我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

分子演化

指数 分子演化

分子演化是指細胞分子(如DNA、RNA和蛋白質)的序列組成在不同世代間發生改變,或是指研究此現象的學門。此研究領域主要使用演化生物學和族群遺傳學的原理來解釋分子演化的規律,主要的研究主題有點突變的發生率和影響、中性漂變和自然選擇的相對重要性、新基因的起源、複雜性狀的可遺傳性、物種形成的遺傳基礎、發育過程的演化、以及演化力量對基因體及性狀的影響。.

目录

  1. 17 关系: 基因組基因重複单倍群同源太田朋子中性演化理論平行演化化學演化分子系统发生学群体遗传学生物学史鳥類學趨異演化长趾钝口螈根井正利比较基因组学演化

基因組

在生物学中,一个生物体的基因组是指包含在该生物的DNA(部分病毒是RNA)中的全部遗传信息,又稱基因體(genome)。基因组包括基因和非編碼DNA。1920年,德国汉堡大学植物学教授汉斯·温克勒(Hans Winkler)首次使用基因组这一名词。 更精确地讲,一个生物体的基因组是指一套染色体中的完整的DNA序列。例如,生物个体体细胞中的二倍体由两套染色体组成,其中一套DNA序列就是一个基因组。基因组一词可以特指整套核DNA(例如,核基因组),也可以用于包含自己DNA序列的细胞器基因组,如粒线体基因组或叶绿体基因组。当人们说一个有性生殖物种的基因组正在测序时,通常是指测定一套常染色体和两种性染色体的序列,这样来代表可能的两种性别。即使在只有一种性别的物种中,“一套基因组序列”可能也综合了来自不同个体的染色体。通常使用中,“遗传组成”一词有时在交流中即指某特定个体或物种的基因组。对相关物种全部基因组性质的研究通常被称为基因组学,该学科与遗传学不同,后者一般研究单个或一组基因的性质。.

查看 分子演化和基因組

基因重複

基因重複或稱複製基因(英語:Gene duplication (or chromosomal duplication or gene amplification))是指含有基因的DNA片段發生重複,可能因同源重組作用出錯而發生,或是因為反轉錄轉座(retrotransposition)與整個染色體發生重複所導致Zhang, J.(2003).

查看 分子演化和基因重複

单倍群

在分子演化的研究中,单倍群(Haplogroup)是一组类似的(Haplotype),它们有一个共同的单核苷酸多态性祖先。因为单倍群由相似的单倍型组成,所以可以从单倍型来预测单倍群。单核苷酸多态性试验被用来确认单倍型。单倍群以字母来标记,并且以数字和一些字母来做补充,例如O3e1.

查看 分子演化和单倍群

同源

在生物学种系发生理论中,若两个或多个结构具有相同的祖先,则称它们同源(Homology)。这里相同的祖先既可以指演化意义上的祖先,即两个结构由一个共同的祖先演化而来(在这个意义上,蝙蝠的翅膀与人类的手臂是同源的),也可以指发育意义上的祖先,即两个结构由胚胎时期的同一组织发育而来(在这个意义上,人类女性的卵巢与男性的睾丸同源)。 同源这一概念需与相似区分开来。比如说,昆虫的翅膀、蝙蝠的翅膀和鸟类的翅膀是相似的,但却不同源,这种现象被称为非同源相似(或同形质,英文:Homoplasy)。这些相似的结构由不同的渠道演化而来,这种演化过程叫做趋同演化(Convergency)。.

查看 分子演化和同源

太田朋子

太田朋子(太田 朋子,),日本生物学家,生物统计学家,对分子演化的发展做了卓越的贡献。.

查看 分子演化和太田朋子

中性演化理論

中性演化理論全稱為分子演化的中性理論(Neutral theory of molecular evolution),簡稱為中性理論。是日本遺傳學家木村資生在1968年早期所提出的一種演化理論。 這個理論認為在分子遺傳學的層次上,基因的變化大多數是,也就是對生物個體的生殖与生存既沒有好處也沒有壞處的突變。由於中性突變並不受自然選擇影響,而是由中性的突变基因的遗传漂变产生的,因此中性理論也曾被認為是與查爾斯·達爾文的自然選擇論處於競爭狀態。另外木村資生提出突然變異產生的蛋白質和原本的蛋白質之間沒有適應性的差異時的突然變異則稱為中立突然變異的理論。 不過現今的演化生物學家認為,自然選擇理論與中性理論是能夠並立且互補的。例如木村資生本人便曾在1986年說:「此理論並不否認自然選擇對於適應演化上的方向決定」。 中性演化理论承认了多数突变基因为有害基因这一可能性,但是认为由于自然选择的快速移除,对于物种内或物种间,这些基因并不会造成分子层面上持续的重大的改变,因而中性基因的遗传漂变在分子演化中起着更重要的作用。此外,这一理论还认为,最终中性突变能否被遗传是由随机遗传漂变模型所描述的抽烟过程所决定。 Kimura, Motoo.

