我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

共軛閉包

指数 共軛閉包

在群論中,群 G 的子集 S 的共軛閉包是生成自 SG 的 G 的子群,即 SG 在群運算下的閉包,這里的 SG 是 S 元素的共軛的集合: S 的共軛閉包記為 G> 或 G。 S 的共軛閉包總是 G 的正規子群;事實上,它是包含 S 的最小的 G 的正規子群。為此,共軛閉包也叫做 S 的正規閉包或者 S 生成的正規子群。正規閉包也可以刻畫為包含 S 的所有 G 的正規子群的交集。如果 S 已經是正規子群則它等于它的正規閉包。 如果 S.

目录

  1. 3 关系: 中心化子和正规化子群的展示正规子群

中心化子和正规化子

群论中,一个群G的子集S的中心化子和正规化子是G的子群。它们分别在S的元素和作为一个整体S有受限制的作用。这些子群给出了关于G的结构的有用信息。.

查看 共軛閉包和中心化子和正规化子

群的展示

在數學中,展示是定義群的一種方法。通過指定生成元的集合 S 使得這個群的所有元素都可以寫為某些這種生成元的乘積,和這些生成元之間的關係的集合 R。稱 G 有展示 非正式的說,G 有上述展示如果它是 S 所生成的只服從關係 R 的“最自由的群”。正式的說,群 G 被稱為有上述展示如果它同構於 S 上的自由群模以關係 R 生成的正規子群的商群。 作為一個簡單的例子,n 階循環群有展示 這里的 e 是群單位元。它可以等價的寫為 因為把不包括等號的項認為是等于群單位元。這種項叫做關係元(relator),區別於包括等號的關係。 所有群都有一個展示,并且事實上有很多不同的展示;展示經常是描述群結構的最簡潔方式。 一個密切關聯但不同的概念是群的絕對展示。.

查看 共軛閉包和群的展示

正规子群

在抽象代数中,正规子群或不变子群指一类特殊的子群。由正规子群,可以引导出商群的概念。 埃瓦里斯特·伽罗瓦是最早认识到正规子群的重要性的人。.

查看 共軛閉包和正规子群