我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

动作电位

指数 动作电位

動作電位(英文:action potential),指的是靜止膜電位狀態的细胞膜受到適當刺激而产生的,短暂而有特殊波形的跨膜电位搏动。细胞产生动作电位的能力被称为兴奋性,有这种能力的细胞如神经细胞和肌细胞。动作电位是实现神经传导和肌肉收缩的生理基础。 一個初始刺激,只要達到了阈电位(threshold potential),不論超過了多少,也就是,就能引起一系列离子通道的开放和关闭,而形成离子的流动,改变跨膜电位。而这个跨膜电位的改变尤能引起临近位置上细胞膜电位的改变,这就使得兴奋能沿着一定的路径传导下去。.

目录

  1. 70 关系: 力學感受器基底核去极化同態濾波多巴胺复响威廉·卡特罗尔宏量元素小脑局部麻醉药人工耳蜗人類的協調代谢低鉀血症微分方程微電極 (電生理學)心理声学心臟刺激呼吸冲动前运动区碱金属神经神经编码神经递质神经振荡离子通道突触电化学梯度电生理学电脉冲化疗特异性药物盲點 (眼)视网膜视觉系统驱动蛋白跳跃式传导黑质轴突辣椒素鈉離子通道钙通道肌肉組織肌肉收缩铊中毒脑细胞膳食礦物質... 扩展索引 (20 更多) »

力學感受器

力學感受器(mechanoreceptor),或稱为机械感受器、机械型刺激感受器,是一种感受压力、变形等力學性刺激的感受器。在人类光滑皮肤中主要包含如下四种类型:帕西尼氏小体、触觉小体、梅克尔触觉盘以及鲁菲尼小体。在生长毛发的皮肤中也存有力學感受器,尤其以耳蜗中的毛细胞最为敏感,该细胞负责将空气声波中的压力变化转换为声音信号。.

查看 动作电位和力學感受器

基底核

基底核(Basal ganglia,或称为基底神经节)是大脑深部一系列神经核团组成的功能整体。它位於大腦皮質底下一群運動神經核的統稱,与大脑皮层,丘脑和脑干相连。目前所知其主要功能为自主运动的控制、整合調節細緻的意識活動和運動反應。它同时还参与记忆,情感和奖励学习等高级认知功能。基底核的病变可导致多种运动和认知障碍,包括帕金森氏症和亨廷顿氏症等。.

查看 动作电位和基底核

去极化

在生物学中,去极化(英文)指的是细胞的膜电位向膜内负值减小的变化。在神经元和其他的细胞中,一个足够大的去极化作用将会导致动作电位。過極化与之相反并抑制动作电位的发生。.

查看 动作电位和去极化

同態濾波

同態濾波是一種廣泛用於信號和圖像處理的技術,將原本的信號經由非線性映射,轉換到可以使用線性濾波器的不同域,做完運算後再映射回原始域。同態的性質就是保持相關的屬性不變,而同態濾波的好處是將原本複雜的運算轉為效能相同但相對簡單的運算。這個概念在1960年代由Thomas Stockham,Alan V.

查看 动作电位和同態濾波

多巴胺

多巴胺(英語:dopamine,擷取自3,4-dihydroxyphenethylamine);化学式:C6H3(OH)2-CH2-CH2-NH2)是一种脑内分泌物,属于神经递质,可影响一个人的情绪。 它正式的化学名称为4-(2-乙胺基)苯-1,2-二酚,简称「DA」。阿尔维德·卡尔森确定多巴胺为脑内信息传递者的角色,这使他赢得了2000年诺贝尔医学奖。 多巴胺是兒茶酚胺和苯乙胺家族中一種在腦和身體中扮演幾個重要作用的有機化學物。其名稱來自其化學結構: 它是一個胺由其前體一個分子左旋多巴除去羧基合成,其發生在人腦細胞和腎上腺細胞中。在大腦中多巴胺作為神經遞質,通過神經元釋放一種化學物將信號發送到其它神經細胞。大腦包括幾個不同的多巴胺途徑,其中一個起著獎勵–激勵行為的主要作用。大多數類型的獎勵增加多巴胺在腦中的濃度,大部分成癮藥物增加多巴胺神經元活動。其他的腦多巴胺用來參與運動控制和控制各種激素的釋放。 神經系統以外,在身體的幾個部分多巴胺作為局部化學信使的功能。在血管中它抑制去甲腎上腺素的釋放,並作為血管擴張劑(在正常濃度下);在腎臟中它增加鈉和尿的排泄;在胰臟中它減少胰島素生產;在消化系統中它減少胃腸蠕動和保護腸粘膜;並在免疫系統中它減少淋巴細胞的活性。血管除外,多巴胺在這些外圍系統局部合成,在鄰近該釋放它的細胞旁發揮其作用。 幾個重要的神經系統疾病與多巴胺系統的功能障礙有關,而使用一些改變多巴胺作用的關鍵藥物來治療他們。帕金森氏病一種退行性狀況引起身體震顫和運動障礙,是通過中腦中稱為黑質區的分泌神經元分泌多巴胺不足所引起。其代謝前體L-DOPA可以工業製造,其純銷售形式為左旋多巴是最廣泛使用的治療方法。有證據表明精神分裂症涉及多巴胺活性水平的改變,大多數經常使用的抗精神病藥物具有降低多巴胺活動的主要效果。類似多巴胺拮抗劑藥物,也有一些是最有效抗噁心藥物。不寧腿綜合徵與注意力不足過動症與多巴胺活性降低有關。高劑量多巴胺興奮劑可以上癮,但也有一些使用較低劑量治療過動症。多巴胺本身可製造成靜脈注射的藥物:雖然不能從血液到達腦部,其週邊作用使其對心臟衰竭或休克的治療是有用的,尤其是對新生嬰兒。 File:Dopamine 3D ball.png|多巴胺 File:TAAR1 Dopamine.svg| File:Synapse dopaminergique.png|多巴胺在神經突觸處.

查看 动作电位和多巴胺

复响

复响,亦称作响度重振(英文:Loudness recruitment),是指响度随声强异常快速的增加。复响是感觉神经性耳聋的一个常见症状,在很多情况下可以作为诊断感觉神经性耳聋的依据之一。复响现象是设计助听器、人工耳蜗等听觉辅助设备时必须考虑的一个重要因素。.

查看 动作电位和复响

威廉·卡特罗尔

威廉·艾伯特·卡特罗尔(William Albert Catterall,),出生于罗德岛州普罗维登斯,美国药理学家和神经学家,华盛顿大学医学院教授。他的主要贡献是阐明兴奋细胞离子通道的化学结构和功能。通过结合生物化学、分子生物学、药理学和电学方法,他描述了钠离子和钙离子通道的分子基础,这对中央神经细胞动作电位产生影响。他还研究了这些渠道功能受损造成的疾病,包括癫痫病和周期性麻痹。卡特罗尔1989年入选美国国家科学院,2008年入选皇家学会,2010年获盖尔德纳国际奖。 Category:美国药理学家 Category:美国神经科学家 Category:美国国家科学院院士 Category:皇家学会外籍会员 Category:盖尔德纳国际奖获得者.