查看 分子演化和中性演化理論

平行演化

定义:两个或多个相关但不同种系的生物,因生活在相似环境而发育了相似的形状。.

查看 分子演化和平行演化

化學演化

化學演化論或化學進化論可指.

查看 分子演化和化學演化

分子系统发生学

分子系统发生学(Molecular phylogenetics)是是分析遗传分子差异(主要是DNA序列)的系统发生学的一个分支,以获得有机体进化关系的信息。分子系统发生学分析的结果在系统发生树(phylogenetic tree)中表达。分子系统发生学是分子系統分類學的一个方面,更广泛的术语还包括在生物分类学和生物地理学中使用分子数据。.

查看 分子演化和分子系统发生学

群体遗传学

群体遗传学()又稱--遺傳學或種--群遺傳學,是研究在演化动力的影响下,等位基因的分布和改变。演化动力包括自然选择、性選擇、遺傳漂變、突变以及基因流動五种。通俗而言,群体遗传学则是在种群水平上进行研究的遗传学分支。它也研究遗传重组,种群的分类,以及种群的空间结构。同样地,群体遗传学试图解释诸如适应和物种形成现象的理论。 群体遗传学是现代进化综论出现的一个重要成分。该学科的主要创始人是休厄尔·赖特、约翰·伯顿·桑德森·霍尔丹和羅納德·費雪,他们还曾经为的相关理论建立基础。 传统上是高度数学化的学科,现代的群体遗传学包括理论的,实验室的和实地的工作。计算方法常使用,自1980年代发挥了核心作用。.

查看 分子演化和群体遗传学

生物学史

生物学史是人类从古至今对生命研究的过程。虽然生物学的概念作为单一领域出现於19世纪,但生物学从传统医学起就已经出现,并可以根据自然史追溯到古埃及医学及时代亚里士多德和盖伦的工作。中世纪时,及学者贾希兹(al-Jahiz)、阿维森纳、伊本·苏尔(Ibn Zuhr或Avenzoar)、伊本·贝塔尔(Ibn al-Baitar)及伊本·纳菲斯(Ibn al-Nafis)进一步发展。欧洲文艺复兴及近代时期,生物学思想被新的经验主义思想彻底变革并发现了一些新的生物。这次活动中比较突出的是对生理机能进行了实验和认真观察的安德雷亚斯·维萨里和威廉·哈维以及开始对生物进行分类和化石记录的博物学家卡尔·林奈和蒲豐,同时还对有机体的发展和行为进行研究,显微镜展示了之前从未看到的世界并为细胞学说打下基础。自然神学的重要性不断增长,在一定程度上回应了机械论学说的兴起,鼓励了博物学的发展(虽然它也巩固了)。 从18世纪到19世纪,植物学及动物学等生物科学逐渐形成专门的学科。拉瓦锡和其它物理学家开始通过物理和化学方法将有生物的世界和无生命的世界连接起来。探索博物学家如亚历山大·冯·洪堡调查了生物和他们所在环境之间的关系,这些关系取决於地理,并建立了生物地理学、生态学及动物行为学。博物学家开始否认本质主义并考虑灭绝及物种突变的重要性。细胞学说为生命的基础提供了新的角度。这些发展以及胚胎学和古生物学,被查尔斯·达尔文综合到自然选择的演化论中。19世纪末,自然发生说开始没落,同时兴起,而遗传的机制仍处於神秘状态。 20世纪初,对孟德尔的作品的重新发现带来了托马斯·亨特·摩尔根和他的学生们的遗传学的快速发展。到了1930年代,群体遗传学和自然选择相结合形成「新达尔文主义」。新的学科得到了快速发展,特别是在沃森和克里克提出DNA的结构之后。随着分子生物学的中心法则的建立和遗传密码的破译,生物学被明显地分为有机体生物学(organismal biology)——主要研究生物体及所在的群体—和细胞生物学及分子生物学所在领域。到20世纪末,一些新学科如基因组学和蛋白质组学则打破了这一趋势,有机体生物学家使用了分子生物学的技术,而分子生物学家和细胞生物学家也调查了基因和环境的关系以及自然生物体的遗传。.

查看 分子演化和生物学史

鳥類學

鳥類學(英語:Ornithology,源自希臘文ορνισ與λόγος,意指「鳥類知識」)是動物學中一個研究鳥類的分支學門。 人類很早就對鳥類感到興趣,在石器時代壁畫上已可見一些關於鳥類的描繪。此外,鳥類可能也是早期人類的食物之一,在一些考古挖掘中,已發現了大約80個鳥類物種遺骸。在早期古文明中,也有一些關於鳥類的研究。例如古希臘的亞里斯多德曾在其著作Historia Animalium中,記載一些關於鳥類遷徙或其他行為的紀錄。 到了17世紀與18世紀,才出現系統性的鳥類分類方法。早期的研究者多是法國人。19世紀之後,鳥類研究更加科學化,到了20世紀,關於鳥類的研究逐漸擴展到了動物行為學等領域。分子生物學出現之後,則開始有許多以分子演化為基礎所進行的分類。.

