目录
28 关系: 双伽玛函数,孤波,导数列表,不定积分,代数基本定理,代數函數,刘维尔定理 (微分代数),函数,函数列表,积分,约瑟夫·刘维尔,约瑟夫·里特,维恩位移定律,羊角螺线,随机变量,非線性系統,解析解,高斯函数,高斯积分,误差函数,贝塞尔函数,连续函数,Sage,椭球,朗伯W函数,指数函数,指数积分,拉普拉斯極限。
双伽玛函数
双伽玛函数是伽玛函数的对数导数。 它是第一个多伽玛函数。.
查看 初等函数和双伽玛函数
孤波
孤波(Soliton wave,又称孤子波、孤立子、孤立波)是非线性科学三大分支之一,应用于物理、数学等诸多领域。 孤子波是一类由于非线性作用引起的横波,它在运动过程中形状保持不变。其初等函数的解析表示最早于1895年获得,并随着量子力学、电子计算机等科学技术的发展逐步受到重视。.
查看 初等函数和孤波
导数列表
以下的列表列出了许多函数的导数。f 和g是可微函数,而别的皆为常数。用这些公式,可以求出任何初等函数的导数。.
查看 初等函数和导数列表
不定积分
在微积分中,一个函数f.
查看 初等函数和不定积分
代数基本定理
代数基本定理说明,任何一个一元複系数方程式都至少有一个複数根。也就是说,複数域是代数封闭的。 有时这个定理表述为:任何一个非零的一元n次複系数多项式,都正好有n个複数根。这似乎是一个更强的命题,但实际上是“至少有一个根”的直接结果,因为不断把多项式除以它的线性因子,即可从有一个根推出有n个根。 尽管这个定理被命名为“代数基本定理”,但它还没有纯粹的代数证明,许多数学家都相信这种证明不存在。另外,它也不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或複系数多项式方程,所以才被命名为代数基本定理。 高斯一生总共对这个定理给出了四个证明,其中第一个是在他22岁时(1799年)的博士论文中给出的。高斯给出的证明既有几何的,也有函数的,还有积分的方法。高斯关于这一命题的证明方法是去证明其根的存在性,开创了关于研究存在性命题的新途径。 同时,高次代数方程的求解仍然是一大难题。伽罗瓦理論指出,对于一般五次以上的方程,不存在一般的代数解。.
查看 初等函数和代数基本定理
代數函數
代數函數是指只包含常数与自变量相互之间有限次的加、減、乘、除、有理指数幂和開方六种运算的函數。非代數函數則稱為超越函數。.
查看 初等函数和代數函數
刘维尔定理 (微分代数)
刘维尔定理揭示了具有初等原函数的初等函数的本质特征.
函数
函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).
查看 初等函数和函数
函数列表
数学中的许多函数或函数族是非常重要的,这些函数具有他们特定的名称。有大量关于特殊函数的理论是由统计学和数学物理发展而来的。.
查看 初等函数和函数列表
积分
积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.
查看 初等函数和积分
约瑟夫·刘维尔
约瑟夫·刘维尔(Joseph Liouville,)是19世纪的法国数学家,生于加来海峡省的圣奥梅尔。刘维尔一生从事数学、力学和天文学的研究,涉足广泛,成果丰富,尤其对双周期椭圆函数、微分方程边值问题、数论中代数数的丢番图逼近问题和超越数有深入研究。刘维尔构造了所谓的“刘维尔数”并证明了其超越性,是第一个证实超越数的存在的人。.
查看 初等函数和约瑟夫·刘维尔
约瑟夫·里特
约瑟夫·菲尔兹·里特(Joseph Fels Ritt,)是一名20世纪初期的美国数学家。他曾在哥伦比亚大学任教,是微分代数理论的创始人。令他耿耿于怀的是他在有生之年并未获得过重大奖项。.
查看 初等函数和约瑟夫·里特
维恩位移定律
维恩位移定律(Wien's displacement law)是物理学上描述黑体电磁辐射光谱辐射度的峰值波长与自身温度之间反比关系的定律,其数学表示为: 式中 光学上一般使用纳米(nm)作为波长单位,则 b.