查看 动作电位和威廉·卡特罗尔

宏量元素

宏量元素,又称常量元素,指在体内含量丰富的元素。.

查看 动作电位和宏量元素

小脑

小脑(cerebellum,指「大腦後下方的腦」)是位于的脑组织。小脑在感觉感知、协调性,和运动控制中扮演重要角色;它也和注意、语言等很多认知功能相关,亦能调控恐惧和欢乐等反应,其中最为人们确知的是其运动相关功能。小脑不會主動发起动作,但會接收來自脊髓感覺系統和其他腦區的訊號,影响运动协调、精确度和准确的时机控制。小脑通过丘脑等通路与大脑皮层相连,从而起到支配运动协调性的作用;下小脑接受来自以及下橄榄核等结构的输入,整合多方面的信息,来微调运动的准确性,协调性和连贯性。正由于小脑的功能是“微调”运动技能,所以小脑的损伤不会带来诸如瘫痪的严重症状,但是会导致、、姿势和方面的症状。18世纪的科学研究表明,小脑受损的病人表现出运动协调性障碍;19世纪的小脑研究则主要基于动物损伤实验。这类实验发现,动物的小脑受损以后,表现出动作异常、步态笨拙,以及肌肉无力。这些观察最终使学者得出结论:小脑的主要功能是运动控制。不过,现代生物医学研究表明,除了运动以外,小脑还有许多其他功能,例如认知功能,注意力和语言处理,音乐处理,在时机控制方面也有重要作用。 在解剖外观上,小脑是一个位于脑下方的独立结构,藏在大脑半球之下。小脑与中脑、脑桥基底、延髓相连,可以分为前庭小脑、脊髓小脑与大脑小脑。它的皮质表面遍布着构造精细的平行沟槽,和大脑皮质宽阔而不规则的沟回形成鲜明对比。这些平行沟槽的结构,常常会使人忘记小脑其实是一个连续的薄片状组织,它像手风琴那样紧密地折合起来。在这个薄片里,有多种神经元高度有序地组合,其中最重要的是和。复杂的神经组织赋予了小脑巨大的信息处理能力,但是几乎所有的输出,都经过一个位于小脑内部称为小脑深部核团的组织。 小脑除了在动作控制方面的功能,它还是多种动作学习,也就是调制所必需的器官。人们建立了许多模型,来解释小脑的突触可塑性是如何校准感觉和动作的关系。它们大多源于大卫·马尔和的模型,这个模型的基础,是每个小脑浦肯野细胞都接受两种完全不同的输入:一种是来自平行纤维的数千种输入,另一种是来自的极强的输入。马尔-阿尔布斯模型的基本概念是,爬行纤维提供“指导信号”,导致平行纤维输入强度的长时变化。在平行纤维输入所观察到的长期抑制作用支持了这类理论,但是它们的有效性还有争议。.

查看 动作电位和小脑

局部麻醉药

局部麻醉药(local anesthetic)是指那些在人体的限定范围内能暂时完全地和可逆地阻断神经传导,即在意识未消失的状况下使人体的某一部分失去感觉,以便于外科手术进行的药物。普遍应用于口腔科、眼科、妇科和一些外科小手术中,用于暂时解除疼痛。局部麻醉药和全身麻醉药根本区别在于:局部麻醉药与神经膜上的钠离子通道上的某些特定部位结合后,通过钠离子通道的钠离子减少从而改变神经膜电位,导致神经冲动的传导被阻断,最终实现麻醉效果;而全身麻醉剂则是通过影响神经膜的物理性状,比如膜的流体性质、通透性等起到麻醉的作用。.

查看 动作电位和局部麻醉药

人工耳蜗

人工耳蜗,亦称为“人工电子耳”,是一种植入式听觉辅助设备,其功能是使重度失聪的病人(聋人)产生一定的声音知觉。与助听器等其它类型的听觉辅助设备不同,人工耳蜗的工作原理不是放大声音,而是对位于耳蜗内、功能尚完好的听神经施加脉冲电刺激。大多数人工耳蜗设备由植入部分和体外部分组成。体外部分由麦克风、语音处理器以及用于向植入部分发送指令的信号发射器组成。植入部分由信号接收及解码模块、刺激电极阵列组成。 虽然当前的人工耳蜗技术并不能完全恢复或重建正常听觉,但是它能够在一定条件下有效地帮助聋人听见环境声响,以及听懂语音对话。实现以上目标的一个重要环节是植入人工耳蜗后的训练。目前全世界佩戴人工耳蜗的病人数目已达十万(参照密歇根大学的科研人员),其中半数为儿童;半数为成年人。人工耳蜗的佩带者绝大多数在发达国家,主要原因是这种装置及其植入手术和术后治疗的昂贵开销。例如,墨西哥到2000年为止只有55起人工耳蜗植入(Berruecos 2000)。 从社会角度来说,人工耳蜗技术的出现再度引发了一个世纪之久的聋人社群与医疗专业人士之间的对立关系的争辩。一方面,听力師、语言治疗师、外科医师、语后失聪的聋人以及耳聋儿童的父母等社群广泛接受了人工耳蜗;另一方面,该疗法在聋儿的应用也遭到了聋人社群的强烈反对。.

查看 动作电位和人工耳蜗

人類的協調

要確保反應器在適當時間作出反應,感受器與反應器之間需要互相「溝通」,這情形稱為協調 以下是協調的流程圖: 被蚊咬→左手皮膚內的感受器探測到癢的刺激→產生神經脈衝→傳到脊髓→傳到腦部→腦部將信息分析→知道左手皮膚痕癢→腦部決定用右手來抓左手→產生神經脈衝→送到右手二頭肌→二頭肌收縮 協調分為兩種:.

查看 动作电位和人類的協調

代谢

代谢是生物体维持生命的化学反应总称。这些反应使得生物体能够生长和繁殖、保持它们的结构以及对环境作出反应。代谢通常被分为两类:分解代谢可以对大的分子进行分解以获得能量(如细胞呼吸);合成代谢则可以利用能量来合成细胞中的各个组分,如蛋白质和核酸等。代谢是生物体不断进行物质和能量的交换过程,一旦物质和能量交换停止,生物体的生命就會結束。 代谢中的化学反应可以归纳为代謝途徑,通过一系列酶的作用将一种化学物质转化为另一种化学物质。酶对于代谢反應来说是非常重要的,因为酶可以通过一個熱力學上易於發生的反應來驅動另一個難以進行的反應,使之變得可行;例如,利用ATP的水解所产生的能量来驱动其他化学反应。一个生物体的代谢机制决定了哪些物质对于此生物体是有营养的,而哪些是有毒的。例如,一些原核生物利用硫化氢作为营养物质,但这种气体对于动物来说却是致命的。代谢速度,或者说代谢率,也影响了一个生物体对于食物的需求量。 代谢有一個特点:無論是任何大小的物种,基本代谢途径也是相似的。例如,羧酸,作为柠檬酸循环(又称为“三羧酸循环”)中的最为人们所知的中间产物,存在于所有的生物体,无论是微小的单细胞的细菌还是巨大的多细胞生物如大象。代谢中所存在的这样的相似性很可能是由于相关代谢途径的高效率以及这些途径在进化史早期就出现而形成的结果。.

