目录
23 关系: AFM,Atomic force microscopy,工程物理學,应用物理学,分子,凤凰号火星探测器,六苯并蒄,碳纳米管,磁力顯微鏡,科学可视化,纳米技术,结构生物学,细胞生物物理学,电化学原子力显微镜,静电力显微镜,表征,表面科学,表面重构,格尔德·宾宁,树枝状聚合物,氮化矽,有機半導體,是德科技。
AFM
AFM可指.
查看 原子力显微镜和AFM
Atomic force microscopy
#重定向 原子力显微镜.
查看 原子力显微镜和Atomic force microscopy
工程物理學
工程物理學或工程科學指的是結合物理學、數學以及各類工程學科(電腦工程、電子工程、材料工程或機械工程)的綜合學科。藉由立足於嚴謹的科學方法上,該學門鑽研如何尋找和發展工程問題上的新方法。在許多國家,工程物理學學位被視為是學術學位所獎勵。它可以被當成大學等級的學程,但也時常因其廣泛的學科範圍和嚴謹的修業課程而被規劃為榮譽學位。.
查看 原子力显微镜和工程物理學
应用物理学
應用物理學(applied physics)指的是針對實際用途而進行的物理研究。.
查看 原子力显微镜和应用物理学
分子
分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.
查看 原子力显微镜和分子
凤凰号火星探测器
凤凰号()是美国国家航空航天局于2003年基于火星侦察兵计划而启动的火星探测项目,凤凰号于2007年8月4日发射,在2008年5月25日成功在火星北极软着陆。这项计划的主要目的是将一枚着陆器送往火星的北极地区,对火星的极地环境进行探测,搜索适合火星上微生物生存的环境,并研究那里的水的历史。 凤凰号任务由美国宇航局领导的喷气推进实验室和亚利桑那大学下属的月球和行星实验室负责。这项任务有包括美国,加拿大,瑞士,丹麦,德国,英国,美国国家航空航天局,加拿大航天局,芬兰气象研究所,洛克希德·马丁航天系统公司和MacDonald Dettwiler&Associates(MDA)航天公司等机构参与。凤凰号任务是NASA历史上第一个由公立大学领导的火星任务,它由亚利桑那大学图森分校直接领导,喷气推进实验室对项目进行管理,洛克希德马丁公司负责项目开发。包括发射费用,凤凰号任务总耗资约3.86亿美元。 除了拍摄照片和气象观测等任务,凤凰号还搭载了長約2.3米的机械臂,它可以向下挖掘,並將挖掘所得的土壤樣本送回鳳凰號,使用搭载的科学仪器對土壤中的水冰和其他物质(例如矿物,可能的生命物质等)加以分析。.
六苯并蒄
六苯并蒄(Hexabenzocoronene),是由蒄与六个苯环稠合组成的化合物,通常指分子式为的六苯并蒄,另一种高对称性的异构体为分子式C48H24的六苯并蒄。通过原子力显微镜对六苯并蒄成像,首次验证了多环芳烃不同碳碳键键级与键长的差异。.
查看 原子力显微镜和六苯并蒄
碳纳米管
--(Carbon Nanotube,縮寫CNT)是在1991年1月由日本筑波NEC实验室的物理学家饭岛澄男使用高分辨透射电子显微镜从电弧法生产的碳纤维中发现的。它是一种管状的碳分子,管上每个碳原子采取sp2杂化,相互之间以碳-碳σ键结合起来,形成由六边形组成的蜂窝状结构作为碳纳米管的骨架。每个碳原子上未参与杂化的一对p电子相互之间形成跨越整个碳纳米管的共轭π电子云。按照管子的层数不同,分为单壁碳纳米管和多壁碳纳米管。管子的半径方向非常细,只有纳米尺度,几万根碳纳米管并起来也只有一根头发丝宽,碳纳米管的名称也因此而来。而在轴向则可长达数十到数百微米。 碳纳米管不总是笔直的,局部可能出现凹凸的现象,这是由于在六边形结构中混杂了五边形和七边形。出现五边形的地方,由于张力的关系导致碳纳米管向外凸出。如果五边形恰好出现在碳纳米管的顶端,就形成碳纳米管的封口。出现七边形的地方碳纳米管则向内凹进。.
查看 原子力显微镜和碳纳米管
磁力顯微鏡
磁力显微镜(Magnetic force microscope.MFM)是一种原子力显微镜,通过磁性探针扫描磁性样品,检测探针和磁性样品表面的相互作用以重构样品表面的磁性结构。很多种类的磁性相互作用可以通过磁力显微镜测量,包括磁偶相互作用。磁力显微镜扫描经常使用非接触式的模式。.