查看 初等函数和维恩位移定律
羊角螺线
羊角螺线(clothoid),又稱欧拉螺线(Euler spiral),是形式为 的曲线,其中 C(t)、S(t) 为 Fresnel積分: 上面參數方程的參數t,也是螺線於該點的曲率:\kappa(t).
查看 初等函数和羊角螺线
随机变量
給定樣本空间(S, \mathbb),如果其上的實值函數 X:S \to \mathbb是\mathbb (實值)可測函數,则稱X為(實值)随机变量。初等概率論中通常不涉及到可測性的概念,而直接把任何X:S \to \mathbb的函數稱為随机变量。 如果X指定给概率空间S中每一个事件e有一个实数X(e),同时针对每一个实数r都有一个事件集合A_r与其相对应,其中A_r.
查看 初等函数和随机变量
非線性系統
在物理科學中,如果描述某個系統的方程其輸入(自變數)與輸出(應變數)不成正比,則稱為非線性系統。由於自然界中大部分的系統本質上都是非線性的,因此許多工程師、物理學家、數學家和其他科學家對於非線性問題的研究都極感興趣。非線性系統和線性系統最大的差別在於,非線性系統可能會導致混沌、不可預測,或是不直觀的結果。 一般來說,非線性系統的行為在數學上是用一組非線性聯立方程來描述的。非線性方程裡含有由未知數構成的非一次多項式;換句話說,一個非線性方程並不能寫成其未知數的線性組合。而非線性微分方程,則是指方程裡含有未知函數及其導函數的乘冪不等於一的項。在判定一個方程是線性或非線性時,只需考慮未知數(或未知函數)的部分,不需要檢查方程中是否有已知的非線性項。例如在微分方程中,若所有的未知函數、未知導函數皆為一次,即使出現由某個已知變數所構成的非線性函數,我們仍稱它是一個線性微分方程。 由於非線性方程非常難解,因此我們常常需要以線性方程來近似一個非線性系統(線性近似)。這種近似對某範圍內的輸入值(自變數)是很準確的,但線性近似之後反而會無法解釋許多有趣的現象,例如孤波、混沌和奇點。這些奇特的現象,也常常讓非線性系統的行為看起來違反直覺、不可預測,或甚至混沌。雖然「混沌的行為」和「隨機的行為」感覺很相似,但兩者絕對不能混為一談;也就是說,一個混沌系統的行為絕對不是隨機的。 舉例來說,許多天氣系統就是混沌的,微小的擾動即可導致整個系統產生各種不同的複雜結果。就目前的科技而言,這種天氣的非線性特性即成了長期天氣預報的絆腳石。 某些書的作者以非線性科學來代指非線性系統的研究,但也有人不以為然:.
查看 初等函数和非線性系統
解析解
解析解,又稱為閉式解,是可以用解析表達式來表達的解。 在数学上,如果一个方程或者方程组存在的某些解,是由有限次常见运算的組合给出的形式,则称该方程存在解析解。二次方程的根就是一个解析解的典型例子。在低年级数学的教学当中,解析解也被称为公式解。 当解析解不存在时,比如五次以及更高次的代数方程,则该方程只能用数值分析的方法求解近似值。大多數偏微分方程,尤其是非线性偏微分方程,都只有數值解。 解析表達式的准确含义依赖于何种运算称为常见运算或常见函数。传统上,只有初等函数被看作常见函数(由於初等函數的運算總是獲得初等函數,因此初等函數的運算集合具有閉包性質,所以又稱此種解為閉式解),无穷级数、序列的极限、连分数等都不被看作常见函数。按这种定义,许多累积分布函数无法写成解析表達式。但如果把特殊函数,比如误差函数或gamma函数也看作常见函数,则累积分布函数可以写成解析表達式。 在计算机应用中,这些特殊函数因为大多有现成的数值法实现,它们通常被看作常见运算或常见函数。实际上,在计算机的计算过程中,多数基本函数都是用数值法计算的,所以所谓的基本函数和特殊函数对计算机而言并无区别。 J J J en:Analytical expression ja:解析解.