查看 动作电位和代谢

低鉀血症

低钾血症(hypokalemia、hypokalaemia、hypopotassemia、hypopotassaemia)是指血液中鉀離子(K+)不足的情形。正常的鉀離子在3.5至5.0mmol/L(3.5至5.0mEg/L)之間,若濃度小於3.5mmol/L,即為低钾血症。鉀離子略低一般不會有明顯症狀。低钾血症的常見症狀有疲勞、腳抽筋、虛弱以及便秘。低钾血症會增加心律不整的風險,多半會是心跳过缓,可能進而造成心搏停止。 低钾血症的病因包括腹瀉、使用呋塞米或類固醇藥物、透析、尿崩症、、低血鎂症,或是飲食中鉀的攝取不足,若濃度小於2.5mmol/L,是嚴重的低钾血症低钾血症可以由心电图(ECG)中檢查出來。相反的,高鉀血症是指血液中鉀離子過多的情形。 需補充鉀離子的速度會依照心電圖上是否有相關症狀而定,若是輕微的低钾血症,可以透過調整飲食來改善。鉀離子補充劑可以口服,也可以用注射方式來給藥。若是用注射方式給藥,一般每小時會小於20 mmol,若需要提供高濃度的鉀溶液(>40 mmol/L),儘量透過中心靜脈導管給藥。也可能需要補充鎂離子。 低钾血症是最常見的電解質不平衡,住院的病患中,有20%有低钾血症。低钾血症的英文hypokalemia源自表示低下的hypo、表示鉀的kalium以及表示血液疾病的 -emia。.

查看 动作电位和低鉀血症

微分方程

微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.

查看 动作电位和微分方程

微電極 (電生理學)

微電極(microelectrode)是一種非常小的電極,被使用在電生理學中來記錄神經信號或是神經組織的。起初是使用玻璃吸量管微電極,後來則使用絕緣電線。絕緣電線的微電極使用具有高杨氏模量的惰性金屬所製成,例如钨、不鏽鋼、铂、,並使用玻璃或聚合物絕緣體,以及外露的導電探針尖。最近在印刷術上的進步,則促成了矽電極的使用。.

查看 动作电位和微電極 (電生理學)

心理声学

心理声学(Psychoacoustics)是研究人对声音感知的学科,即研究人对声音(包括言语和音乐)的生理和心理反应的科学,是心理物理学的分支学科。.

查看 动作电位和心理声学

心臟

心臟(英語:heart)是一種在人類和其他動物都有的肌造器官,它的功用是推動循環系統中血管的血液。血液提供身體氧氣以及養分,同時也協助身體移除。心臟位於胸部縱隔腔的中間部位 。 人類、其他哺乳類、鸟類的心臟可分為四個腔室:左右心房(上半部)、左右心室(下半部)。通常右心室以及右心房會被合稱為右心,而左邊的心房與心室則被合稱為左心,兩者又合稱為心臟。另一方面,魚類則有兩個腔室——一個心房、一個心室;而兩棲類、爬蟲類則有三個腔室。 健康的心臟會透過心瓣使血液維持單一方向的流動,並藉此避免發生的問題。心臟被一種稱為心包的保護性袋狀物所圍繞,在心膜中有包含少量的心包液。心膜是由三層所構成:心外膜、心肌層、以及心內膜。 心臟負責了全身的血液循環,循環又分為體循環和肺循環兩種。體循環負責身體大部分的血液運輸,身體的缺氧血會先由上腔和下腔靜脈回流到心臟右心房,之後再進入右心室。右心室會將缺氧血泵入肺臟進行氣體交換,這部分與肺臟相關的循環系統稱為肺循環。缺氧血在肺臟得到氧氣並排出二氧化碳後變成顏色較鮮艷的充氧血。接下來,充氧血會回到左心房,經過左心室後由主動脈輸送至全身,再次回到了體循環系統,而在肺臟獲得的氧氣將會被用來供全身進行新陳代謝成為二氧化碳再經心臟流入肺臟排除。通常每一次心跳,右心室會輸出到肺部與左心室輸出到主動脈相等的血液量。靜脈運輸血液到心臟,而動脈則運輸血液離開心臟。靜脈通常血壓會比動脈血壓來得低。心臟壓縮的速率在人休息時,大約是每分鐘72次。運動會短暫的增加心跳速度,但長期而言會降低靜止心率,同時也對心臟健康有幫助。 2008年,心血管疾病成為全球最常見的死因,大約佔了30%的死亡人數。而在這些死亡的案例當中,有超過四分之三是因為冠狀動脈疾病和中風而死亡。心血管疾病的風險因素包含:抽煙、體重過重、運動不足、高膽固醇血症、高血壓、以及缺乏控制的糖尿病。心血管疾病的診斷通常會以聽診器進行聽診確認心音的狀況、也有用心電圖、或是心臟超音波。心臟相關疾病通常由心臟病學專家來治療,不過也有可能會有其他的醫學領域專家一齊合作醫治。.

查看 动作电位和心臟

刺激

在神经生物学中,刺激(stimulus)指的是细胞膜的超过阈值的去极化过程,它能激发动作电位。这种去极化通常能够是细胞外因素引起的。 如果一种物理或化学刺激能在感受器(例如在感受细胞上的)引起兴奋,就被称之为“适宜刺激”(Aqequate Stimulus)。感受器会因应刺激发出可被传递的信号(如动作电位)。有时这些信号可被我们作为一种感觉接受,如视觉。 生物体不但对外界刺激,同时对内在的刺激也会作出反应。一个适宜刺激之后是一个反应。(但这种反应可以被后续的调节所压制)。这条规则不但适用于个体中器官之间,也适用于环境中个体与个体之间。在个体中,神经元是该过程的体现者,它们通过突触与中枢和外周神经节相联系。在那刺激会被分析整合,并触发反应。 在植物中,信号的传递靠的仅仅是化学反应。光对植物来说是非常重要的刺激,其他的刺激分别为温度,化学物质,重力等。这种影响导致反应发生。在整合的过程中,不同的刺激会相互影响。但反射却引发的反应总是无意识的。 感觉会对刺激的光谱和强度(听阈)的反映。人类对于下列刺激会有如下感觉:.

查看 动作电位和刺激

呼吸

呼吸(breathing),生物的一種生理現象,為一種生物細胞的生化作用(稱作「呼吸作用」)所呈現出來的外在生理現象,動物及植物皆有。一般人的認知,則是指高等生物,尤其是人類利用肺部吸入與呼出空氣的過程。不過也有一些動物用其他器官進行氣體交換,例如魚類的鳃以及节肢动物的氣門。 呼吸是維持生物體生存需要的生理學呼吸中的一部份。氧氣動物需要空氣供給細胞新陳代謝和製造能量的來源,能量通常是透過動物所攝取中的食物澱粉所製成的葡萄糖。而把葡萄糖轉化為能量的方法有兩種,一為有氧呼吸(大部分的動物、昆蟲、細菌)和無氧呼吸(少部分的細菌)。有氧呼吸是把氧氣分子轉化為二氧化碳,從中獲取所需的能量。 而呼吸的另一個重要的部份為循環系統把二氧化碳排放掉再把新的氧氣由血液送到需要的細胞。氣體交換是在肺的肺泡中由氣體粒子被動擴散所達成的,所以不需要使用能量。當氣體溶於血液中時,左心臟把血液打到全身體各個細胞。由於肺泡呼吸的表面需要易於空氣的穿越,所以表面並不是完全乾燥的,由所產生的液體,讓表面濕介而增加空氣的穿透力,所以呼吸會導致水分的流失,尤其是排放二氧化碳的時候。 人類的許多輔助功能也和呼吸有關,例如說話、表達情緒(笑、打哈欠)、自主 维护活动(咳嗽和打喷嚏等),而不能由皮膚排汗的動物也需要透過喘气進行體溫調節。.