查看 原子力显微镜和磁力顯微鏡
科学可视化
. at wci.llnl.gov.
查看 原子力显微镜和科学可视化
纳米技术
納米技术(Nanotechnology)是一门应用科学,其目的在于研究于奈米规模时,物质和设备的设计方法、组成、特性以及应用。奈米科技是许多如生物、物理、化学等科学领域在技术上的次级分类,美国将其定义为「1至100奈米尺寸尤其是现存科技在奈米规模时的延伸」。奈米科技的世界为原子、分子、高分子、量子点集合,并且被表面效应所掌控,如范德瓦耳斯力、氢键、电荷、离子键、共价键、疏水性、亲水性和量子穿隧效应等,而惯性和湍流等巨观效应则小得可以被忽略掉。举个例子,当表面积对体积的比例剧烈地增大时,开起了如催化学等以表面为主的科学新的可能性。 微小性的持续探究使得新的工具诞生,如原子力显微镜和扫描隧道显微镜等。结合如电子束微影之类的精确程序,这些设备将使我们可以精密地运作并生成奈米结构。奈米材质,不论是由上至下制成(将块材缩至奈米尺度,主要方法是从块材开始通过切割、蚀刻、研磨等办法得到尽可能小的形状(比如超精度加工,难度在于得到的微小结构必须精确)。或由下至上制成(由一颗颗原子或分子来组成较大的结构,主要办法有化学合成,自组装和定点组装(positional assembly)。难度在于宏观上要达到高效稳定的质量,都不只是进一步的微小化而已。物体内电子的能量量子化也开始对材质的性质有影响,称为量子尺度效应,描述物质内电子在尺度剧减后的物理性质。这一效应不是因为尺度由巨观变成微观而产生的,但它确实在奈米尺度时占了很重要的地位。 纳米科技的神奇之处在于物质在纳米尺度下所拥有的量子和表面现象,因此可以有许多重要的应用,也可以制造许多有趣的材质。.
查看 原子力显微镜和纳米技术
结构生物学
结构生物学是一门以分子生物学生物化学和生物物理学的分支,关心的生物大分子(如蛋白质分子和核酸分子)的分子三维结构(Tertiary structure)(包括构架和形态),它们是如何获得它们的结构,并研究改变它们的结构与影响其功能的关系的学科。由于结构生物学能够解释生物大分子的构象和相互作用的方式,而所有的生命活动都是通过各种生物大分子的相互作用来实现;因此,对于生物学家们来说,这是一个非常有吸引力的领域。.
查看 原子力显微镜和结构生物学
细胞生物物理学
细胞生物物理学是生物物理学中仅次于分子生物物理学的一个重要部分。内容主要涉及细胞膜、细胞质、细胞核、细胞器如叶绿体、线粒体、高尔基体等细胞器在内的各种细胞成分。常用的仪器有光钳、膜片钳、原子力显微镜等实验装置。 Category:细胞生物学 Category:生物物理学 Category:跨學科領域.
电化学原子力显微镜
电化学原子力显微镜(ECAFM)是将接触式的原子力显微镜用于电解质溶液研究电极的表面形貌,其力的作用原理与大气中的AFM相同。 category:顯微鏡 category:纳米技术.
静电力显微镜
静电力显微镜(Electrostatic Force Microscopy,简称EFM)是一种利用测量探针与样品的静电相互作用,来表征样品表面静电势能,电荷分布以及电荷输运的扫描探针显微镜。.
表征
表征(characterization)一词为化学及材料科学术语,指用物理或化学方法对物质进行化学性质的分析、测试或鉴定,并阐明物质的化学特性。此概念包括很多具体手段,包括各种显微技术、紫外-可见-红外光谱、衍射、电子光谱、质谱等;所表征的特性包括元素组成(化学成分)、元素的化学环境(成键情况)、材料的晶体结构、材料的表面形态等。.
查看 原子力显微镜和表征
表面科学
表面科学(surface science)主要研究的是发生在两种相的(例如固-液界面、固-气界面、固-真空界面和液-气界面)上的物理和化学现象,其子领域包括表面化学和表面物理。表面科学的相关实际应用常被称为表面工程(surface engineering),其中的概念包括多相催化、半导体器件制造、燃料电池、自組裝單分子膜、黏合劑等。表面科学和密切相關;.
