目录
29 关系: 域 (數學),双周期函数,发散级数,孤立奇点,不完全Γ函數,中国图书馆分类法 (O1),广义黎曼猜想,代数基本定理,圓周率,全纯函数,皮卡定理,类数公式,约瑟夫·刘维尔,留数,狄利克雷级数,狄利克雷η函数,解析数论,黎曼球面,黎曼-罗赫定理,辐角原理,赫尔维茨ζ函数,除子,极点 (复分析),杨乐,格蘭迪級數,正规族,本质奇点,无穷,拉普拉斯方法。
域 (數學)
在抽象代数中,域(Field)是一种可進行加、減、乘和除(除了除以零之外,「零」即加法單位元素)運算的代數結構。域的概念是数域以及四则运算的推广。 域是环的一种。域和一般的环的区别在于域要求它的元素(除零元素之外)可以进行除法运算,这等价于说每个非零的元素都要有乘法逆元。體中的運算关于乘法是可交换的。若乘法運算沒有要求可交換則稱為除環(division ring)或skew field。.
查看 亚纯函数和域 (數學)
双周期函数
双周期函数是数学中对一类定义在复平面上的函数(复变量函数)的称呼,是在复平面的两个不同“方向”上都有周期性变化的函数。直观上可以理解为平面上“网格状”变化的函数。双周期函数是定义域为实数的周期函数在复变量函数中的推广。在复变量函数中,只有一个周期的函数称为单周期函数,如指数函数,周期是2。.
查看 亚纯函数和双周期函数
发散级数
发散级数(Divergent Series)指(按柯西意义下)不收敛的级数。如级数1 + 2 + 3 + 4 + \cdots和1 - 1 + 1 - 1 + \cdots ,也就是说该级数的部分和序列没有一个有穷极限。 如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数 调和级数的发散性被中世纪数学家奥里斯姆所证明。.
查看 亚纯函数和发散级数
孤立奇点
假设X是一个代数簇,P∈X是X上的一个奇点,如果存在一个包含P的开邻域(又称开集)U,使得U中不在包含其他的奇点, 那么就称P是孤立奇点。 在亚纯函数中,所有奇点都是孤立的;但如果一个函数的所有奇点都是孤立的,并不能保证它是亚纯函数。复分析中许多有用的工具,例如洛朗展开、留数定理等,都需要保证相关奇点的孤立性才能应用。 孤立奇点分为三种:.
查看 亚纯函数和孤立奇点
不完全Γ函數
在数学中,上不完全Γ函数和下不完全Γ函数是 \Gamma函数的推广。它们的定义分别如下: \quad \Re(s)>0, x\in\mathbb R_0^+ 通过解析延拓可以将定义域拓展到 C×C (除去可数个奇点外),详见下文。.
查看 亚纯函数和不完全Γ函數
中国图书馆分类法 (O1)
*O1 数学 ----.
广义黎曼猜想
黎曼猜想是数学中最重要的猜想之一,描述了黎曼ζ函数非平凡零点的分布规律。而其中黎曼ζ函数可以用各种整体L函数(global L-function)替代,由此得到黎曼猜想不同类型的推广。这些推广的猜想描述的是不同L函数非平凡零点分布的规律。许多数学家相信这些猜想是正确的。不过其中仅有部分函数域情形下的推广得到了证明。 整体L函数可以与椭圆曲线、数域(此时称为戴德金ζ函数)、马斯形式(Maass form)或狄利克雷特征(此时称为狄利克雷L函数)相联系。其中,描述戴德金ζ函数的黎曼猜想被称为扩展黎曼猜想(extended Riemann hypothesis,ERH),而描述狄利克雷L函数的黎曼猜想则被称为广义黎曼猜想(generalized Riemann hypothesis,GRH)。(也有许多数学家用“广义黎曼猜想”用作对各种整体L函数推广的总称,而非单指狄利克雷L函数下的情形。).
查看 亚纯函数和广义黎曼猜想
代数基本定理
代数基本定理说明,任何一个一元複系数方程式都至少有一个複数根。也就是说,複数域是代数封闭的。 有时这个定理表述为:任何一个非零的一元n次複系数多项式,都正好有n个複数根。这似乎是一个更强的命题,但实际上是“至少有一个根”的直接结果,因为不断把多项式除以它的线性因子,即可从有一个根推出有n个根。 尽管这个定理被命名为“代数基本定理”,但它还没有纯粹的代数证明,许多数学家都相信这种证明不存在。另外,它也不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或複系数多项式方程,所以才被命名为代数基本定理。 高斯一生总共对这个定理给出了四个证明,其中第一个是在他22岁时(1799年)的博士论文中给出的。高斯给出的证明既有几何的,也有函数的,还有积分的方法。高斯关于这一命题的证明方法是去证明其根的存在性,开创了关于研究存在性命题的新途径。 同时,高次代数方程的求解仍然是一大难题。伽罗瓦理論指出,对于一般五次以上的方程,不存在一般的代数解。.