查看 分子演化和鳥類學

趨異演化

趨異演化(英語:Divergent evolution)是指兩個或多個生物學特徵具有共同演化起源,但在演化歷程中逐漸分化的現象,又稱適應。可經由觀察不同物種的型態或生物分子,如基因或一些生化途徑而得知,是演化生物學的研究對象之一。 一個常見的趨異演化例子是脊椎動物的四肢,這些動物中的四肢可能具有共同起源,但卻有不同的構造與功能。除了型態之外,也可應用分子生物學來研究這些現象。例如一個基因與蛋白質序列,可能分化成兩種以上的同源基因。 與趨異演化相對的概念是趨同演化(convergent evolution),是指兩種以上型態或分子具有相同功能或構造,但卻源自不同起源。.

查看 分子演化和趨異演化

长趾钝口螈

长趾钝口螈(Ambystoma macrodactylum,贝尔德 1849年) 是钝口螈科中的一种摩尔蝾螈。成年长趾钝口螈通常身长4.1-8.9厘米(1.6-3.5英寸),其特征为周身夹杂的黑色、棕色、和黄色色素斑点,以及位于后肢突出生长的第四根脚趾。化石记录, 遗传学和 生物地理学的研究表明:长趾钝口螈和蓝点钝口螈均起源于同一祖先。由于古新世时期北美中大陆航道的流失,它们的祖先迁移至科迪勒拉山脉西部地区。 长趾钝口螈主要分布于海拔高度范围可至2800米(9200英尺)的太平洋西北部地区。它们的栖息地种类繁多,其中包括温带雨林,针叶林,山地河岸带,山艾树灌木平原,紫果冷杉林,半干旱地区的山艾树林,绢雀麦平原,以及沿着山地湖区石岸边的高山草甸。在水中野生繁育阶段,长趾钝口螈生活于水流速度较慢的溪流、池塘、以及湖中。寒冬时节是长趾钝口螈的冬眠期,它们依靠先前储藏在皮肤以及尾部的能量储备来维持生命。 长趾钝口螈的五个亚种有着不同的遗传史和基因史,通过它们不同的颜色以及皮肤纹理进行表型区分。尽管国际自然保护联盟(IUCN)将长趾钝口螈划分为无危物种,各式的土地开发活动都对蝾螈的栖息地造成了不良影响甚至威胁到了它们的生存。.

查看 分子演化和长趾钝口螈

根井正利

根井正利(根井正利,),日裔美国生物学家,美国国家科学院院士,中性演化理论的坚定拥护者。现任宾州州立大学的生物学讲席教授和宾夕法尼亚州立大学遗传学研究所的所长。.

查看 分子演化和根井正利

比较基因组学

比较基因组学(Comparative genomics)是基于基因组图谱和测序技术,对已知的基因特征和基因组结构进行比较以了解基因的功能、表达机制和不同物种親緣關係的生物学研究。基因组的特征可包括的DNA序列,基因,基因顺序,调控序列,和其它的基因组结构标志。.

查看 分子演化和比较基因组学

演化

--(evolution),指的是生物的可遺傳性狀在世代間的改變,操作定義是種群內基因頻率的改變。基因在繁殖過程中,會經複製並傳遞到子代。而基因的突变可使性狀改變,進而造成個體之間的遺傳變異。新性狀又會因為物種迁徙或是物種之間的水-平-基因轉移,而隨著基因在族群中傳遞。當這些遺傳變異受到非隨機的自然选择或隨機的遺傳漂變影響,而在族群中變得較為普遍或稀有時,就是演化。演化會引起生物各個層次的多樣性,包括物種、生物個體和分子 。 地球上所有生命的共同起源,約35-38億年前出現,其被稱為最後共同祖先,但是2015年一項在西澳的古老岩石進行的研究中發現41億年前「的行跡」。 新物種(物種形成)、種內的變化()和物種的消失(絕種)在整個地球的不斷發生,這被形態學和生化性狀證實,其中包括共同的DNA序列,這些共同性狀在物種之間更相似,因為它源於最近的共同祖先,並且可以作為進化關係的依據建立生命之樹(系统发生学),其利用現有的物種和化石建立,化石記錄的事物包括由的石墨 、,以至多細胞生物的化石。生物多樣性的現有模式被物種形成和滅絕塑造。據估計,曾經生活在地球上的物種99%以上已經滅絕。地球目前的物種估計有1000萬至1400萬。其中約120萬已被記錄。 物種是指一群可以互相進行繁殖行為的個體。當一個物種分離成各個交配行為受到阻礙的不同族群時,再加上突變、遺傳漂變,與不同環境對於不同性狀的青睞,會使變異逐代累積,進而產生新的物種。生物之間的相似性顯示所有已知物種皆是從共同祖先或是祖先基因池逐漸分化產生。 以自然選擇為基礎的演化理論,最早是由查爾斯·達爾文與亞爾佛德·羅素·華萊士所提出,詳細闡述出現在達爾文出版於1859年的《物種起源》.

查看 分子演化和演化

亦称为 分子演化学。