查看 动作电位和呼吸

冲动

衝動可指以下不同概念.

查看 动作电位和冲动

前运动区

前运动区,或称前运动皮质(Premotor cortex),是大脑额叶与运动相关的一个功能分区。在解剖位置上,它与后方的初级运动皮质相邻,在前方与前额叶的Brodmann 8区8区,9区和44相邻。从细胞结构分区上来说,前运动皮质基本属于Brodmann 6区的两个主要组成部分之一。另外一个组成部分是运动辅助区(Supplementary motor area)。前运动区位于大脑额叶的外侧面,而运动辅助区位于大脑额叶的内侧面。.

查看 动作电位和前运动区

碱金属

碱金属是指在元素周期表中同属一族的六个金属元素:锂、钠、钾、铷、铯、钫.

查看 动作电位和碱金属

神经

经(Nerve)是由聚集成束的神經纖維所構成。而神經纖維本身是由多個神經元細胞構成,其神經元的構造為轴突外並被神經膠質細胞所形成的髓鞘包覆。如此神經能將訊息從動物身體一處傳遞到另外一處,使動物能協調指揮動作與進行各種工作。 一旦神經細胞從另外一個細胞接收信號或刺激時,沿著神經細胞的軸突傳遞動作電位(即神經衝動)。 神經元常聚集成束形成神經,內含細胞核和一長軸突, 能傳遞電子信號的細胞。軸突是神經元中的線狀部分,能傳送神經衝動,其長度可達1公尺以上,神經衝動總是沿著軸突朝一個方向傳遞。樹突與軸突相似,但長度短許多且有許多分支,神經元利用樹突接收鄰近由突觸傳來的訊號。神經藉由突觸使神經元信號能傳遞給另一個神經元的接點,當神經衝動到達突觸,微小膨大體會釋放一種傳遞介質,激發相鄰細胞產生衝動。 脊椎動物的軸突常被其他細胞所包覆,這些像鞘的細胞含有髓磷脂幫助神經衝動傳遞。.

查看 动作电位和神经

神经编码

经编码(neural coding)是一个和神经科学相关的领域,研究外界刺激与特定的神经元或者神经元组合之间的电生理学关系,以及这些神经元组合电活动之间的关系。 感觉信息与其它信息,都是由脑中的生物神经网络来承载与呈现,基于这个理论,人们认为神经元既可以编码数码信号,也可以编码模拟信号。.

查看 动作电位和神经编码

神经递质

经递质(neurotransmitter),有时简称“递质”或译作神经传递素,常用译名还包括神經傳導物質、神經傳達物質、脑内物质等,是在神经元、肌细胞或感受器间的化学突触中充当信使作用的特殊的机体内生的分子。神经递质在神经、肌肉和感觉系统的各个角落都有分布,是动物的正常生理功能的重要一环。截止1998年,在大脑内大约有45种不同的神经递质已被确认。.

查看 动作电位和神经递质

神经振荡

经振荡是中枢神经系统中存在的一种节律性,或是重复性的神经元活动。神经组织可以通过多种方式产生振荡,这种振荡主要是靠单个神经元或者神经元之间的相互作用引发。在单个神经元中,神经振荡既可以表现为膜电位的振荡,又可以表现为动作电位的节律性活动,这些电活动继而引发突触后膜电位的振荡。在群体神经元水平,大量神经元的同步发放可以引起宏观水平的振荡,这种振荡活动可以通过脑电图记录到。群体神经元的振荡活动通常由神经元之间的反馈活动引起。这些神经元之间的相互作用会引起与单个神经元发放不同频率的振荡。最为人所熟知的宏观的神经元振荡活动就是大脑的。 神经振荡最早是由Hans Berger发现的,但是它们的生理功能至今仍然不是完全清楚。神经振荡的可能作用包括特征绑定,信息传递机制以及节律运动输出的产生。这一领域在近几十年的研究中,通过神经影像学手段取得了一些突破性的进展。神经科学对这一现象的研究重点在于确定神经振荡是怎样产生的以及神经振荡的功能是什么。从多个层面对大脑中神经振荡的研究中发现,神经振荡在神经信息处理中具有重要的作用。但到目前为止,仍然缺乏大量的实验证据来证明神经振荡的功能,因此目前还无法对神经振荡的功能做出一个完善的解释。.

查看 动作电位和神经振荡

离子通道

离子通道(英语:Ion channel)是一种成孔蛋白,它通过允许某种特定类型的离子依靠电化学梯度穿过该通道,来帮助细胞建立和控制质膜间的微弱电压压差(参见细胞电势)。这些离子通道存在于所有细胞的细胞膜上。针对离子通道的研究叫做通道学,这一研究涉及了许多许多科学技术,例如电流生理学的电压钳位(尤其是膜片钳位技术)、免疫组织化学以及逆转录。.

查看 动作电位和离子通道

突触

突触(法语、英语、德语: Synapse)是神经元之间,或神经元与肌细胞、腺体之间通信的特异性接头。神经元与肌肉细胞之间的突触亦称为神经肌肉接头(neuromuscular junction)。 中枢神经系统中的神经元以突触的形式互联,形成神经元网络。这对于感觉和思维的形成极为重要。突触也是中枢神经系统和身体的其它部分,例如肌肉和各种感受器交换信息的渠道。 神经元之间的突触可以分为化学突触和电突触两大类(electrical synapse)。前者的工作机制是一种称为神经递质的信号分子的释放和接收,两个神经元之间没有直接的电气耦合。后者是两个神经元之间的直接电气耦合。化学突触较电突触更为常见,类型更为丰富,下文将着重介绍化学突触。.

查看 动作电位和突触

电化学梯度

电化学梯度(electrochemical gradient)是离子跨膜运动而产生的梯度,通常包括电位梯度和浓度梯度。电化学势能是一种维持细胞生命活动的势能。这一能量以化学势的形式存储,表现为细胞膜两侧的离子浓度梯度。.

查看 动作电位和电化学梯度

电生理学

电生理学是一门研究生物细胞或组织的电学特性的科学。 主要包括细胞膜电势变化, 跨膜电流的调节。 在神经科学上主要研究神经元的电学特性,尤其是动作电位。它涉及在多种尺度上从单个离子通道蛋白到整个器官如心脏的电压变化或电流变化的测量值。在神经科学,它包括神经元的放电活动的测量,特别是动作电位的活动。记录来自神经系统的大规模电信号,如脑电图的记录,也可以被称为电生理记录。.

