目录
十三面體
在幾何學中,十三面體(Tridecahedron)是指由十三個面組成的多面體。十三面體有許多不同的拓樸形式,例如、十二角錐,但不包含正多面體,因為找不到一個正多邊形可以組成正十三面體,已知的正多面體只有五個,即使存在有十三個面皆全等的十三面體,但它們仍然不能算是正多面體。正多面體除了每個面都全等之外每個面上的角與邊必須要等大,唯有正多邊形符合此條件,但這種十三面體的面不會是正多邊形。。 在凸十三面體中已知有177種結構屬於自身對偶多面體即對偶多面體為自己本身的多面體、另外有96,262,938種不同拓樸結構的十三面體具有至少9個頂點,不同的拓撲結構,即他們面和頂點有不同的安排方式,使得其無法單靠扭曲或簡單地通過改變邊或面之間的長度或角度轉換成另一種多面體的多面體。 若不考慮規律性、對稱性或面是否為正多邊形或有無特殊性質的話,則十三面體有無限多種,例如:截一角十二面體、五角化一面截兩角立方體將立方體截去兩個角,再將截完的結果中的其中一個五邊形面加上五角錐等各種產生十三個面的組合,以此類推有無限多種能產生十三面的組合。.
查看 六角錐柱和十三面體
三角錐柱
在幾何學中,三角錐柱是指底面為三邊形的錐柱體,或是將底面全等的三角錐與三角柱疊合所形成的立體。若底面為正三角形則稱為正三角錐柱。三角錐柱具有7個面、12個邊、和7個頂點,每個三角錐柱皆為一個七面體。.
查看 六角錐柱和三角錐柱
五角錐柱
在幾何學中,五角錐柱是指底面為五邊形的錐柱體,或是將底面全等的五角錐與五角柱疊合所形成的立體。若底面為正五邊形則稱為正五角錐柱。五角錐柱具有11個面、20個邊、和11個頂點,每個五角錐柱皆為一個十一面體。.
查看 六角錐柱和五角錐柱
四角錐柱
在幾何學中,四角錐柱是指底面為四邊形的錐柱體,或是將底面全等的四角錐與四角柱疊合所形成的立體。若底面為正方形則稱為正四角錐柱。四角錐柱具有9個面、16個邊、和9個頂點,每個四角錐柱皆為一個九面體。.
查看 六角錐柱和四角錐柱
正六角錐柱
#重定向 六角錐柱.
查看 六角錐柱和正六角錐柱