成單一個雙條件公式 因為雙條件是一個等價關係,任一於合式公式中的~~A都可以由A所取代,而不改變此合式公式的真值。 雙重否定除去是經典邏輯裡的一個定理,但不是直覺邏輯裡的。因為直覺邏輯在結構上的偏好,「不是沒有正在下雨」此一陳述比「正在下雨」要弱。後者需要有下雨的證明,而前者只需要證明下雨不會矛盾。(此一差別亦出現在自然語言的反敘法之中。) 在集合論裡也有符合此性質的補集否定運算:集合A和集合 (AC)C(這裡的AC表A的補集)是相同的。.

目录

  1. 4 关系: 命题逻辑直觉主义逻辑柯里-霍华德同构析取范式

命题逻辑

在邏輯和數學裡,命題演算(或稱句子演算)是一個形式系統,有著可以由以邏輯運算符結合原子命題來構成代表「命題」的公式,以及允許某些公式建構成「定理」的一套形式「證明規則」。.

查看 双重否定除去和命题逻辑

直觉主义逻辑

觉主义逻辑或构造性逻辑是最初由阿蘭德·海廷开发的为鲁伊兹·布劳威尔的数学直觉主义计划提供形式基础的符号逻辑。这个系统保持跨越生成导出命题的变换的证实性而不是真理性。从实用的观点,也有使用直觉逻辑的强烈动机,因为它有存在性质,这使它还适合其他形式的数学构造主义。.

查看 双重否定除去和直觉主义逻辑

柯里-霍华德同构

柯里-霍華德对应是在计算机程序和数学证明之间的紧密联系;这种对应也叫做柯里-霍華德同构、公式为类型对应或命题为类型对应。这是对形式逻辑系统和公式计算(computational calculus)之间符号的相似性的推广。它被认为是由美国数学家哈斯凯尔·加里和逻辑学家William Alvin Howard独立发现的。.

查看 双重否定除去和柯里-霍华德同构

析取范式

在布尔逻辑中,析取范式(DNF)是逻辑公式的标准化(或规范化),它是合取子句的析取。作为规范形式,它在自动定理证明中有用。一个逻辑公式被认为是 DNF 的,当且仅当它是一个或多个文字的一个或多个合取的析取。同合取范式(CNF)一样,在 DNF 中的命题算子是与、或和非。非算子只能用做文字的一部分,这意味着它只能领先于命题变量。例如,下列公式都是 DNF: 但如下公式不是 DNF: 把公式转换成 DNF 要使用逻辑等价,比如双重否定除去、德·摩根定律和分配律。注意所有逻辑公式都可以转换成析取范式。但是,在某些情况下转换成 DNF 可能导致公式的指数性爆涨。例如,在 DNF 形式下,如下逻辑公式有 2n 个项:.

查看 双重否定除去和析取范式