目录
65 关系: 原行星盤,偶極外向流,双色图,天体化学,天体列表,天王星大氣層,天文學,天文學辭彙,太阳系,太陽星雲,宇宙化學,巨大質量恆星列表,主序前星,主序星,亨耶跡,伯納-依伯特質量,彗星塵,包克雲球,初期恆星體,凍結線 (天文物理),光侵蝕,光致蒸發,獵戶座OB1星協,科学大纲,維克托·安巴楚勉,疏散星团,韋斯特豪特40,螢火蟲地方列表,螺旋星系,遠紅外線天文學,聯星,變星列表,鹰星云,麒麟座,赫比格-哈羅天體,蒸發氣體球,金屬量,金牛座T,金牛T風,雪花星團,蛇夫座ρ星云复合体,HD 40307 c,HH 34,IC 348,LRLL 54361,NGC 7538,Sh2-106,Sh2-54,T星協,林軌跡,... 扩展索引 (15 更多) »
原行星盤
原行星盤(Proplyd or Protoplanetary Disc)是在新形成的年輕恆星(如金牛T星)外圍繞的濃密氣體,因為氣體會從盤的內側落入恆星的表面,所以可以視為是一個吸積盤。但是,不能將這個過程與恆星形成時的吸積混淆在一起。 環繞金牛座T的原行星盤,溫度與大小都與雙星周圍的盤不同。原行星盤的半徑可以達到1,000天文單位,但是溫度並不高,在它們最內側的溫度也不過1,000K,並且經常有噴流伴隨著。 典型的原行星盤來自主要是氫分子的分子雲。當分子雲分得的大小達臨界質量或是密度,將會因自身重力而塌縮。而當雲氣開始塌縮,這時可稱為太陽星雲,密度將變得更高,原本在雲氣中隨機運動的分子,也因而呈現出星雲平均的淨角動量運動方向,角動量守恆導致星雲縮小的同時,自轉速度亦增加。這種自轉也導致星雲逐漸扁平,就像製作意大利薄餅一樣,形成盤狀。從崩塌起約十萬年後,恆星表面的溫度與主序帶上相同質量的恆星相同時,恆星將變得可以被看見,就像金牛座T的情況。吸積盤中的氣體在未來的一千萬年中,盤面消失前,仍會繼續落入恆星。盤面可能是被年輕恆星的恆星風吹散,或僅僅是因為吸積之後,單純的停止輻射而結束。發現的最老的原行星盤已經存在了二千五百萬年之久。 太陽系形成的星雲假說描述原行星盤如何發展成行星系統。靜電和引力互相作用在盤面上的塵埃粒子和顆粒,使它們生常成為星子。這個過程與會將氣體吹散的恆星風競爭,將氣體累積並將物質拉入金牛座T的中心。 在我們的銀河系內,已經觀測到一些年輕恆星周圍的原行星盤。第一個是在1984年發現的繪架座β,最近的則是哈伯太空望遠鏡發現在獵戶座大星雲內正在形成的原恆星盤。 天文學家已經在距離太陽不遠的恆星,天琴座織女星、北冕座貫索四、和南魚座北落師門,發現大量的原行星盤材料,或許本身就已經是原行星盤。 包含織女和北落師門的北河二共同運動星團被分辨出來。利用希巴古衛星資料,估計北河二星團年齡約二億年(誤差約一億年),這顯示以紅外線觀察到的織女和北落師門周圍的殘餘物質可能已成星子,而不僅僅是原行星盤了。哈伯太空望遠鏡已經成功的觀測北落師門的原行星盤,並證實猜測。.
查看 原恆星和原行星盤
偶極外向流
偶極外向流意指兩股從一顆恆星的兩極持續向外流動的氣體。偶極外向流可能與原恆星(年輕、正在形成的恆星)相關聯,或與演化的後漸近巨星分支(通常是雙極星雲的形式)相關聯。 在年輕恆星的情況,偶極外向流是由高密度、直直的噴流驅動的。 噴流比向外流狹窄,因此很難直接觀察到。然而,超音速激波前緣沿著噴流將周圍的氣體加熱至數千度。這些袖珍的熱氣體輻射出紅外線的波長,因此可以被像英國紅外線望遠鏡(UKIRT)這種望遠鏡檢測到。他們經常沿著噴流的樑呈現分離不連續的結或是弧。因為這些結通常彎曲成弓形,如同船舶前方的波,因此也被稱為分子弓形衝擊波(弓形震波)。 通常,分子弓形衝擊波被觀測到來自熱的分子氫發射的轉動振動。這些天體被稱為分子氫發射線天體(molecular hydrogen emission-line objects, MHOs)。 偶極外向流通常可以使用像James Clerk Maxwell Telescope這種微米波望遠鏡從比較溫暖量的一氧化碳分子,或使用其它微量的分子觀測到。偶極外向流經常出現在密集、黑暗的星雲中。它們往往是非常年輕的恆星(年齡小於10,000年),並且與分子弓形衝擊波密切相關。事實上,弓形衝擊波被認為是從形成偶極外向流周圍的雲氣清掃或挾帶出的稠密氣體。 許多噴流來自在演化上更年輕的恆星 -金牛T星- 產生類似的弓形衝擊波,然而這些都是在光學的波長上可以看見,被稱為赫比格-哈羅天體(HH天體)。 金牛T星通常在雲氣不很濃稠的環境中被發現,環繞在周圍的氣體和塵埃意味著HH天體在挾帶分子氣體上並不是很有效。因此,它們不太可能和偶極外向流有所關聯。 偶極外向流的存在顯示在中心的恆星仍然透過吸積盤從周圍的雲氣累積質量,外向流帶走(消除)通過吸積盤螺旋來到中心集結所帶入的角動量。事實上,沒有外向流,吸積盤不可能存在,而恆星也永遠無法形成。 來自演化中恆星的偶極外向流可能開始時是球形對稱的風(稱為前漸近巨星分支風),是紅巨星再冷卻和變暗時從表面彈出的。這些都被磁場或聯星中的伴星以我們還不知道的程序集中成為錐形的氣體。來自前漸近巨星分支恆星的偶極外向流最終成長形成行星狀星雲。 在這兩種情況下,偶極外向流都包括大量的分子氣體。它們可以每秒數十或可能是數百公里的速度旅行,並且在年輕恆星的情況下可以綿延超過1秒差距的長度。.
查看 原恆星和偶極外向流
双色图
在天文學中的雙色圖(或稱為雙色指數圖,color–color diagrams)是一個比較恆星在不同波長下視星等差異的圖表。天文學家進行觀測時一般都在特定波段下進行窄範圍波長觀測,並且天體在每個波段下的亮度都不同。在天文學上不同波段之間的光度差異稱為色指數。在雙色圖中,由兩個特定波段組成的色指數會位於該圖水平向的X軸,由另外兩個波段組成的另一個不同色指數(雖然一般情況下其中一個波段會在兩個被比較的色指數同時出現)則是位於垂直向的Y軸。.
