目录
多伽玛函数
\boldsymbol阶多伽玛函数是伽玛函数的第(\boldsymbol)个对数导数。 在这里 是双伽玛函数,\Gamma(\zeta)\!是伽玛函数。函数\psi^(\zeta)\!有时称为三伽玛函数。.
查看 双伽玛函数和多伽玛函数
学生t-分布
在概率论和统计学中,学生t-分布(Student's t-distribution)可简称为t分布,用于根据小样本来估計呈正态分布且方差未知的总体的均值。如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。 它是对两个样本均值差异进行显著性测试的学生''t''檢定的基础。学生t檢定改進了Z檢定(Z-test),因為Z檢定以母體標準差已知為前提。雖然在樣本數量大(超過30個)時,可以應用Z檢定來求得近似值,但Z檢定用在小樣本會產生很大的誤差,因此必須改用学生t檢定以求準確。 在母體標準差未知的情況下,不論樣本數量大或小皆可應用学生t檢定。在待比較的數據有三組以上時,因為誤差無法被壓低,此時可以用變異數分析(ANOVA)代替學生t檢定。 t分布的推导最早由大地测量学家于1876年提出,并由数学家证明。 英國人威廉·戈塞(Willam S.
查看 双伽玛函数和学生t-分布
函数列表
数学中的许多函数或函数族是非常重要的,这些函数具有他们特定的名称。有大量关于特殊函数的理论是由统计学和数学物理发展而来的。.
查看 双伽玛函数和函数列表
Β分布
在概率论中,Β分布也称贝塔分布,是指一组定义在(0,1)区间的连续概率分布,有两个参数\alpha, \beta>0。.
查看 双伽玛函数和Β分布
Β函数
Β函数,又称为贝塔函数或第一类欧拉积分,是一个特殊函数,由下式定义: \! 其中\textrm(x), \textrm(y) > 0\,。.
查看 双伽玛函数和Β函数
Γ函数
\Gamma \,函数,也叫做伽瑪函數(Gamma函数),是階乘函數在實數與複數上的擴展。對於實數部份為正的複數z,伽瑪函數定義為: 此定義可以用解析開拓原理拓展到整個複數域上,非正整數外。 如果z為正整數,則伽瑪函數定義為: 這顯示了它與階乘函數的聯繫。可見,伽瑪函數將n!拓展到了實數與複數域上。 在概率論中常見此函數,在組合數學中也常見。.
查看 双伽玛函数和Γ函数
亦称为 双Γ函数。