查看 动作电位和电生理学

电脉冲化疗

电脉冲化疗是一种通过施加局部电脉冲,增加细胞通透性,将通常情况下无法进入细胞内部的药物送入细胞内,从而达到杀死癌细胞目的的治疗癌症的疗法。配合博莱霉素和顺铂使用电脉冲化疗治疗皮内和皮下肿瘤的研究已经进入临床阶段。第一次伯莱霉素电脉冲化疗于1991年在法国Gustave Roussy研究所实现,第一次顺铂电脉冲化疗则于1995年在斯洛文尼亚卢布尔雅那肿瘤研究所实现。其后,来自全球多个国家(爱尔兰、澳洲、奥地利、比利时、保加利亚、丹麦、德国、法国、美国、墨西哥、尼加瓜拉、波兰、葡萄牙、日本、瑞士、斯洛文尼亚、西班牙、希腊、匈牙利、意大利、英国)的4000多名患者接受了电脉冲化疗。最近,为了治疗体内肿瘤,开发了通过外科手术、内窥镜、皮下穿刺等方法到达患处的新的电脉冲化疗方法。.

查看 动作电位和电脉冲化疗

特异性药物

特异性药物(specific drug),即结构特异性药物,为能与机体生物大分子的功能基团结合,诱发一系列生理、生化效应的药物。大部分药物都属于特异性药物,其生物活性与结构特征关系紧密。特异性药物大部分作用于蛋白靶点,靶点可分为受体、离子通道、酶、载体等。一些特殊类型药物的蛋白靶点包括结构蛋白和细胞内蛋白。化疗药物的靶点包括DNA、细胞壁组分等。李端 殷明.

查看 动作电位和特异性药物

盲點 (眼)

視網膜的後方稱為眼底,在正對視神經起始處,有一呈白色的圓形隆起,稱為視神經盤(又稱視神經乳頭)。此處是神經纖維進出的地方,沒有感光細胞,不能感應到光線,故稱為盲點。影像能夠在盲點形成,但由於盲點沒有感光細胞,所以不能產生神經脈衝,令腦部不能得到影像形成。 該現象最早由法國的埃德姆·马略特在17世紀60年代發現。.

查看 动作电位和盲點 (眼)

视网膜

視網膜又称视衣,是脊椎动物和一些头足纲动物眼球后部的一层非常薄的细胞层。它是眼睛裏面将光转化为神经信号的部分。 視網膜含有可以感受光的视杆细胞和视锥细胞。这些细胞将它们感受到的光转化为神经信号。这些信号被视网膜上的其它神经细胞处理后演化为视网膜神经节细胞的动作电位。视网膜神经节细胞的轴突组成视神经。视网膜不但有感光的作用,它在视觉中也有重要作用。在形态形成的过程中,视网膜和视神经是从脑中延伸出来的。 視網膜上的血管的结构每个人都不一样,因此可以用来做生物特征识别。.

查看 动作电位和视网膜

视觉系统

视觉系统是神经系统的一个组成部分,它使生物体具有了视知觉能力。 它使用可见光信息构筑机体对周围世界的感知。视觉系统具有将外部世界的二维投射重构为三维世界的能力。需要注意的是,不同物种所能感知的可见光处于光谱中的不同位置。例如,有些物种可以看到紫外部分,而另一些则可以看到红外部分。 本条目主要介绍哺乳动物的视觉系统,其他很多“高等”动物也具有与之类似的视觉系统。 哺乳动物的视觉系统包括:.

查看 动作电位和视觉系统

驱动蛋白

驱动蛋白(Kinesin)是一类蛋白质超级家族,属于分子马达的一种,其成员代表驱动蛋白-1(Kinesin-1)在1985年被发现。驱动蛋白是由单体组成的多聚体,其“头部”具有ATP酶活性,能通过水解ATP获得能量,改变构型,进行运动。它和动力蛋白一样,以微管构成的轨道进行滑行。与可以朝微管两极运动的动力蛋白有些不一样,一种驱动蛋白只能朝一个方向运动,如驱动蛋白-1可以沿着微管的+运动,而另一些驱动蛋白则沿着-极运动,在细胞内起运输作用,比如牵拉染色体,参与有丝分裂、减数分裂和细胞迁移过程。 最近的研究又发现一批与驱动蛋白-1结构相关的蛋白质,它们一起构成驱动蛋白超级家族。这些蛋白质存在于绝大多数真核生物中。它们共有一保守的“马达”域,含有约350氨基酸残基,内有ATP结合位点和微管结合位点。即使在植物中,如拟南芥(Arabidopsis thaliana)中,目前也发现了A,B,C和D四种类驱动蛋白蛋白。.

查看 动作电位和驱动蛋白

跳跃式传导

跳躍式傳導(saltatory conduction)是动作电位沿有髓鞘轴突由一个兰氏结传导到下一个兰氏结的过程,它能在不增加轴突直径的情况下增加动作电位的神经传导速度(nerve conduction velocity)。只有蘭氏結能產生動作電位,该电位以跳躍的方式进行傳導,一定長度的軸突內需產生動作電位的次数較少,所以有髓鞘轴突中动作电位傳導的速度較無髓鞘軸突的傳導快。“跳跃式传导”译自英文“saltatory conduction”,而其中的“saltatory”源于拉丁文“saltare”(意为“跳跃”)。.

查看 动作电位和跳跃式传导

黑质

黑质(Substantia nigra,拉丁语意为“黑色的物质”)是中脑的一个神经核团。黑质的位置位于中脑背盖部(tegmentum)和大脑脚之间。黑质不是一个均一的核团,它可分为结构和功能上都相差很大的黑质致密部(Substantia nigra pars compacta, SNpc),黑质网状部(Substantia nigra pars reticulata, SNpr)和黑质侧部(Substantia nigra pars lateralis)三部分。黑质是基底核的一个附属核团,是有關基底核間互相連絡之重要構造。.

查看 动作电位和黑质

轴突

轴突(Axon)由神经元組成,即神经细胞之细胞本体长出突起,功能為传递细胞本体之动作电位至突觸。於神经系统中,轴突為主要神经信号传递渠道。大量轴突牽連一起,以其外型類似而称为神經纖維。神经常依以其特定功能而命名。例如,视神经指视网膜上的神经细胞。.

查看 动作电位和轴突

辣椒素

辣椒素(Capsaicin)又名辣椒鹼,即反式-8-甲基-N-香草基-6-壬烯酰胺,分子结构式为(CH3)2CHCH.

查看 动作电位和辣椒素

鈉離子通道

鈉離子通道是由形成的離子通道,可以讓鈉離子Na+通過細胞膜。鈉離子通道可以依啟動的方式加以分類,一種是依電壓變化而啟動的(電壓門控型),另一種則是需和其他化學物質(配體)結合後才啟動的(配體門控型)。 像在神經元、肌肉細胞及特定的神經膠質細胞內,鈉離子通道和动作电位的產生有關。.

查看 动作电位和鈉離子通道

,(拼音:,注音:ㄩˋ)或阈值,(拼音:,注音:),又叫临界值或門檻值。英语中的同义词是threshold。阈值是令对象发生某种变化所需的某种条件的值,在学术研究中是常用语。阈值根据条件本身可以有不同的单位。阈值被广泛运用在包括建筑学、生物学、航天、化学、电信、电子和心理学等各个领域,并作为词根派生出大量的相关词汇。该词与极值没有必然联系。.