查看 原恆星和双色图
天体化学
天体化学(Astrochemistry);天体化学研究宇宙中元素和分子的豐度,以及它们和辐射的交互作用;还研究星际间气体和尘埃间的相互作用,特别是分子气体云的形成、相互作用和毁灭。天体化学和天文学以及化学有相互交叉之处。天体化学的研究範圍包含了太陽系行星際物質和星際物質。而研究隕石等太陽系物質元素豐度和同位素比例的學科又被稱為「宇宙化學」;研究星系物質中原子和分子以及前述物質和輻射交互作用的學科有時候稱為「」。天文化學最主要研究星際分子雲的形成、組成成分、演化和最終結局,因為這些相關知識與太陽系如何形成有關聯。 许多年来,天文学家缺少星际间的化学知识,认为星际间只是黑暗,无物。1950至60年代出现射电天文学,开始有令人兴奋的发现;观察氢分子的21公分線显示星际间有丰富的氢、氦、碳、氮等的各种化合物。从空间的微波谱发现,有180种类型的碳,氮等分子的拼料。这些分子绕化学键转动时就产生能量。研究这些新发现的化合物可以为我们提供很有价值的科学信息:.
查看 原恆星和天体化学
天体列表
天体(Astronomical object),又稱星体,指太空中的物体,更廣泛的解釋就是宇宙中的所有的個体。.
查看 原恆星和天体列表
天王星大氣層
天王星的大氣層雖然還是以氫和氦為主要的成分,但與海王星相似,而不同於較大的氣體巨星木星和土星,它擁有的揮發性物質(類似於"冰"),像是水、氨和甲烷的比例較高。不同於木星和土星,天王星上層的大氣層之下被認為沒有金屬氫。取而代之的是,在內部應該是由氨、水和甲烷組成的"海洋",逐漸的轉換成以氫和氦為主的大氣層並混合在一起,而沒有很清楚的界線。由於這樣的差異,許多天文學家認為天王星和海王星應該自成一族,稱為冰巨星,以與木星和土星有所區別。 雖然沒有明確的定義天王星內部是否有固體的表面,天王星最外層被稱為大氣層的氣體部分,是很容易使用遙感設備偵測的。遙感設備能偵測到一帕氣壓之下300公里左右的深度,該處的氣壓大約是100 帕,溫度約為320K。纖細的行星環從大氣層延伸至2倍行星半徑之處,此處的行星半徑是以一大氣壓之處做為行星有名無實的表面。天王星的大氣可以區分為三層:高度從−300至 50 公里,氣壓從100至0.1帕的對流層;高度從50至4000 公里,氣壓在的平流層;以及從4000公里以上至距離表面高達50,000公里的增溫層;沒有散逸層。.
查看 原恆星和天王星大氣層
天文學
天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).
查看 原恆星和天文學
天文學辭彙
天文學辭彙是天文學上的一些術語。這項科學研究與關注的是在地球大氣層之外的天體和現象。天文學的領域有豐富的辭彙和大量的專業術語。.
查看 原恆星和天文學辭彙
太阳系
太陽系Capitalization of the name varies.
查看 原恆星和太阳系
太陽星雲
太陽星雲相信是讓地球所在的太陽系形成的氣體雲氣,這個星雲假說最早是在1734年由伊曼紐·斯威登堡提出的。在1755年,熟知斯威登堡工作的康德將理論做了更進一步的開發,他認為在星雲慢慢的旋轉下,由於引力的作用雲氣逐漸坍塌和漸漸變得扁平,最後形成恆星和行星。拉普拉斯在1796年也提出了相同的模型。這些可以被認為是早期的宇宙論。 當初僅適用於我們自己太陽系的形成理論,在我們的銀河系內發現了超過200個外太陽系之後,理論學家認為這個理論應該要能適用整個宇宙中的行星形成。.
查看 原恆星和太陽星雲
宇宙化學
宇宙化學(Cosmochemistry)是研究宇宙中物體的化學組成和形成這些組成的過程。這主要是通過研究隕石的化學成分和其它實物的樣本。由於隕石母體的小行星有些是太陽系形成初期凝固的第一批固體,宇宙化學通常,但不完全是研究與太陽系有關的物體。.
查看 原恆星和宇宙化學
巨大質量恆星列表
這是一份有關巨大質量恆星的列表,依太陽質量的多寡排列(1太陽質量.
查看 原恆星和巨大質量恆星列表
主序前星
主序前星(PMS星或PMS天體)是恆星尚未成為主序星的一個階段。它可以是金牛T星或獵戶FU型變星(質量小於2太陽質量),或是赫比格Ae/Be星(2至8太陽質量)。 這些天體的能量來自於重力收縮(相對於主序星的氫熔合)。在赫羅圖,主序帶前階段,質量在0.5太陽質量以上的恆星,將先沿著林軌跡(幾乎垂直向下),然後沿著亨耶跡(幾乎水平向左的朝向主序帶)移動。 通過光譜的測量和對溫度與重力間的交互作用,主序前星能夠從主序星的矮星中分辨出來,因為主序前星是比較臃腫的恆星。 在周圍的物質都落入中心的恆星之前,它都被視為原恆星。當周圍的氣體和塵粒消散,吸積的過程停止,這顆恆星才能成為主序前星。 當主序前星越過恆星誕生線之後,便能在可見光下被觀測到,而主序前星階段維持的時間在恆星的生命中低於1%(對比下,恆星生命大約有80%在主序帶上)。 一般相信在這個階段的恆星有密集的星周盤,也是行星可能形成的場所。 Category:赫羅分類.
查看 原恆星和主序前星
主序星
主序星在可顯示恒星演化過程的赫羅圖上,是分布在由左上角至右下角,被稱為主序帶上的恆星。 主序帶是以顏色相對於光度繪圖成線的一條連續和獨特的恆星帶。這個色-光圖就是後來埃希納·赫茨普龍和亨利·諾利斯·羅素合作發展出來,著名的赫羅圖。在這條帶子上的恆星就是所謂的主序星或"矮星"。 恆星形成之後,它在高熱、高密度的核心進行核聚变反應,將氫原子轉變成氦,並且創造出能量。在這個生命期階段的恆星,座落在在主序帶上的位置主要是依據它的質量,但化學成分和其它的因素也有一些關係。所有的主序星都處於流體靜力平衡狀態,它來自炙熱核心向外膨脹的熱壓力與來自外圍包層向內擠壓的重力壓維持著平衡。在核心溫度和壓力與能量孳生率有著強烈的相關性,並有助於維持平衡。在核心孳生的能量傳遞到表面經由光球輻射出去。能量經由輻射或對流傳遞,而後著在其區域內會產生階梯狀的溫度梯度,更高的透明度,或兩者均有。 基於恆星產生能量的主要過程,主序帶有時會被分成上段和下段。質量大約在1.5太陽質量以內的恆星,將氫聚集融合成氦的一系列主要程序稱為質子-質子鏈反應。超過這個質量在主序帶的上段,核融合主要是使用碳、氮、和氧原子,經由碳氮氧循環的程序,將氫原子轉變成氦。質量超過太陽10倍的主序星在核心區域會產生對流,這樣的活動繪激發新創建的氦外移,並維持發生核融合所需要的燃料比例。當核心的對流不再發生時,發展出的富氦核心的外圍會被氫包圍著。質量較低的恆星,核心的對流區會逐步的縮小,大約在2太陽質量附近,核心的對流區就會消失。在這個質量以下,恆星的核心只有輻射,但是在接近表面會有對流。隨著恆星質量的減少,對流的包層會增加,質量低於0.4太陽質量的主序星,全部的質量都在對流。 通常,質量越大的恆星在主序帶上的生命期越短。當在核心的核燃料已被耗盡之後,恆星的發展會離開赫羅圖上的主序帶。這時恆星的發展取決於它的質量,質量低於0.23太陽質量的恆星直接成為白矮星,而質量未超過10太陽質量的恆星將經歷紅巨星的階段;質量更大的恆星可以爆炸成為超新星,或直接塌縮成為黑洞。.
