我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

决策树学习

指数 决策树学习

统计学,数据挖掘和机器学习中的决策树训练,使用决策树作为预测模型来预测样本的类标。这种决策树也称作分类树或回归树。在这些树的结构里, 叶子节点给出类标而内部节点代表某个属性。 在决策分析中,一棵决策树可以明确地表达决策的过程。在数据挖掘中,一棵决策树表达的是数据而不是决策。本页的决策树是数据挖掘中的决策树。.

目录

  1. 3 关系: 線性判別分析情感计算文档分类

線性判別分析

线性判别分析 (LDA)是对费舍尔的线性鉴别方法的归纳,这种方法使用统计学,模式识别和机器学习方法,试图找到两类物体或事件的特征的一个线性组合,以能够特征化或区分它们。所得的组合可用来作为一个线性分类器,或者,更常见的是,为后续的分类做降维处理。 LDA与方差分析(ANOVA)和回归分析紧密相关,这两种分析方法也试图通过一些特征或测量值的线性组合来表示一个因变量。Fisher, R.

查看 决策树学习和線性判別分析

情感计算

情感计算(Affective computing,亦作--,,或情感AI,)是一个跨学科领域,涉及计算机科学、 心理学和认知科学,旨在研发能够识别、解释、处理、模拟人类情感的系统。虽然该学科最早可追溯至早期的哲学研究,即人们对情绪的剖析,但真正使其成为现代计算机科学分支的,则是1995年罗莎琳·皮卡德发表的关于情感计算的论文。人们研究情感计算很大程度上是为了能够模拟共情——机器应该能够解释人类的情绪状态,做出相适应的行为,对情绪给予恰当的回应。 文本情感分析()和情感分析的区别在于,前者仅辨识词语的情感极性,后者辨识人类的不同情绪。.

查看 决策树学习和情感计算

文档分类

文档分类是图书馆学, 信息学和计算机科学中的一个问题。其任务是将一个文档分配到一个或者多个类别中。它可以是通过人工分类完成的,也可以是通过计算机算法实现的。多数通过人工的文档分类问题一直属于图书馆学的领域,而通过算法实现的文档分类问题则多属于信息学和计算机科学的领域。这些问题之间是有相同的部分的,所以有一些对文档分类的跨学科研究。 需要被分类的文档有可能是纯文本,图片,音乐等等。每一种文档都有其独特分类问题。根据特殊的文档做研究,文档分类可以细分成文本分类,图片分类等等。 可以根据主题来进行文档分类,也可以根据它的属性(例如文档的类型,作者,出版的时间等)进行分类。下文只包含主题分类的问题。主要由两种方法来做根据主题的文档分类:基于内容的方法以及基于请求的方法。.

查看 决策树学习和文档分类