查看 动作电位和阈

钙通道

钙通道(Calcium channel,台湾极少数时亦称为鈣徑)是选择性通透Ca2+的离子通道,有时也是电压依赖性钙通道()的同义词,而另外一种钙通道是配体门控性钙通道()。.

查看 动作电位和钙通道

肌肉組織

肌肉組織(Muscle tissue)是組成動物身體肌肉的,肌肉的收縮是透過肌肉組織進行的。這和肌肉中其他的組織(例如腱或肌束膜)相反。肌肉組織是在胚胎發育時藉由(myogenesis)的過程而形成的。 肌肉組織隨著其機能以及在身體內的位置而不同。哺乳類有三種肌肉組織:骨骼肌(skeletal muscle,也稱為條紋肌)、平滑肌(smooth muscle)及心肌(cardiac muscle,有時也稱為半條紋肌)。平滑肌和心肌都可以在沒有意識介入的情形下自發性的收縮。這些肌肉是透過中樞神經系統的互動來所其活動,也會受到周邊或是內分泌系統的控制。骨骼肌只會在有意識下收縮,是受到中樞神經系統的影響。反射是一種骨骼肌的無意識動作,雖然進行時不會有大脑皮质的介入,但仍然是由中樞神經系統使其動作。 三種肌肉組織對神经递质及激素(例如乙醯膽鹼、去甲基腎上腺素、腎上腺素及一氧化氮等)的反應是不同的的,依其肌肉形態以及組織在肌肉中的位置而定。 肌肉組織也可以根據其他的特性來分類,例如以其中肌红蛋白、線粒體、的含量來分類。.

查看 动作电位和肌肉組織

肌肉收缩

肌肉伸缩(Muscle contraction)是通过肌动蛋白和肌球蛋白共同完成的。当突触发生动作电位的时候,钙离子就会进入肌肉,肌肉通过三磷酸腺苷(ATP)产生能量从而扭曲肌肉纤维,因此导致肌球蛋白的进入。 Category:运动生理学 Category:肌肉系统 Category:骨骼肌.

查看 动作电位和肌肉收缩

铊中毒

铊中毒(Thallium poisoning)是机体摄入含铊化合物后产生的中毒反应。铊对哺乳动物的毒性高于铅、汞等金属元素,与砷相当,其对成人的最小致死剂量为12mg/kg体重,对儿童为8.8~15mg/kg体重。铊中毒的典型--有:毛发脱落、胃肠道反应、神经系统损伤等。鉈中毒者的指甲上通常都留有米氏線。铊具有强蓄积性毒性,可以对患者造成永久性损害,包括肌肉萎缩、肝肾的永久性损伤等。人体摄入铊化合物可以通过误食含铊化合物、饮用含铊水源、食用含铊果蔬、职业接触等途径。铊中毒的治疗方法包括:使用普鲁士蓝、二巯基丙酸钠、硫代硫酸钠等药物促进铊离子排泄;口服氯化钾溶液促进铊经肾代谢;使用利尿药加速铊排泄;使用血液灌流疗法在体外吸附清除铊离子等。职业性铊中毒是中华人民共和国法定职业病。.

查看 动作电位和铊中毒

脑是由稱為神經元的神經細胞所组成的神经系统控制中心,是所有脊椎动物和大部分无脊椎动物都具有的一个器官,只有少数的无脊椎动物没有脑,例如海绵、水母、成年的海鞘与海星,它们以分散或者局部的神经网络代替。 许多动物的脑位于头部,通常是靠近主要的感觉器官,例如视觉、听觉、前庭系统、味觉和嗅觉。脑是脊椎动物身体中最复杂的器官。在普通人类的大脑皮质(脑中最大的部分)中,包含150-330亿个神经元,每一个神经元都通过突触和其他数千个神经元相连接。这些神经元之间通过称作轴突的原生质纤维进行较长距离互相联结,可以将一种称作动作电位的冲动信号,在脑的不同区域之间或者向身体的特定接收细胞传递。脊椎动物的脑由颅骨保护。脑与脊髓构成中枢神经系统。中枢神经系统的细胞依靠复杂的联系来处理传递信息。脑是感情、思考、生命得以维持的中枢。它控制和协调行为、身体内穩態(身体功能,例如心跳、血压、体温等)以及精神活动(例如认知、情感、记忆和学习)。 从生理上来说,脑的功能就是控制身体的其他器官。脑对其他器官的作用方式,一是调制肌肉的运动模式,二是通过分泌一些称为荷尔蒙的化学物质。集中的控制方式,可以对环境的变化做出迅速而一致的反应。 一些基本的反应,例如反射,可以通过脊髓或者周边神经节来控制,然而基于多种感官输入,有心智、有目的的动作,只有通过脑中枢的整合能力才能控制。 关于单个脑细胞的运作机制,现今已经有了比较详细的了解;然而数以兆亿的神经元如何以集群的方式合作,还是一个未解决的问题。现代神经科学中,新近的模型将脑看作一种生物计算机,虽然运行的机制和电子计算机很不一样,但是它们从周围世界中获得信息、存储信息、以多种方式处理信息的功能是类似的,它有点像计算机中的中央处理器(CPU)。 本文会对各种动物的脑进行比较,特别是脊椎动物的脑,而人脑将被作为各种脑的其中一种进行讨论。人脑的特别之处会在人脑条目中探讨,因为其中很多话题在人脑的前提下讨论,内容会丰富得多。其中最重要的,是与脑损伤造成的后果,它会被放在人脑条目中探讨,因为人脑的大多数常见疾病并不见于其他物种,即使有,它们的表现形式也可能不同。.

查看 动作电位和脑

脑细胞

脑细胞(英語:Brain Cell)是构成脑的多种细胞的通称。脑细胞主要包括神经元和神经胶质细胞。 神经元负责处理和储存与脑功能相关的信息。神经元是特异化的,具有放电功能的一种细胞类型。神经元之间形成称为突触的相互连接,构成复杂的神经网络。 神经胶质细胞起到支持作用,其已知的主要功能包括形成神经元轴突外的髓鞘,神经元养分供应和新陈代谢,参与脑中的信号转导等。 脑内其它的细胞类型包括形成脑血管的上皮细胞。.

查看 动作电位和脑细胞

膳食礦物質

物質,又稱為無機鹽及膳食礦物質,除了碳、氫、氮和氧之外,也是生物必需的化學元素之一,也是構成人體組織、維持正常的生理功能和生化代謝等生命活動的主要元素,約佔人體體重的4.4%。它們可以是巨量礦物質(需求相對比較大)或微量礦物質(需求較小)。他們可以自然地存在於食物中,或是元素或礦物形式地被加入,例如碳酸鈣或氯化鈉。有部份這些添加物來自自然來源,例如地下的牡蠣殼。有時礦物質會被加入食物以外的飲食裡,因為維生素和礦物質補充,和在食土病裡,稱為「異食癖」或「食土症」。 適當地吸取一定程度的每種食用礦物質是有必要持續去維持身體的健康。而過量吸取食用礦物質可能會導致直接或間接的病症,歸咎於身體裡礦物質程度之間的競爭特性。例如,大量的鋅並不有害於它自己,但卻會導致銅的不足(除非補償,按照老年眼疾研究計劃裡指出)。有媒體報導稱,物體接觸礦物質含量過高的井水後,會在物體表面形成薄膜,經長時間暴曬,薄膜會變成堅硬的外殼,即「石化」。 不同地理學地區的土壤含有不同數量的礦物質。.