查看 原恆星和主序星
亨耶跡
亨耶跡是質量高於0.5太陽質量的原恆星在結束林軌跡之後,在赫羅圖上繼續發展的路徑。天文學家路易斯·G.·亨耶和他的同事在1950年代顯示原恆星會繼續保持一段收縮與輻射平衡的週期之後才會進入主序帶。 亨耶跡的特徵是在接近流體靜力平衡的狀態下緩慢的塌縮,在赫羅圖上幾乎是水平的逐漸趨近主序帶(意思是光度幾乎不變)。.
查看 原恆星和亨耶跡
伯納-依伯特質量
伯納-依伯特質量是天文物理中一個加壓的介質嵌入一個等溫氣體球時,仍然可以維持流體靜力平衡的最大質量。 氣體雲的質量若大於伯納-依伯特質量,無可避免的就會經歷重力坍縮形成更小和更密度更高的天體 。由於一個星際氣雲的重力坍縮是形成原恆星的第一階段,伯納-依伯特質量是研究恆星形成的一價重要數值。 將氣體雲嵌入一個氣體壓力為P_的介質中,伯納-依伯特質量為: M_.
查看 原恆星和伯納-依伯特質量
彗星塵
彗星塵指的是宇宙塵,它的來源是彗星。彗星塵可以提供彗星起源的線索。.
查看 原恆星和彗星塵
包克雲球
包克雲球是在恆星形成階段中有時會產生的由塵埃和氣體組成的高密度暗雲氣。包克雲通常都在電離氫區內被發現,典型的質量大約是10–50 太陽質量,大小約為1光年,內部有氫分子(H2)、碳的氧化物和氦,還有大約1%(質量)的含矽的塵埃。包克雲球通常會導致聯星或聚星系統的形成。 包克雲球是在1940年代被天文學家巴特·包克首度發現的,在1947年的一篇論文中,包克和E.F.
查看 原恆星和包克雲球
初期恆星體
初期恆星體 (YSO)表示是一顆進入恆星演化早期階段的天體。 這個分類中包含兩個小組:原恆星和主序前星。有時,也會以質量區分為:大質量初期恆星體(MYSO)、中質量初期恆星體和棕矮星。 初期恆星體經常會依據以光譜能量分布的斜率做標準來分類,這是Lada C.J.
查看 原恆星和初期恆星體
凍結線 (天文物理)
凍結線或譯為雪線,在天文學或行星科學,雪線位於太陽星雲中從原始太陽的中心向外起算的一個特定距離,該距離以外的氣盤溫度夠低,以至於氫的化合物,如水、氨和甲烷能凝聚成為固體的冰凍顆粒。依據密度,這個溫度估計在150K。這個名詞是借用土壤科學中凍線的概念。 太陽系的雪線距離為2.7天文單位,位於小行星帶。溫度在雪線之下的低溫能讓更多的固體顆粒吸積成為微行星,最終能成為行星。因此,雪線將恆星系劃分為擁有固態物體但揮發性物質稀少的類地行星區域,以及富含揮發性物質與冰冷物體的類木行星區域 。.
光侵蝕
光侵蝕是星前核心因為附近恆星的電離輻射導致外層的色散。 這種侵蝕阻礙了環繞著原恆星中心核的外圍吸積,因此,反過來也阻止了原恆星成為成熟的恆星,使得原恆星只能發展成為棕矮星或行星質量天體。.
查看 原恆星和光侵蝕
光致蒸發
光致蒸發表示的是高能輻射電離氣體,並使它從電離源翻散的過程與程序。這通常是天文物理的範疇,來自炙熱恆星的紫外線、電磁輻射作用在像是分子雲、原行星盤或行星大氣層等的雲氣。.
查看 原恆星和光致蒸發
獵戶座OB1星協
獵戶座OB1星協是一個包含數打光譜類型為0和B型的熱巨星集團。星協是由數千顆低質量恆星,和一定數量的原恆星 (規模較小但重要的)。它是巨大的獵戶座分子雲團的一部分。由於相對的接近和複雜性,使他成為受到最密切研究的OB星協。 獵戶座OB1星協包含以下這些成員:.
查看 原恆星和獵戶座OB1星協
科学大纲
以下大綱是科學的主題概述: 科学(Science,Επιστήμη)是通過經驗實證的方法,對現象(原來指自然現象,現泛指包括社會現象等現象)進行歸因的学科。科学活动所得的知识是条件明确的(不能模棱两可或随意解读)、能经得起检验的,而且不能与任何适用范围内的已知事实产生矛盾。科学原仅指对自然现象之规律的探索与总结,但人文学科也被越来越多地冠以“科学”之名。 人们习惯根据研究对象的不同把科学划分为不同的类别,传统的自然科学主要有生物學、物理學、化學、地球科學和天文學。逻辑学和数学的地位比较特殊,它们是其它一切科学的论证基础和工具。 科学在认识自然的不同层面上设法解决各种具体的问题,强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对自然界的认识偏差的纠正史。因此“科学”本身要求对理论要保持一定的怀疑性,因此它绝不是“正确”的同义词。.
查看 原恆星和科学大纲
維克托·安巴楚勉
維克托·安巴楚勉(Վիկտոր Համբարձումյան,ISO 9985:Viktor Hambardzumyan,俄化名:Виктор Амазаспович Амбарцумян,俄語羅馬化:Viktor Amazaspovich Ambartsumian,維克托·阿馬扎斯波維奇·阿姆巴楚米揚,),亞美尼亞天文物理學家,是理論天文物理學的奠基者。他的研究主要是在恆星天文學和星雲、恆星系統動力學、恆星與星系的天體演化學,並在數學物理上作出貢獻。 安巴楚勉於1961到1964年擔任國際天文聯會會長、並曾經兩次擔任國際科學理事會會長(1966年-1972年)。他也擔任過蘇聯科學院院士、英國皇家學會、美国国家学院和印度科學院外籍院士。而他獲得的多個獎項中有史達林獎(1946年、1950年)、社会主义劳动英雄(1968年、1978年)、俄羅斯聯邦國家獎、英國皇家天文學會金質獎章、太平洋天文學會布魯斯獎、亞美尼亞國家英雄。安巴楚勉是布拉堪天文台的建立者。.
