我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

凸優化

指数 凸優化

凸優化,或叫做凸最優化,凸最小化,是數學最優化的一個子領域,研究定義於凸集中的凸函數最小化的問題。凸優化在某種意義上說較一般情形的數學最優化問題要簡單,譬如在凸優化中局部最優值必定是全局最優值。凸函數的凸性使得凸分析中的有力工具在最優化問題中得以應用,如次导数等。 凸優化應用於很多學科領域,諸如自動控制系統,信號處理,通訊和網絡,電子電路設計,數據分析和建模,統計學(最優化設計),以及金融。在近來運算能力提高和最優化理論發展的背景下,一般的凸優化已經接近簡單的線性規劃一樣直捷易行。許多最優化問題都可以轉化成凸優化(凸最小化)問題,例如求凹函數f最大值的問題就等同於求凸函數 -f最小值的問題。.

目录

  1. 3 关系: 线性矩阵不等式非线性规划采样定理

线性矩阵不等式

线性矩阵不等式是凸优化中,具有形式: \operatorname(y).

查看 凸優化和线性矩阵不等式

非线性规划

在数学中,非线性规划是求解由一系列未知实函数组成的组方程和不等式(统称为约束)定义的最佳化問題,伴随着一个要被最大化或最小化的目标函数,只是一些约束或目标函数是非線性的。 它是最优化处理非线性问题的一个子领域。.

查看 凸優化和非线性规划

采样定理

在数字信号处理领域,采样定理是连续信号(通常称作“模拟信号”)与离散信号(通常称作“数字信号”)之间的一个基本桥梁。它确定了信号带宽的上限,或能捕获连续信号的所有信息的离散采样信号所允许的采样频率的下限。 严格地说,定理仅适用于具有傅里叶变换的一类数学函数,即频率在有限区域以外为零(参照图1)。离散时间傅里叶变换(的一种形式)提供了实际信号的解析延拓,但只能近似该条件。直观上我们希望,当把连续函数化为采样值(叫做“样本”)的离散序列并插值到连续函数中,结果的保真度取决于原始采样的密度(或采样率)。采样定理介绍了对带宽限制的函数类型来说保真度足够完整的采样率的概念;在采样过程中"信息"实际没有损失。定理用函数的带宽来表示采样率。定理也导出了一个数学上理想的原连续信号的重构公式。 该定理没有排除一些并不满足采样率准则的特殊情况下完整重构的可能性。(参见下文非基带信号采样,以及壓縮感知。) 奈奎斯特–香农采样定理的名字是为了紀念哈里·奈奎斯特和克劳德·香农。该定理也被、等人独立发现。所以它还叫做奈奎斯特–香农–科特尔尼科夫定理、惠特克–香农–科特尔尼科夫定理、惠特克–奈奎斯特–科特尔尼科夫–香农定理及插值基本定理。.

查看 凸優化和采样定理