查看 动作电位和膳食礦物質

重症肌無力

重肌無力症(Myasthenia Gravis),又名重症肌無力,英文簡稱為M.G.,是長期的,會造成不同程度的。最常影響眼部、及吞嚥相關的肌肉。會造成复视、眼睑下垂、說話困難及行走困難等症狀。重症肌無力可能會突然發生。患者多半有胸腺過大或是的情形。 重症肌無力屬於自體免疫性疾病,是因為抗体堵塞或是破壞神经肌肉接点中的,因此神經脈衝無法引發肌肉收缩。有一種罕見的神经肌肉接点也會有類似症狀,稱為。肌無力的母親所生的嬰兒,在出生後頭幾個月也有會有類似症狀,稱為新生兒肌無力。診斷可以透過檢查特殊抗體的血液檢查、或是進行。 重症肌無力的治療方式多半是透過像新斯的明或等來治療,有時也會使用强的松或是硫唑嘌呤等免疫抑制藥物。可能可以改善一些病患的症狀。若是突發性的病情,可能會使用及高劑量静脉注射免疫球蛋白治療。若呼吸相關肌肉非常無力,需要用幫助呼吸。 每百萬人中,約會有50至200人罹患重症肌無力,每年每百萬人中的新診斷病例為3至30人。因為相關疾病意識的提高,也較容易診斷到相關病例。最常見的是四十歲以下的女性以及六十歲以上的男性,孩童的病例並不常見。大部份的病患在治療後可以有較正常的生活,其预期寿命也和一般人相當。重症肌無力的英文Myasthenia gravis原自希臘文的mys(肌肉)及astheneia(虛弱)以及拉丁文的gravis(嚴重)。.

查看 动作电位和重症肌無力

镜像神经元

像神经元(mirror neuron)是指动物在执行某个行为以及观察其他个体执行同一行为时都发放冲动的神经元。因而可以说这一神经元“镜像”了其他个体的行为,就如同自己在进行这一行为一样。这种神经元已在灵长类、鸟类等动物身上发现。对于人脑来说,在前运动皮质、运动辅助区、第一躯体感觉皮质、顶叶下皮质等中都有找到了这类神经元。 镜像神经元于1992年被提出,一些科学家认为这是近些年来神经科学领域中最重要的发现之一。例如著名神经科学家维莱亚努尔·拉马钱德兰(Vilayanur S.

查看 动作电位和镜像神经元

耳(耳朵)是動物接收并感知聲波,识别方位維持身體平衡的器官,為動物提供聽覺。 耳可以是整個聽覺系統的統稱,亦可以僅指露出在身體外的部分(外耳)。在大部份的哺乳類動物中,外露在身體外的部分又稱為耳殼,也是第一個接收聲音的部分。而人類的耳殼又稱為耳廓。僅有脊椎動物具有耳的聽覺構造。而其中的哺乳類動物、包括人類,都有一雙耳,在頭部的兩邊各一隻,通常是左右對稱的,這樣可以判斷聲源的位置。.

查看 动作电位和耳

Γ-氨基丁酸A型受体

GABAA受体(又称作γ-氨基丁酸A型受体)是一种离子型受体,而且是一类配体门控型离子通道。此通道的内源性配体是一种被称为GABA的神经递质。GABA是中枢神经系统里的一种主要的递质,虽然GABA在神经递质的释放过程中产生的是抑制性效应,但GABA本身并非一种抑制性而是一种刺激性递质,因为GABA激活GABA受体的开放。在GABAA受体被激活后,可以选择性的让Cl-通过,引起神经元的超极化。这种超极化引起了神经信号传递抑制,因为降低了动作电位产生的成功率GABAA,在正常条件下产生的抑制性突触后电位的翻转电位是-75 mV,高于GABAB受体的-100 mV。 GABAA受体的活性位点可与GABA以及许多药物诸如蝇蕈醇、、等结合。受体也包含许多异构调节,可间接调节受体活性,可调控异构位点的药物包括草字头下加「卓」字类、、巴比妥类药物、乙醇、、、等。 药物导致GABAA受体对神经元活动的中度抑制可使患者消除焦虑感(抗焦虑作用),而更强的抑制作用则会产生全身麻醉。药物的严重过量鲜有出现,而产生的反应是延长麻醉时间,甚至出现死亡。.

查看 动作电位和Γ-氨基丁酸A型受体

TRPM8

态感受器阳离子电压通道,子分类 M,成员 8(TRPM8),是一种存在于人类身上的蛋白质,由TRPM8基因所编码,它又被称为冷及薄荷醇感受器1(CMR1)。.

查看 动作电位和TRPM8

抗心律失常药

抗心律不整药(Antiarrhythmic agents)是一类用于抑制心脏非正常节律(心律不整)的药物,这些情况例如心房颤动、心房扑动、以及心室顫動。 很多人試圖將此類藥物做明確的分類,然而很多藥物舉有多重效果和機制,造成分類上不太明確。.

查看 动作电位和抗心律失常药

搔痒

搔痒(Tickling)是一種碰觸身體,會使對方產生自發性抽動或是使對方笑的方式。搔痒的英文源自古英文的tikelen,可能是ticken(輕輕碰觸)的反覆形。 1897年時心理學家斯坦利·霍尔及亞瑟·亞林(Arthur Allin)將搔痒分為二種不同的現象。一種是很輕柔的接觸皮膚,稱為,多半不會讓對方笑,而且多半會伴隨痒的感覺。另一種是以較大的力道接觸腋下或是腳掌之類的部位,被搔痒的人會被逗笑,稱為。 希臘哲學家亞里斯多德曾提出人為何很難對自己搔痒,逗自己笑的問題。 法蘭西斯·培根及查尔斯·达尔文都認為幽默的笑需要在心情較輕鬆時才會出現,不過他們對因搔痒而有的笑有不同的看法。达尔文認為搔痒而有的笑也需要在有輕鬆心情時才會出現,但培根不同意。培根提出在被搔痒時:「即使人是在哀悼的氣氛中,有時也沒辦法被搔痒而不笑。.

查看 动作电位和搔痒

树突

树突(英语:Dendrites)是神经元解剖结构的一部分,为从神经元的细胞本体发出的多分支突起。树突為神经元的输入通道,其功能是將自其他神经元所接收的动作电位(电信号)传送至細胞本体。其他神经元的动作电位藉由位於树突分支上的多个突触传送至树突上。树突在整合自这些突触所接收到的信号、以及决定此神经元将产生的动作电位强度上,扮演了重要的角色。.

查看 动作电位和树突

横小管

横管(亦称T小管,T-tubule)是肌膜(一种细胞膜)上很深的内陷凹槽,目前只在骨骼肌细胞和心肌细胞上发现。这些横小管能够让膜去极化并迅速吸入细胞内部。.