查看 原恆星和維克托·安巴楚勉
疏散星团
疏散星團,也稱為銀河星團,是由同一個巨分子雲中的數百顆至數千顆恆星形成的集團。在銀河系中發現的疏散星團已經超過1,100個,並且被認為還存在更多。它們環繞著銀河中心運轉時,只靠著微弱的引力吸引維繫在一起,並且很容易因為與其它集團或氣體雲的近距離接觸而瓦解。疏散星團的壽命通常只有幾億年,但少數質量特別大的可以存活數十億年。相較之下,質量更大的球狀星團,擁有更多的恆星,成員彼此間的引力極為強大,可以存活的時間也更長。只有在星系的螺旋臂和不規則星系能發現疏散星團,它們只存在於恆星形成活躍區。 年輕的疏散星團可能仍然在它們形成的分子雲中,照亮它們在分子雲內創造出來的H II區。隨著時間推移,來自星團的輻射壓會將分子雲吹散。通常情況下,在輻射壓將氣體驅散之前,大約有10%質量的氣體能凝聚形成恆星。 疏散星團是研究恆星演化的關鍵天體。因為集團中的恆星成員年齡和化學成分都相仿,它們的特性(像是距離、年齡、金屬量和消光)也比單獨的恆星容易測量。有些疏散星團,像是昴宿星團、畢宿星團或英仙α星團,都可以用裸眼直接看見。還有一些,例如雙星團,則幾乎不用儀器也可以察覺它們的存在,而使用雙筒望遠鏡或光學望遠鏡還可以看見更多,野鴨星團,M11,就是個例子。.
查看 原恆星和疏散星团
韋斯特豪特40
W 40(也稱為 Sh2-64或RCW 174)位於巨蛇尾,是在銀河系內的一個恆星形成區。距離地球大約500秒差距(1600光年),是最靠近的O型星和B型星的形成區。然而,它被巨分子雲高度消光,因此在可見光的波段上無法輕易地觀察到。來自OB恆星的游離輻射創造的電離氫區呈現出沙漏狀的型態。 如同所有的恆星形成區,W40由幾個部分組成:新誕生的恆星集團和形成恆星的氣體材料(星際物質)。在形成分子雲的氣體中,最冷的、密度最高狀態的星際物質,多數都是氫分子(H2)。然而,來自星團的回饋會將一些氣體電離,並在雲氣內部的星團周圍形成一個氣泡。.
查看 原恆星和韋斯特豪特40
螢火蟲地方列表
下列是電視劇螢火蟲和後續電影衝出寧靜號的虛構行星和衛星的列表。劇中人物經常地稱呼這些行星為"世界"。 在螢火蟲一劇的短暫播放中,沒有清晰指出究竟這些描述過的行星和衛星是否位於同一,或是位於多個行星系中。值得注意的是,無論是任何授權的產品,以及劇集的創作者喬斯·溫登,均指出在螢火蟲的世界中,尚未有出現超光速旅行。電影版的開場白作出了解釋,這些行星和衛星都在同一個行星系裡面,這個行星系有數十個行星,以及數以百計的衛星。這個說法在劇集製作文件,Serenity: The Official Visual Companion中確認了。 在2008年,一個雙面印製的海報,叫Complete and Official Map of the Verse被製作出來。海報描述了行星系中,包括了一個中央恆星("White Sun"),有"核心世界"(Core Worlds)和其他幾個恆星(各恆星都有其行星系)所圍繞著。.
查看 原恆星和螢火蟲地方列表
螺旋星系
螺旋星系是星系的類型之一,但哈伯在1936年最初的描述是星雲的領域(pp. 124–151),並且列在哈伯序列,成為其中的一部分。多數的螺旋星系包含恆星的平坦、旋轉盤面,氣體和塵埃,和中央聚集高濃度恆星,稱為核球的核心。這些通常被許多恆星構成的黯淡暈包圍著,其中許多恆星聚集在球狀星團內。 螺旋星系是以它們從核心延伸到星盤的螺旋結構命名。螺旋臂是恆星正在形成的區域,並且因為是年輕、炙熱的OB星居住的區域,所以比周圍明亮。 大約三分之二的螺旋星系都有附加的,形狀像是棒子的結構,從中心的核球突出,並且螺旋臂從棒的末端開始延伸。棒旋星系相較於無棒的表兄弟的比率可能在宇宙的歷史中改變,80億年前大約只有10%有棒狀構造,25億年前大約是四分之一,直到目前在可觀測宇宙(哈伯體積)已經超過三分之二有棒狀構造。 在1970年代,雖然很難從地球在銀河系中的位置很難觀察到棒狀結構,但我們的銀河系已經被證實為棒旋星系 。在銀河中心的恆星形成棒狀結構,最令人信服的證據來自最近的幾個調查,包括史匹哲太空望遠鏡。 包含不規則星系在內,現今宇宙中的星系有大約60%是螺旋星系。 它們大多是在低密度區域被發現,在星系團的中心則很罕見。.
查看 原恆星和螺旋星系
遠紅外線天文學
遠紅外線天文學是天文學和天文物理的分支,主要的觀測對象是以遠紅外線輻射可以看見的天體(波長從30微米到接近次微米的450微米)。 在遠紅外線,恆星不會特別明亮,但是可以觀測到非常低溫的天體(140K或更低溫的),而在短波的觀測中是看不見這些天體的。 在銀河系和銀河附近星系內巨大、低溫的氣體和塵埃,散發出遠紅外線的光。在這類雲氣中的某一些,新的恆星正在其中誕生。遠紅外線的觀測可以在這些原恆星因收縮輻射出熱量而可見之前就偵測到她們。 我們銀河系的中心在遠紅外線的波段上是閃閃發光的,因為在塵埃密集且厚實的雲氣中埋藏著恆星。這些恆星加熱了塵埃,使她們因輻射出紅外線而顯得明亮。 除了我們自己銀河系的平面,在天空中最明亮的遠紅外線光源是被稱為M82星系的中心區域。M82核心輻射出的紅外線能量非常多,相當於我們銀河系所有恆星輻射出能量的總和。這些遠紅外線的能量來自於被隱藏在視線中使塵埃被加熱的物體。許多星系(" 活躍星系 ")有活躍的核心被隱藏在濃厚塵埃區域中。換言之,被稱為星爆星系的,有異於尋常大量正在形成的恆星加熱了星際塵雲,使這些星系在遠紅外線下遠比一般的星系更為明亮。 地球的大氣層遮蔽掉了絕大多數的遠紅外線,所以在地面上只能利用高山上天文台的望遠鏡觀測次微米波,像是詹姆斯·克拉克·馬克斯韋爾望遠鏡、加州理工學院次毫米天文台(已除役)、和次毫米波陣列望遠鏡(均在毛納基山)。許多遠紅外線天文學的觀測由人造衛星來進行,像是史匹哲太空望遠鏡、紅外線天文衛星、紅外線太空天文台、ASTRO-F和赫歇爾太空天文台,還有同溫層紅外線天文台望遠鏡。.