查看 初等函数和解析解
高斯函数
斯函数的形式为 的函数。其中a、b与 c为实数常数,且a > 0.
查看 初等函数和高斯函数
高斯积分
斯积分(Gaussian integral),有时也被称为概率积分,是高斯函数(e−x2)在整个實數線上的积分。它是依德国数学家兼物理学家卡爾·弗里德里希·高斯之姓氏所命名。 这个积分用处很广。例如,在变量略有变化的情况下,它用于计算正态分布的。还是这个积分,在极限为有限值的时候,与正态分布的误差函数和累积分布函数密切相关。在物理学中,这种积分经常出现,例如在量子力学中,为了求谐振子基态的概率密度,以及在路径积分公式中,求谐振子的传播子,我们都要用到这个积分。 尽管误差函数不存在初等函数,但可以通过Risch算法证明,高斯积分可以通过多元微积分方法分析求解。下面这个不定积分 无法用初等函数表示,但可以计算定积分 任意高斯函数的定积分为 在物理学中,经常用到高斯积分;而在量子场论中会用到许多该积分的推广形式。.
查看 初等函数和高斯积分
误差函数
在数学中,误差函数(也称之为高斯误差函数)是一个特殊函数(即不是初等函数),其在概率论,统计学以及偏微分方程中都有广泛的应用。它的定义如下:Greene, William H.; Econometric Analysis (fifth edition), Prentice-Hall, 1993, p. 926, fn.
查看 初等函数和误差函数
贝塞尔函数
貝索函数(Bessel functions),是数学上的一类特殊函数的总称。通常单说的貝索函数指第一类貝索函数(Bessel function of the first kind)。一般貝索函数是下列常微分方程(一般称为貝索方程)的标准解函数y(x): 这类方程的解是无法用初等函数系统地表示。 由於貝索微分方程是二階常微分方程,需要由兩個獨立的函數來表示其标准解函数。典型的是使用第一类貝索函数和第二类貝索函数來表示标准解函数: 注意,由於 Y_\alpha(x) 在 x.
查看 初等函数和贝塞尔函数
连续函数
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.
查看 初等函数和连续函数
Sage
Sage是一个覆盖许多数学功能的应用软件,包括代数、组合数学、计算数学和微积分。 SAGE的第一个版本在GNU许可证下发布于2005年2月24日,最初的目标是创造一个“、Maple、Mathematica和MATLAB的开源替代品”。Sage的主导开发人员威廉·斯坦因是华盛顿大学的数学家。 Sage通常被称为sagemath,因为sage在英语中是一个常见词。.
查看 初等函数和Sage
椭球
椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是: 其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状。 如果三个半径都是相等的,那么就是一个球;如果有两个半径是相等的,则是一个类球面。.
查看 初等函数和椭球
朗伯W函数
朗伯W函数(Lambert W function,又称为欧米加函数或乘积对数),是f(w).
查看 初等函数和朗伯W函数
指数函数
指数函数(Exponential function)是形式為b^x的數學函数,其中b是底數(或稱基數,base),而x是指數(index / exponent)。 現今指數函數通常特指以\mbox為底數的指數函數(即\mbox^x),為数学中重要的函数,也可寫作\exp(x)。这里的\mbox是数学常数,也就是自然对数函数的底数,近似值为2.718281828,又称为欧拉数。 作为实数变量x的函数,y.
查看 初等函数和指数函数
指数积分
在数学中,指数积分是函数的一种,它不能表示为初等函数。.
查看 初等函数和指数积分
拉普拉斯極限
拉普拉斯極限是指可以使的級數解收斂的最大離心率,其數值約為 描述物體在一離心率為ε的橢圓軌道上,其平近點角M和偏近點角E之間的關係,E無法以初等函数表示,但利用可以得到以下的幂級數: 拉普拉斯發現此級數只在離心率較小時收斂,當離心率超過一定值就會發散。其收斂半徑即為拉普拉斯極限。.
查看 初等函数和拉普拉斯極限