查看 动作电位和横小管

氨基糖苷类抗生素

氨基糖苷类抗生素是具有氨基糖与氨基环醇结构的一类抗生素,在临床主要用于对革兰氏阴性菌、绿脓杆菌等感染的治疗,1960年代到1970年代曾经非常广泛地使用,但是由于此类药物常有比较严重的耳毒性和肾毒性,使其应用受到一定限制,正在逐渐淡出一线用药的行列。.

查看 动作电位和氨基糖苷类抗生素

氯化钠

氯化钠(化学式:NaCl),是一种离子化合物。钠离子和氯离子的原子质量分别为22.99和35.45g/mol。也就是说100g的氯化钠中含有39.34 g的钠和 60.66 g的氯。氯化钠是海水中盐分的主要组成部分,它的存在也使得海水有其特有的咸味苦味。氯化钠也是细胞外液的主要盐类,0.9%的氯化鈉水溶液俗称为生理盐水。其可食用的形态是食盐的主要成分,多用于食物的调味和保存。 在工業中,主要用于制造氢氧化钠和氯以及应用于聚氯乙烯、塑料、木浆(紙漿)等許多其他產品的生产过程。由于它可以降低水的冰点,偶尔也用于解冻冰冻的路面。.

查看 动作电位和氯化钠

活动电位

#重定向 动作电位.

查看 动作电位和活动电位

有效编码假设

有效编码假设,是由 于1961年为脑的提出的一个理论模型。 在脑中,神经元通过传递一些电脉冲进行联系,这种电脉冲被称作动作电位或者神经冲动。感觉神经科学的一个目标,就是解码这些动作电位的意义,以便理解脑是如何表现和处理外部世界的信息。巴罗假设,感觉系统的动作电位形成了神经编码用来有效地表达感觉信息。 巴罗所说的“有效”,指的是神经编码会使得传递一个给定信号所需要的动作电位数量最少。 这有点类似在互联网上传递信息,可以使用不同的文件格式来传送同一张图片。对于同一张图片来说,使用不同的文件格式会需要不同的比特数来达到同样的分辨率。这个模型认为,脑会使用适合表达生物生活的自然环境的视觉和听觉信息的编码。.

查看 动作电位和有效编码假设

施旺細胞

施旺細胞(schwann cell)許旺細胞又稱血旺细胞或神经膜细胞,是构成周围神经系統的主要细胞,并参与多种重要的周围神经生物学功能:传导神经冲动,参与神经的生长和再生,营养神经元,生产神经细胞外介质,调节运动神经活性以及介导抗原。.

查看 动作电位和施旺細胞

感受器

感受器(Sensory receptor)也译作感觉接受器,是机体感受刺激的装置。.

查看 动作电位和感受器

感覺閾限

感覺閾限(Sensory threshold)是学术研究中的常用语,指令对象发生某种变化所需的某种条件的值。阈值根据条件本身可以有不同的单位。阈值被广泛运用在包括建筑学、生物学、航天、化学、电信、电子和心理学等各个领域,并作为词根派生出大量的相关词汇。该词与极值没有必然联系。 绝对临界值(Absolute threshold)在心理学中表示人可以感知特定刺激(声音,光,压力,味道,气味)的最小值,低于这个值人就感觉不到特定刺激。 区别临界值(Difference threshold指人可以感知两种刺激之间有区别的最小值, 两种刺激之间的区别如果低于这个值人就感觉不到它们之间是不同的。.

查看 动作电位和感覺閾限

感觉系统

感觉系统(英語:sensory system)是神经系统中处理感觉信息的一部分。感觉系统包括感受器、神经通路以及大脑中和感觉知觉有关的部分。通常而言感觉系统包括那些和视觉、听觉、触觉、味觉以及嗅觉相关的系统。简单而言,感觉系统是物理世界与内在感受之间的变换器,人類或是動物以此產生對外在世界的知觉。 感受野對應特定的感覺細胞或感覺器官,是指外在世界上可產生刺激,使感覺細胞或器官可以感知的部份。例如眼睛可見之處,就是眼睛的感受野,而视杆细胞或视锥细胞可以感受到的光,是這些細胞的感受野。感受野會因為對應视觉系统、聽覺系統、體感系統等,而有不同的感受野。.

查看 动作电位和感觉系统

意识上传

心灵上传(Mind uploading),或称为意识上传、全脑仿真(Whole brain emulation),是一种科幻技术,该技术可以把人类脑部的所有东西(包括意识、精神、思想、记忆)上传至计算设备(如电脑、量子计算机、人工神经网络)上。该计算设备将能够模拟大脑的运作,如原先的大脑对外界输入作出相应的反应,并拥有一个具备意识的心灵。http://www.sim.me.uk/neural/JournalArticles/Bamford2012IJMC.pdfhttp://kajsotala.fi/Papers/CoalescingMinds.pdf 心灵上传有两种潜在的实现方法:复制-转移或神经元逐步替换。第一种方法通过对大脑特征的扫描,将其中贮存的信息复制或转移到电脑或其他计算设备中。这个模拟的心灵可以和一个模拟的三维躯体相连接,并被置入一个虚拟现实(virtual reality)或模拟现实(simulated reality)中;或者也可被置入一台连接着机器躯体或生物学躯体的电脑中。 心灵上传被一些未来学家和超人类主义者视为一种重要的生命延续技术。心灵上传的另一个目标是为人类心灵做永久备份,以使我们能够在全球灾变或星际旅行中存活下来。一些未来学家认为全脑仿真是计算神经科学和神经信息学的“逻辑终点”。人工智能研究领域也将其视为一种实现强人工智能的途径。基于计算机的智能(如一个上传的心灵)的思维速度可能会比一个生物学人类快很多,因而未来学家认为一个上传的心灵构成的社会将达到技术奇点(technological singularity),即技术增长突然以更大的指数暴涨。心灵上传是诸多科幻小说和电影的核心概念。 主流科学界、经费提供者和科学期刊目前对心灵上传的可行性持怀疑态度。与此有关的实质性努力包括主流科学界在动物脑测绘(brain mapping)与模拟、更快的超级计算机、虚拟现实、脑机接口、连接组学(connectomics)、动态大脑的信息提取方面的研究。 心灵上传的支持者指出,实现心灵上传的许多工具和思路已经存在或正在快速的发展中;然而他们也承认,到目前为止,许多想法还依然是猜测性的,但也拥有工程实现的可能。神经科学家兰道尔·库纳(Randal Koene)成立了一个非盈利组织“碳拷贝”(Carbon Copies)以促进关于心灵上传的研究。.

查看 动作电位和意识上传

數量級 (速率)

本列表比較多種數量級的差別,以每秒1 公尺到每秒3 公尺來介紹多種速率。粗體代表其為準確值。.

查看 动作电位和數量級 (速率)

普鲁卡因胺

普鲁卡因胺(INN:Procainamide,)是一种Ia类抗心律失常药,用于治疗心律不整。.

查看 动作电位和普鲁卡因胺

亦称为 閾電位。

重症肌無力镜像神经元Γ-氨基丁酸A型受体TRPM8抗心律失常药搔痒树突横小管氨基糖苷类抗生素氯化钠活动电位有效编码假设施旺細胞感受器感覺閾限感觉系统意识上传數量級 (速率)普鲁卡因胺