查看 原恆星和遠紅外線天文學
聯星
聯星是兩顆恆星組成,在各自的軌道上圍繞著它們共同質量中心運轉的恆星系統。有著兩顆或更多恆星的系統稱為多星系統。這種系統,尤其是在距離遙遠時,肉眼看見的經常是單一的點光源,要過其它的觀測方法,才能揭示其本質。過去兩個世紀的研究顯示,一半以上可見的恆星都是多星系統。 雙星(double star)通常被視為聯星的同義詞;然而,雙星應該只是光學雙星。之所以稱為光學雙星,只是因為從地球上觀察它們在天球上的位置,在視線上幾乎是相同的位置。然而,它們的"雙重性"只取決於這光學效應;恆星本身之間的距離是遙遠的,沒有任何共用的物理連結。通過測量視差、自行或徑向速度的差異,可以揭示它們只是光學雙星。 許多著名的光學雙星尚未進行充分與嚴謹的觀測,來確認它們是光學雙星還是有引力束縛在一起的多星系統。 聯星系統在天文物理上非常重要,因為它們的軌道計算允許直接得出系統的質量,而更進一步還能間接估計出半徑和密度。也可以從質光關係(mass-luminosity relationship,MLR)估計出單獨一顆恆星的質量。 有些聯星經常是在以可見光檢測到的,在這種情況下,它們被稱為視覺聯星。許多視覺聯星有長達數百年或數千年的軌道週期,因此還不是很了解它們的軌道。它們也可能通過其他的技術,例如光譜學(聯星光譜)或天體測量學來檢測。如果聯星的軌道平面正巧在我們的視線方向上,它與伴星會發生互相食與凌的現象;這樣的一對聯星會被稱為食聯星,或因為它們是經由光度變化被檢測出來的,而被稱為光度計聯星。 如果聯星系統中的成員非常接近,將會因為引力而相互扭曲它們的大氣層。在這樣的情況下,這些接近的聯星系統可以交換質量,可能會帶來它們在恆星演化時,單獨的恆星不能達到的階段。這些聯星的例子有大陵五、天狼星、天鵝座X-1(這是眾所皆知的黑洞)。也有許多聯星是行星狀星雲的中心恆星,和新星與Ia型超新星的祖恆星。.
查看 原恆星和聯星
變星列表
被發現的變星已經超過50,000顆,而且還有規律的在增加中,因此在此呈現完整的目錄是不可能的。下面是較著名的178顆變星的名冊,可能是較亮、較特殊或其他令人感興趣的原因而被選入的。.
查看 原恆星和變星列表
鹰星云
鷹星雲,(M16,NGC 6611,也稱為星之皇后星雲),是瑞士的天文學家夏西亞科斯在1745-1746年間在巨蛇座尾端發現的一個年輕疏散星團;法國天文學家梅西耶發現星團周圍的星雲,形狀如一隻展翅的老鷹,編入其目錄中成為編號第16的梅西耶天体。它包含幾個活躍的恆星形成區、氣體和塵埃區,包括由哈伯太空望遠鏡拍攝,著名的「創生之柱」。.
查看 原恆星和鹰星云
麒麟座
麒麟座又名獨角獸座(希臘: Μονόκερως)是在天球赤道上的一個黯淡星座,它的名字在希臘的意思是獨角獸。它是由17世紀的荷蘭的製圖員普朗修斯(Plancius)所創建的星座。與它接壤的星座在西邊是獵戶座,北邊是雙子座,南方是大犬座和水蛇座的東面。與它接壤的星座還有小犬座、天兔座和船尾座。.
查看 原恆星和麒麟座
赫比格-哈羅天體
赫比格-哈羅天體(Herbig-Haro object或HH天體)是宇宙中由新生恆星所形成、狀似星雲的天體。新誕生的恆星以秒速將近數百公里的高速不斷噴出氣體,這些氣體會與恆星周圍的氣體雲和灰塵雲激烈碰撞、產生光芒。赫比格-哈羅天體普遍存在於恆星生成區,在單一新生恆星的極軸附近常可見到排成一列的多個赫比格-哈羅天體。 赫比格-哈羅天體是相當短暫的天文現象,不會持續超過數千年。在氣體持續發散至星際物質中時,赫比格-哈羅天體也就漸漸模糊不可見。哈伯太空望遠鏡觀察了數個複雜的HH天體,其中有些正在消逝,另外一些因為與星際物質的碰撞漸趨激烈而越來越明亮。 HH天體最早在19世紀由美國天文學家舍本·衛斯里·伯納姆(Sherburne Wesley Burnham)所觀測,但當時被紀錄為一發射星雲。直到1940年代,美國天文學家喬治·赫比格與墨西哥天文學家吉列爾莫·哈羅才開始分別對HH天體展開研究,並確認了HH天體是恆星演化的過程。如今赫比格-哈羅天體即是為紀念兩人的貢獻而命名。.
查看 原恆星和赫比格-哈羅天體
蒸發氣體球
蒸發氣體球或EGG是在外太空大約100天文單位大小的氫氣體球區域,這些氣體球被紫外線電離的氫氣形成的盾遮蔽著。被蒸發氣體球保護著的氣體濃稠區域有利於恆星的誕生。蒸發氣體球第一次的發現是從哈伯太空望遠鏡在1995年拍攝具有決定性的照片。 EGG可能是原恆星的前身。EGG內部的氣體塵埃密度比周圍的塵埃雲高。當EGG從周圍的雲氣中持續地吸取氣體時,引力使得EGG更為緊密。當球的密度增加時,在外層的重壓下,也會變得更熱,原恆星便在EGG內形成。 原恆星的質量太低,將不足以成為一顆恆星。如果這樣,它會變成一顆棕矮星。如果原恆星有足夠的質量,密度能夠達到臨界水準,中心的溫度也能達到1,000萬K。此時,將氫融合成氦,成為恆星的核反應將被啟動,和釋放出大量的能量。然後,原恆星就將成為一顆恆星,並且在赫羅圖上的主序列產生關聯性。.
查看 原恆星和蒸發氣體球
金屬量
金屬量是天文學和物理宇宙學中的一個術語,它是指恒星之內除了氫和氦元素之外,其他的化學元素所占的比例(這個術語不同於一般所認知的“金屬”,因為在宇宙中氫和氦的組成量占了壓倒性的大數量,天文學家將所有更重的元素都視為金屬。) 。例如,碳化合物含量較多的星雲被稱為“富金屬”,但在其他的場合都不會將碳當成金屬。 一個天體的金屬量也許可以提供年齡的訊息。當宇宙剛形成時,依據大霹靂的理論,它幾乎完全都是氫原子,經由太初核合成,創造出相當大比例的氦和微量跡證的鋰。最初的恒星,被認為是第三星族星,完全不含任何金屬。這些恒星的質量是難以置信的巨大,因此在短促的恒星演化中經由核融合創造出週期表內比鐵輕的元素,然後經由壯觀的超新星將元素散佈在宇宙中。雖然,它們存在於主流的宇宙起源模型,但直至2007年,仍未發現第三星族星。下一代的恒星於第一代恒星死亡釋出的物質中创造出来,被觀測到最老的恒星,被認為是第二星族星,有非常少量的金屬;後續世代出生的恒星,因由先前世代的富含金屬的塵埃中创生出来,金屬含量越來越豐富。而當這些恒星死亡時,它們會將更豐富的金屬,經由行星狀星雲或超新星散佈到外面的雲氣中,讓新誕生的恒星有更豐富的金屬。最年輕的恒星,包括我們的太陽,含有的金屬最豐富的恒星,被認為是第一星族星。 橫跨銀河系,金屬量在銀心是最高的,並向外逐漸遞減。在群星之間的金屬量梯度隨恒星的密度變化:在星系的中心有最多的恒星,隨著時間的過去,有越來越多的金屬回到星際物質內,並且成為新恒星的原料。由相似的機制,較大的星系相較於較小的星系,也會有較高的金屬量。在兩個環繞著銀河系的小不規則星系,麥哲倫雲的例子中,大麥哲倫星系的金屬量是銀河系的40%,小麥哲倫星系的金屬量是銀河系的10%。.
