目录
平方米每像素
平方米每像素(m2/像素)是在太陽系拍攝星體(包括地球)的遠程數碼影像時,其光學解析度的常用單位。 其他的解析度有:.
查看 光學解析度和平方米每像素
行星状星云
行星狀星雲是恆星演化至老年的紅巨星末期,氣體殼層向外膨脹並被電離,形成擴大中的發射星雲,經常以英文的縮寫"PN"或複數的"PNe"來表示。"行星狀星雲"這個名稱源自1780年代的天文學家威廉·赫歇爾,但並不是個適當的名字,只因為當他通過望遠鏡觀察時,這些天體呈現類似於行星的圓盤狀,但又是霧濛濛的雲氣。因此,他結合"行星"與"星雲",創造了這個新名詞。赫歇爾的命名雖然不適當,但仍被普遍的採用,並未被替換。相較於恆星長達數十億年歲月的一生,行星狀星雲只能存在數萬年,只是很短暫的現象。 大多數行星狀星雲形成的機制被認為是這樣:在恆星結束生命的末期,也就是紅巨星的階段,恆星外層的氣體殼被強勁的恆星風吹送進太空。紅巨星在大部分的氣體被驅散後,來自高溫的行星狀星雲核心(PNN,planetary nebula nucleus)輻射的紫外線會將被驅散的恆星外層氣體電離。吸收紫外線的高能氣體殼層圍繞著中央的恆星發出朦朧的螢光,使其成為一個色彩鮮豔的行星狀星雲。 行星狀星雲在銀河系演化的化學上扮演關鍵性的角色,將恆星創造的元素擴散成為銀河系星際物質中的元素。在遙遠的星系內也觀察到行星狀星雲,收集它們的資訊有助於了解化學元素的豐度。 近年來,哈伯太空望遠鏡的影像顯示許多行星狀星雲有著極其複雜和各種各樣的形狀。大約只有五分之一呈現球形,而且其中大多數都不是球對稱。產生各種各樣形狀的功能和機制仍都不十分清楚,但是中央的聯星、恆星風和磁場都可能發揮作用。.
查看 光學解析度和行星状星云
超声调制光学层析成像
超声调制光学层析成像(Ultra-modulated optical tomography,UOT)是利用超声作用于待测物质,改变待测物质的光学性质,在此基础上探测光与物质相互作用的结果,从而反演待测物质的性质,并结合计算机斷層掃描技术实现层析成像的一种技术。该技术可用于生物的成像,以及有潜力运用于早期癌症的检测Sakadžić, Sava.
都卜勒光譜學
都卜勒光譜學(Doppler spectroscopy),或者是徑向速度量測是以光谱学方式搜尋太陽系外行星。該法是以觀測恆星光譜中譜線的都卜勒效應以尋找是否有行星環繞。 因為距離的關係,從地球上所見的系外行星光度極弱,難以直接觀察,雖然在2004和2005年已有直接觀察到太陽系外行星的聲明。因此必須以間接方式觀測太陽系外行星,因為其母星所受到影響更容易觀察。目前成功的方式包含都卜勒光譜、天體測量、微引力透镜、脈衝星計時法、凌日法。直到2011年9月15日,超過 90% 已知系外行星都由都卜勒光譜學法發現。.
查看 光學解析度和都卜勒光譜學
透地雷達
透地雷達(Ground-penetrating radar,縮寫:GPR)是以雷達脈衝波探測地表以下狀況並的儀器。這是以上的微波(UHF/VHF)波段電磁波進行的一種无损检测方式,並接收因為地表下各種物體結構造成的雷達反射波。透地雷達可以在岩石、土壤、冰、淡水、人行道以及各種結構物等介質使用。透地雷達可探測到地表下的物質、材質變化、空隙和裂隙等。.
查看 光學解析度和透地雷達
散斑成像
Image:Zeta_bootis_short_exposure.png|大氣層存在時典型的短時間曝光聯星影像(影像中為左攝提三)。影像中恆星應該是一個點狀,但是大氣層的存在讓兩顆恆星成像是班點狀(一個在左上方,其他的在右下方)。這些班點會讓觀測者較不易分辨影像中的恆星,這是因為使用的相機像素較粗糙。斑點會在恆星影像周圍快速移動,使恆星在影像中看起來像一個模糊的斑點。拍攝該影像使用的望遠鏡直徑約7r0(望遠鏡直徑小於 r0 時,影像解析度由艾里斑大小決定,否則是由大氣層狀態而定) Image:Eps_aql_movie_not_2000.gif|慢動作散斑成像負片影片,為使用高倍率望遠鏡觀冊恆星的狀況。該望遠鏡的直徑約7r0。請注意單一恆星影像如何分裂為多個斑點,這完全是因為大氣層擾動所造成。散斑成像技術就是要重建未被大氣層擾動影響的恆星影像。該影片中也可見到望遠鏡鎮動造成的效應。 散斑成像(Speckle imaging)是指基於法(圖像堆疊)或散斑干涉(Speckle interferometry)法的一系列高解析度天文成像技術。這些技術可以大幅度提升地面望遠鏡的光學解析度。.
查看 光學解析度和散斑成像