目录
十三面體
在幾何學中,十三面體(Tridecahedron)是指由十三個面組成的多面體。十三面體有許多不同的拓樸形式,例如、十二角錐,但不包含正多面體,因為找不到一個正多邊形可以組成正十三面體,已知的正多面體只有五個,即使存在有十三個面皆全等的十三面體,但它們仍然不能算是正多面體。正多面體除了每個面都全等之外每個面上的角與邊必須要等大,唯有正多邊形符合此條件,但這種十三面體的面不會是正多邊形。。 在凸十三面體中已知有177種結構屬於自身對偶多面體即對偶多面體為自己本身的多面體、另外有96,262,938種不同拓樸結構的十三面體具有至少9個頂點,不同的拓撲結構,即他們面和頂點有不同的安排方式,使得其無法單靠扭曲或簡單地通過改變邊或面之間的長度或角度轉換成另一種多面體的多面體。 若不考慮規律性、對稱性或面是否為正多邊形或有無特殊性質的話,則十三面體有無限多種,例如:截一角十二面體、五角化一面截兩角立方體將立方體截去兩個角,再將截完的結果中的其中一個五邊形面加上五角錐等各種產生十三個面的組合,以此類推有無限多種能產生十三面的組合。.
查看 側錐六角柱和十三面體
十一面體
在幾何學中,十一面體(Hendecahedron)是指具有十一個面的多面體。沒有任何十一面體是正十一面體,也就是說找不到面由正多邊形組成且每個面全等、每個角相等的十一面體。.
查看 側錐六角柱和十一面體
二側錐五角柱
側錐三角柱(英文:Biaugmented pentagonal prism)屬於詹森多面體之一(J53),形如其名,它可由一個正四角錐(J1)和兩個正五角柱分別以底面和側邊相互黏合而成。它與側錐五角柱(J52)有著類似的構造。這92種詹森多面體最早在1996年由詹森·諾曼(Norman Johnson)命名並予以觀察描述。.
查看 側錐六角柱和二側錐五角柱
约翰逊多面体
Johnson多面體,有譯作约翰逊多面体或莊遜多面體,是指正多面體、半正多面體、棱柱、反棱柱之外,所有由正多邊形面組成的凸多面體。這些立體由在1966年命名;1969年,證明只有92個這樣的立體。.
查看 側錐六角柱和约翰逊多面体