查看 原恆星和金屬量
金牛座T
金牛座T是在金牛座的一顆變星,並且是金牛T星的原型。他是在1852年10月被約翰·羅素·欣德發現的。從地球看,金牛座T距離畢宿一不遠,像是畢宿星團的成員之一;但實際上它在畢宿一後方,距離約420光年之遙,並不屬於畢宿星團。 像所有的金牛T星一樣,它非常年輕,可能只有100萬歲的年齡。它與地球的距離大約是460光年,視星等則在9.3至14等之間變化。 金牛座T是至少有三顆恆星的系統,但只有一顆可以在可見光的波長下觀察到;另外兩顆在紅外線下可見,而其中一顆還發射出無限電波。使用甚大天線陣的觀察,發現這顆年輕的恆星 (金牛座T本身) 在與它的伴星之一接近之後,軌道會發生戲劇性的改變,甚至可能會被從這個系統中彈出。 實際上很接近的NGC 1555,是一個反射星雲,被稱為欣德的星雲,或是欣德變光星雲。他是被金牛座T照亮的星雲,所以會跟著變光。在1868年被奧托·威廉·馮·斯特魯維發現的星雲NGC 1554和金牛座T有著相同的關係,但是很就消失了,或者根本從未存在過,因此被稱為斯特魯維消失的星雲。 一個赫比格-哈羅天體看起來也與欣德的星雲有所關聯,或許就是金牛座T系統本身。 金牛T風,所以如此命名是因為這顆年輕的恆星目前正在此一階段,這個階段的恆星發展介於從緩慢旋轉的太陽星雲吸積物質,並且已經達到點燃堆積成團塊的氫發展成原恆星的階段。原恆星是雲氣中密度較高的部份,通常氣體和塵埃的質量範圍在104太陽質量,在其自身質量/重力下坍塌,並且繼續吸引其它物質。 一開始,原恆星的質量只有它最終質量的1%,但恆星會隨著吸積的物質增加而逐漸成長並持續發展。數百萬年後,熱融合反應在核心開始,然後強烈的恆星風產生,並阻止了新質量的繼續增加。現在,原恆星的質量已經固定了下來,它將被認為是一顆年輕的恆星,而它未來的發展也被設定好了。 Image:T Tauri 2MASS.jpg|紅外線下的金牛座T.
查看 原恆星和金牛座T
金牛T風
金牛T風-因為是在這個階段的年輕恆星,所以如此命名-是一種從緩慢旋轉吸積物質的太陽星雲轉換到點燃氫發展成為原恆星階段的現象。 原恆星,僅有大約初始質量的1%成為其最後的質量,但是這些恆星的包層繼續隨著墬入的物質增生。經過10,000至100,000年 ,熱核反應在核心開始進行,然後產生強大的恆風使新的質量不在墬入。這顆原恆星現在因為它的質量被固定了,因此被認為是一顆恆星,並且它的未來發展也被設定了。.
查看 原恆星和金牛T風
雪花星團
雪花星團是在麒麟座內,包含於NGC 2264內的一個星團。.
查看 原恆星和雪花星團
蛇夫座ρ星云复合体
蛇夫座ρ星云复合体(Rho Ophiuchi cloud complex)是一個位於蛇夫座恆星蛇夫座ρ南方1°的暗星雲。該星雲距離地球約131 ± 3 秒差距,是距離太陽系最近的恆星形成區域之一。.
HD 40307 c
HD 40307 b是一個環繞恆星HD 40307的太陽系外行星,距離地球約42光年,位於繪架座。該行星是使用 HARPS 以徑向速度法發現於2008年6月。是環繞 HD 40307 中三個體積比地球大的超級地球中第二大的。該行星引人注目的是其母恆星相對低的金屬量,因此有說法認為不同金屬量的原恆星會形成不同形式的行星。.
HH 34
|- ! style.
查看 原恆星和HH 34
IC 348
IC 348是一個位於英仙座的恆星形成區域,距離太陽約315秒差距。該天體包含瀰散雲氣和一個角直徑約20角秒,包含約400顆恆星的年齡約2百萬年疏散星團。該天體中質量最大的恆星是一個聯星系統 BD+31°643,由兩顆光譜類型 B5 的恆星組成。基於史匹哲太空望遠鏡的紅外線觀測結果顯示,星團中約半數恆星擁有星周盤,而其中又有60%的星周盤是厚的或早期的。這個年輕星團內也發現了三顆低質量棕矮星。這些天體隨著時間喪失熱量,因此這樣的天體在年輕時較容易被發現。.
查看 原恆星和IC 348
LRLL 54361
LRLL 54361,或稱為 L54361,被認為是一個產生類似頻閃狀態的原恆星聯星,位於英仙座的恆星形成區域 IC 348,距離地球約950光年。.
NGC 7538
NGC 7538位於仙王座,鄰近更有名的氣泡星雲,距離地球大約9,100光年。它是迄今發現原恆星最大的家,大小約是我們太陽系的300倍。它位於銀河的英仙臂,並且可能是仙后座OB2複合體的一部分。它是活躍的恆星形成區,包括幾個明亮的近紅外和遠紅外源。.
查看 原恆星和NGC 7538
Sh2-106
Sh2-106是位於天鵝座的一個電離氫區和恆星形成區。估計這個電離氫區距離地球大約2,000光年(600秒差距),是在銀河系內一個孤立的區域。 在星雲的中心是一顆從兩極噴出熱氣體,形成雙極結構的年輕大質量恆星。圍繞著這顆恆星的塵埃也被恆星電離。這個星雲的跨度約2光年。.
查看 原恆星和Sh2-106
Sh2-54
Sh2-54是在巨蛇座的一個擴張中的亮星雲 。 在它的核心有許多原恆星和紅外線源;有些射源,像是IRAS18151-1208,非常有可能是非常年輕的大質量恆星。在這個區域內較老恆星族群的平均年齡大約是400-500萬歲,並且聚集成為疏散星團NGC 6604 。 Sh2-54屬於擴張中的星雲,包括鷹星雲和奧米茄星雲都屬於此類型。在這個區域的高質量年氫恆星構成OB星協巨蛇座OB1和巨蛇座OB2。.
查看 原恆星和Sh2-54
T星協
T星協是包含有年輕的嬰兒恆星金牛T星的星協,這是在進入主序星之前的原恆星。T星協中大約有1,000顆左右的金牛T星,最靠近我們的例子是距離太陽只有140光年的金牛-御夫T星協(Tau-Aur T association.)。其他T星協的例子還有南冕T星協、豺狼T星協、蝘蜓T星協和船帆T星協。T 星協經常在它們形成的分子雲附近被發現,但並非完全如此,特別是有O-B恆星的星協。總結會移動的小組特徵為:有相同的年齡、相同的化學組成,和它們在空間中運動的速度和方向是相同的向量。.
