目录
交错群
数学中,交错群(alternating group)是一个有限集合偶置换之群。集合 上的交错群称为 n 阶交错群,或 n 个字母上的交错群,记做 An 或 Alt(n)。 例如,4 阶交错群是 A4.
查看 单群和交错群
伽罗瓦理论基本定理
伽罗瓦理论基本定理是抽象代数中的定理,通过群的概念来描述特定域扩张的细致结构。定理说明了,如果某个域扩张是有限伽罗瓦扩张,则此扩张的伽罗瓦群的子群与其中间域(即子扩张⊂⊂中的)之间有一一对应关系。.
查看 单群和伽罗瓦理论基本定理
單純群
#重定向 单群.
查看 单群和單純群
單群
#重定向 单群.
查看 单群和單群
典型群
在数学中,典型群(classical group)指与欧几里得空间的对称密切相关的四族无穷多李群。术语“--”的使用取决于语境,有一定的灵活性。这个用法可能源于赫尔曼·外尔,他的专著 以“典型群”为题。在菲利克斯·克莱因爱尔兰根纲领的观点下,也许反映了它们和“--”几何(classical geometry)的关系。 有时在紧群的限制下讨论典型群,这样容易处理它们的表示论和代数拓扑。但是这把一般线性群排除在外,当前都认为一般线性群是最典型的群 。 和典型李群相对的是例外李群,具有一样的抽象性质,但不属于同一类。.
查看 单群和典型群
簡單群
#重定向 单群.
查看 单群和簡單群
群
在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.
查看 单群和群
群论
在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.
查看 单群和群论
阿贝尔-鲁菲尼定理
阿贝尔-鲁菲尼定理是代数学中的重要定理。它指出,五次及更高次的多项式方程没有一般的求根公式,即不是所有这样的方程都能由方程的系数经有限次四则运算和开方运算求根。这个定理以保罗·鲁菲尼和尼尔斯·阿贝尔命名。前者在1799年给出了一个不完整的证明,后者则在1824年给出了完整的证明。埃瓦里斯特·伽罗瓦创造了群论,独立地给出了更广泛地判定多项式方程是否拥有根式解的方法,并给出了定理的证明,但直到他死後的1846年才得以发表。.
查看 单群和阿贝尔-鲁菲尼定理
酉群
酉群,又叫幺正群,是李群的一种。在群论中,n阶酉群(unitary group)是n×n 酉矩阵组成的群,群乘法是矩阵乘法。酉群记作U(n),是一般线性群GL(n, C)的一个子群。 在最简单情形n.
查看 单群和酉群
SL₂(ℝ)
在数学中,特殊线性群 是行列式为 的 实矩阵组成的群: a & b \\ c & d \end: a,b,c,d\in\mathbb\right.\,,且 ad-bc.
查看 单群和SL₂(ℝ)
柯西定理 (群論)
柯西定理是一個在群論裡的定理,以奧古斯丁·路易·柯西的名字來命名。其敘述著若G是一個有限群且p是一個可整除G之階(G的元素數目)的質數,則G會有一個p階的元素。亦即,存在一個於G內的x,使得p為讓xp.
查看 单群和柯西定理 (群論)
168
168是167與169之間的自然數。.
查看 单群和168