查看 原子力显微镜和表面科学
表面重构
表面重构(surface reconstruction)指的是晶体表层原子的排布结构与晶体内部原子的排列方式不一致的现象。对表面重构的研究可以帮助理解不同材料表面上的化学特性。表面重构既可以发生在单一化学组分的晶体表面(例如Si(111)7×7表面重构);当另一种材料吸附在晶体表面(例如银原子吸附在Si(111)7×7表面),吸附原子也可以引起新的重构。.
查看 原子力显微镜和表面重构
格尔德·宾宁
格尔德·宾宁(Gerd Binnig,),德国物理学家,扫描隧道显微镜和原子力显微镜的发明者之一,1986年获得诺贝尔物理学奖。.
树枝状聚合物
树枝状聚合物,又称树枝化聚合物,是每个重复单元上带有树枝化基元(dendron)的线状聚合物。.
氮化矽
氮化硅是由硅元素和氮元素构成的化合物。除了Si3N4外,还有其他几种硅的氮化物(根据氮化程度和硅的氧化态所确定的相对应化学式)也已被文献所报道。比如气态的一氮化二硅(Si2N)、一氮化硅(SiN)和三氮化二硅(Si2N3)。这些化合物的高温合成方法取决于不同的反应条件(比如反应时间、温度、起始原料包括反应物和反应容器的材料)以及纯化的方法。 Si3N4是硅的氮化物中化学性质最为稳定的(仅能被稀的HF和热的H2SO4分解),也是所有硅的氮化物中热力学最稳定的。所以一般提及“氮化硅”时,其所指的就是Si3N4。它也是硅的氮化物中最重要的化合物商品。 在很宽的温度范围内氮化硅都是一种具有一定的热导率、低热膨胀系数、弹性模量较高的高强度硬陶瓷。不同于一般的陶瓷,它的断裂韧性高。这些性质结合起来使它具有优秀的耐热冲击性能,能够在高温下承受高结构载荷并具备优异的耐磨损性能。常用于需要高耐用性和高温环境下的用途,诸如气轮机、汽车引擎零件、轴承和金属切割加工零件。美国国家航空航天局的航天飞机就是用氮化硅制造的主引擎轴承。氮化硅薄膜是硅基半导体常用的绝缘层,由氮化硅制作的悬臂是原子力显微镜的传感部件。.
查看 原子力显微镜和氮化矽
有機半導體
有機半導體是具有半導體性質的有機材料。單分子短鏈(低聚物和有機聚合物)可以是半導體。半導體小分子(芳香族烴類)包括的多環芳族化合物,並五苯,蒽,以及。聚合物有機半導體包括聚(3 -己基噻吩),,以及聚乙炔及其衍生物。 有兩個主要的重疊類有機半導體。這些有機電荷轉移複合物和線性骨幹的導電聚合物都來自聚乙炔。線性主鏈的有機半導體包括聚乙炔本身和它的衍生物聚吡咯和聚苯胺。至少在那裡,電荷轉移複合物往往表現出類似於的傳導機制。在這種機制的存在下產生的空穴和由帶隙分離的電子傳導層。雖然這種典型的機制很重要,不過與無機非晶半導體、隧道、局部狀態、,和声子也能協助躍遷大大的有助於傳導,特別是在聚乙炔。如同無機半導體一樣,有機半導體可以掺杂。有機半導體容易摻雜如聚苯胺(歐明創)和,因此也被稱為有機金屬。 典型的電流載流子在有機半導體裡的空穴和電子的π鍵。幾乎所有的有機固體都是絕緣體。但是,當其組成分子為,電子會移動通過重疊,特別是通過躍遷,隧道及相關機制。多環式芳香族烴類和酞菁鹽晶體是這種類型的有機半導體材料的例子。 電流載流子主要是由於流動性低,即使是未配對電子在電荷轉移複合物中可能是穩定的。這種不成對的電子,可作為載流子。這種類型的半導體也可通過配對的電子給體分子與電子受體分子來獲得。.
查看 原子力显微镜和有機半導體
是德科技
是德科技(Keysight Technologies),是一家生产测试与测量仪器与软件的美国公司。2014年从安捷伦科技的电子产品与技术部分分立为是德科技;安捷伦科技留下化学与生化分析产品部分。 公司名字是key与insight的缩合词(portmanteau),涵义是公司使命为"unlocks" "critical or key insights".
查看 原子力显微镜和是德科技