查看 原恆星和T星協
林軌跡
林軌跡(Hayashi track)是原恆星在赫羅圖上經歷原恆星雲之後達到趨近靜力學平衡的路徑。 1961年林忠四郎顯示有一個最小的有效溫度(相當於在赫羅圖的右側邊界)存在,這個臨界溫度大約是4000K,低於這個溫度靜力學平衡便不能維持。因此原恆星雲低於此溫度時必需經由收縮以提高溫度,直到達到臨界溫度。一旦達到臨界溫度,原恆星將繼續收縮至克赫時標,但是有效溫度不會繼續上升,而始終維持在林界限,因此林軌跡在赫羅圖上幾乎是垂直的。 恆星在林界限上是完全的對流體:這是因為他們是低溫和高度的不透明,因此輻射性的能量傳輸是毫無效率的,並且內部因而有大的溫度階梯。質量低於0.5太陽質量的恆星在由前主序星狀態進入主序星時會維持在林軌跡(意思是完全的對流體)的狀態,並在林軌跡的底部進入主序帶。質量高於0.5太陽質量的恆星,當林軌跡結束時,亨耶跡的狀態就會開始,當恆星內部的溫度上升到足夠高時,中央的不透明度便會降低,輻射傳輸能量的效率相對的被提升,會比對流更有效率:對一定質量的恆星而言,在林軌跡中光度最低的恆星是因為他依然完全以對流來傳輸能量。 在林軌跡的對流意謂著恆星將要進入主序帶與有著完全均勻的結構。.
查看 原恆星和林軌跡
林極限
林極限是在給定的質量被壓縮成恆星時的半徑最大值。當一顆恆星達到完全的流體靜力平衡時—情況是向內的重力和電漿體向外的壓力是相配的,這時恆星的大小不會超過林極限所定義的半徑。這在恆星的演化上有著重要的涵義,不僅是收縮階段的公式化,還有稍後經由核融合消耗掉絕大部分供應的氫。 赫羅圖顯示的是恆星的表面溫度對應於光度的關係。在圖中,林極限大約形成在3,500K的垂線位置。低溫的恆星完全都是對流層,而恆星模型對在極限右邊的恆星,因為始終在對流中而無法提供恆星平衡的解答(對表面溫度更低的恆星),因此,只有所有的期間都在極限左邊的恆星能達到流體靜力平衡,而在極限右邊的區域就形成了"禁制帶"。但是,在林極限還是有例外,這些包括塌縮的原恆星,因為磁場干擾了恆星內部對流層能量的傳輸。 紅巨星是核心進行氦融合反應而使外面的氣殼層膨脹的恆星,這會使恆星在赫羅圖上向上和向右移動。但是,由於林極限的抑制,它們的膨脹有一定的半徑限制。 林極限的名稱取自於日本天文物理學家林忠四郎(Chushiro Hayashi)。.
查看 原恆星和林極限
恒星
恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.
查看 原恆星和恒星
恆行星
恆行星(Planetar)是指比次棕矮星還小的行星質量等級的天體,它的質量比太陽質量的0.004倍還要低(低於4倍木星質量),甚至可能比木星質量還低,溫度比行星略高。此類星體是以恆星形成的方式,經由氣體雲的坍縮形成,溫度是來自原恆星階段來自重力能量的加熱或摩擦造成的溫度,但因質量太小無法發生核融合反應,故無法進入主序星階段,原恆星階段結束後即開始冷卻。 另外,恆行星也可以指次棕矮星,或核融合完全停止的棕矮星,質量很小的紅矮星當氫耗盡時,若質量太小無法收縮變成白矮星,而形成一個冷卻的氣體天體,也可以稱做恆行星。 恆行星還有另外的定義,就是不繞任何恆星公轉、自由漂浮在宇宙或繞著星系中心公轉的星際行星,他們可以比上述天體還小,甚至低於地球質量(0.000006太陽質量),形成原因可能是是受到其他行星等天體的引力影響而被拋出原本繞著公轉的行星系統,或是在行星系統形成期間被彈射出來原行星。 已經提出了兩個定義,但也取得了在天文學和行星科學界廣泛使用。 恆行星(Planetar)一詞是由"planet"(行星) + "star"(恆星),意即體型介於行星和恆星之間的天體,目前還沒有確定的中文翻譯,或中文翻譯還沒有共識,可以稱做恆行星、次恆星、超行星、矮次棕矮星。.
查看 原恆星和恆行星
恆星天文學
對恆星和恆星演化的研究是我們瞭解宇宙的基礎,恆星的天文物理學通過對恆星的觀察、研究、測量和理論上的瞭解;還有經由電腦對內部的模擬Harpaz, 1994, pp.
查看 原恆星和恆星天文學
恆星形成
恆星形成是分子雲的高密度區崩潰成為球形的電漿形成恒星的過程。作為天文物理的一個分支,恆星形成的研究包括作為前導的星際物質和巨分子雲,到恆星形成過程,早期型恆星和行星形成則是直接的成果。恆星形成的理論,不僅是一顆單獨恆星的形成,還必須統計聯星和初始质量函数。.
查看 原恆星和恆星形成
恆星誕生線
恆星誕生線是在赫羅圖上預測成為原恆星時,最初的質量-半徑線。在這個階段之前的原恆星仍被深埋在氣體和塵土的雲氣內,因此僅是輻射出紅外線的區域。當演化作用成稀薄的包層時,恆星成為可以看見的前主序帶天體,才能在赫羅圖上佔有一席之地。那些恆星初現位置的集合就稱為恆星誕生線。 它完全都在主序帶的右側。 這個名詞是在1983年由史蒂芬W.
查看 原恆星和恆星誕生線
恆星自轉
恆星自轉是恆星相對於軸的角運動,自轉的速率可以從恆星的光譜測量,或是經由表面明顯的特徵運動量測。 恆星自轉產生的離心力可以造成赤道隆起。如果恆星不是固體,便可以用不同的速度轉動,因此恆星赤道和高緯度可以有不同的角速度。自轉速率上的差異在恆星磁場發電機上也許是重要的角色。 恆星的磁場會與恆星風產生交互作用,當恆星風離開恆星會使恆星的角速度減慢。磁場與恆星風的交互作用對恆星的自轉產生制動,結果是恆星的角動量會轉移給恆星風,於是隨著時間的過去,恆星自轉的速率逐漸減慢。.
查看 原恆星和恆星自轉
恆星演化
恆星演化是恆星在生命過程中所經歷急遽變化的序列。恆星依據質量,一生的範圍從質量最大的恆星只有幾百萬年,到質量最小的恆星比宇宙年齡還要長的數兆年。右方的表顯示質量和恆星壽命的關聯性。所有的恆星都從通常被稱為星雲或分子雲的氣體和塵埃坍縮中誕生。在幾百萬年的過程中,原恆星達到平衡的狀態,安頓下來成為所謂的主序星。 恆星大部分的生命期都在以核融合產生能量的狀態。最初,主序星在核心將氫融合成氦來產生能量,然後,氦原子核在核心中佔了優勢。像太陽這樣的恆星會從核心開始以一層一層的球殼將氫融合成氦。這個過程會使恆星的大小逐漸增加,通過次巨星的階段,直到達到紅巨星的狀態。質量不少於太陽一半的恆星也可以經由將核心的氢融合成氦來產生能量,質量更重的恆星可以依序以同心圓產生質量更重的元素。像太陽這樣的恆星用盡了核心的燃料之後,其核心會塌縮成為緻密的白矮星,並且外層會被驅離成為行星狀星雲。質量大約是太陽的10倍或更重的恆星,在它缺乏活力的鐵核塌縮成為密度非常高的中子星或黑洞時會爆炸成為超新星。雖然宇宙的年齡還不足以讓質量最低的紅矮星演化到它們生命的尾端,恆星模型認為它們在耗盡核心的氫燃料前會逐漸變亮和變熱,然後成為低質量的白矮星The End of the Main Sequence, Gregory Laughlin, Peter Bodenheimer, and Fred C.
查看 原恆星和恆星演化
棕矮星
褐矮星又称--矮星,是質量太低,在核心不能維持大規模的氫融合反應,與主序恆星不同的次恆星。它們的質量據有最重的氣體巨星和最輕的恆星,質量上限大約在75至80 木星質量(MJ)。棕矮星的質量至少超過氘融合所需要的13 MJ,而超過〜65 MJ,鋰融合就可以進行。 在2013年3月,有一篇論文提出質量非常低的棕矮星和巨大行星的分界大約在〜13木星質量,引起了學界的討論。相似的研究涉及DENIS-P J082303.1-491201 b,在2014年3月發現的一個極低溫的聯星系統,質量較低的成員大約只有29木星質量,並且被列名為質量最大的系外行星。儘管如此,一個學派認為要基於形成;另一派認為要依據內部的物理。 棕矮星一樣可以依據光譜分類,主要的類型有M、L、T、和Y。不管它們的名稱,棕矮星有著不同的顏色。依據A.
查看 原恆星和棕矮星
標準太陽模型
標準太陽模型(Standard Solar Model,SSM)是借助於數學模型處理的球形氣體太陽(在不同狀態的電離,在內部深層的氫被完全電離成為電漿)。這個模型從技術上說是球對稱的一顆準靜態恆星模型,描述恆星結構的幾個微分方程都源自於物理的基本原則。這個模型受到邊界條件(即亮度、半徑、年齡和構造)的約束。太陽的年齡不能直接測量;一種方法是從最老的隕石年齡,和太陽系演化的模型來估計。现在太陽光球层中氢的质量占74.9%,氦占23.8%.
查看 原恆星和標準太陽模型
次棕矮星
次棕矮星(sub-brown dwarf)是一種與恆星及棕矮星形成方式相同(即透過星雲塌縮而成),但擁有行星等級質量的天體。它們的質量甚至比棕矮星的質量下限(大約木星質量的13倍)還要低,因此它們並非棕矮星,故名「次棕矮星」。不同於棕矮星的性質,它們的質量不足以進行氘的融合。 POSITION STATEMENT ON THE DEFINITION OF A "PLANET" (IAU).
查看 原恆星和次棕矮星
氘燃燒
氘燃燒是發生在一些恆星和次恆星天體的核融合反應,其中的氘原子核和質子相結合,形成一個氦-3核融合反應。它發生在質子-質子鏈反應的第二階段,由兩個質子融合形成一個氘原子核,再進一步與另一個質子融合;但也可以是原初的氘燃燒過程。.
查看 原恆星和氘燃燒
星前核心
星前核心是新恆星誕生的苗圃,是低質量恆星形成之前的一個早期階段,引力坍縮產生一個中心的原恆星。星前核心的空間分布顯示了它們的形成歷史和它們對創造它們的物理控制的敏感性。 我們銀河系的恆星多數都在巨大的分子雲內形成星團和星群。這些分子雲是動盪不安的,顯示超音速線寬和複雜的磁場在雲中發揮至關重要的作用。星前核心在分子雲內的性質幫助了解大尺度的恆星形成過程。.
查看 原恆星和星前核心
星团
恆星集團或恆星雲是恆星的集團,可以區分為兩種類型:球狀星團是由成千上萬顆老年恆星被萬有引力緊密束縛在一起的恆星集團;而疏散星團一般只有數百顆恆星,而且通常都很年輕的恆星組成,是結構較為鬆散的恆星集團。疏散星團在銀河系中運動時會受到巨大分子雲的影響,而隨著時間的流易逐漸瓦解,但星團中的成員即使不再受彼此間的引力約束,但仍將繼續維持大致相同的運動方向在空間中移動;然後他們會被稱為星協或是移動星群。 肉眼可見的恆星集團包括昴宿星團、畢宿星團和蜂巢星團。.
查看 原恆星和星团
星雲假說
星雲假說是在天體演化學的場合要解釋太陽系的形成與演化最被廣泛接受的模型。它建議太陽系是在星雲物質中形成的,這個理論最早是伊曼努爾·康德於1755年發表在自然史和天空理論。起初使用在太陽系的行星系統形成過程,現在更應用在宇宙的工作中。被廣泛接受的變體現代星雲假說是太陽星雲盤假說(solar nebular disk model,SNDM)或簡單的太陽星雲模型。這個星雲假說提供太陽系各種性質的解釋,包括行星軌道接近圓形和共軌道面,和它們的運動方向與太陽自轉方向的一致性。一些星雲假說的元素反映在現代的行星形成,但大多數的元素已經被取代。 依據星雲假說,形成恆星的雲是大質量和濃稠的分子氫-巨分子雲(giant molecular cloud,GMC)。這些雲是引力不穩定,並且物質在內部密集叢生的合併,然後旋轉、坍縮形成恆星。恆星形成是一個複雜的過程,總是先在年輕恆星周圍形成氣體的原行星盤。在某些情況下這可能孕育行星,但尚不清楚。因此,行星系統的形成被認為是恆星形成的自然結果。一顆類似太陽的恆星通常需要100萬年的十來形成,從原行星盤發展出行星系統還需要再1000萬年。 - 原行星盤是餵養中心恆星的吸積盤。起初很熱,稍後盤面逐漸變冷,成為所謂的金牛T星階段;此時,可能是岩石和冰的小塵埃顆粒形成。顆粒最終可能凝聚成公里尺度的微行星。如果盤有足夠的質量,增長會開始失控,導致迅速 -100,000年到300,000年- 形成月球到火星大小的原行星。臨近恆星,原行星會經過暴力的合併,生成幾顆類地行星。這個階段可能要經歷1億年至10億年。 巨行星的形成是一個更複雜的過程。它被認為要越過凍結線才會發生,在哪裡元行星主要由各種類型的冰組成。其結果是,它們會比原行星盤內側的巨大許多倍。原行星形成後的演化並不完全清楚,有些原行星會繼續成長,最終達到5-10地球質量-臨界值,必須開始從盤中吸積氫和氦。由核心積累氣體在開始時是很緩慢的,需要持續數百萬年,但是在原行星的質量達到30地球質量(),它就會以失控的速率加速吸收。像木星和土星這樣的行星,被認為只要一萬年就能累積如此大量的質量。當氣體耗盡時,吸積就停止了。在形成的期間或形成之後,行星都可以長距離的遷移。冰巨星像是天王星和海王星,被認為是失敗的核心,形成得太晚而盤面幾乎已經消失了。.
查看 原恆星和星雲假說