查看 亚纯函数和代数基本定理
圓周率
圓周率是一个数学常数,为一个圆的周长和其直径的比率,约等於3.14159。它在18世纪中期之后一般用希腊字母π指代,有时也拼写为“pi”()。 因为π是一个无理数,所以它不能用分数完全表示出来(即它的小数部分是一个无限不循环小数)。当然,它可以用像\frac般的有理数的近似值表示。π的数字序列被認為是随机分布的,有一种统计上特别的随机性,但至今未能证明。此外,π还是一个超越数——它不是任何有理数系数多项式的根。由於π的超越性质,因此不可能用尺规作图解化圆为方的问题。 几个文明古国在很早就需要计算出π的较精确的值以便于生产中的计算。公元5世纪时,南朝宋数学家祖冲之用几何方法将圆周率计算到小数点后7位数字。大约同一时间,印度的数学家也将圆周率计算到小数点后5位。历史上首个π的精确无穷级数公式(即π的莱布尼茨公式)直到约1000年后才由印度数学家发现。在20和21世纪,由于计算机技术的快速发展,借助计算机的计算使得π的精度急速提高。截至2015年,π的十进制精度已高达1013位。当前人类计算π的值的主要原因为打破记录、测试超级计算机的计算能力和高精度乘法算法,因为几乎所有的科学研究对π的精度要求都不会超过几百位。 因为π的定义中涉及圆,所以π在三角学和几何学的许多公式,特别是在圆形、椭球形或球形相關公式中广泛应用。由于用於特征值这一特殊作用,它也在一些数学和科学领域(例如数论和统计中计算数据的几何形状)中出现,也在宇宙学,热力学,力学和电磁学中有所出现。π的广泛应用使它成为科学界内外最广为人知的常数之一。人们已经出版了几本专门介绍π的书籍,圆周率日(3月14日)和π值计算突破记录也往往会成为报纸的新闻头条。此外,背诵π值的世界记录已经达到70,000位的精度。.
查看 亚纯函数和圓周率
全纯函数
全纯函数(holomorphic function)是複分析研究的中心对象;它们是定义在複平面C的开子集上的,在複平面C中取值的,在每点上皆複可微的函数。这是比实可微强得多的条件,暗示著此函数无穷可微并可以用泰勒级数來描述。 解析函数(analytic function)一词经常可以和“全纯函数”互相交换使用,虽然前者有几个其他含义。 全纯函数有时称为正则函数。在整个複平面上都全纯的函数称为整函数(entire function)。「在一点a全纯」不仅表示在a可微,而且表示在某个中心为a的複平面的开邻域上可微。双全纯(biholomorphic)表示一个有全纯逆函数的全纯函数。.
查看 亚纯函数和全纯函数
皮卡定理
卡定理是两个不同的数学定理的泛称,由法国数学家埃米爾·皮卡证明。这两个定理都涉及解析函数的值域。.
查看 亚纯函数和皮卡定理
类数公式
在数论中,类数公式涉及了许多重要的不变量,是数域到其特殊的戴德金zeta函数赋值。.
查看 亚纯函数和类数公式
约瑟夫·刘维尔
约瑟夫·刘维尔(Joseph Liouville,)是19世纪的法国数学家,生于加来海峡省的圣奥梅尔。刘维尔一生从事数学、力学和天文学的研究,涉足广泛,成果丰富,尤其对双周期椭圆函数、微分方程边值问题、数论中代数数的丢番图逼近问题和超越数有深入研究。刘维尔构造了所谓的“刘维尔数”并证明了其超越性,是第一个证实超越数的存在的人。.
查看 亚纯函数和约瑟夫·刘维尔
留数
在复分析中,留数是一个正比于一个亚纯函数某一奇点周围的路径积分的复数。(更一般地,对于任何除去离散点集之外全纯的函数 f: \mathbb \setminus \ \rightarrow \mathbb都可以计算其留数,即便是离散点集中含有本质奇点)留数可以是很容易计算的,一旦知道了留数,就可以通过留数定理来计算更复杂的路径积分。.
查看 亚纯函数和留数
狄利克雷级数
在数学中,狄利克雷级数是如下形式的无穷级数: 其中s是一个复数,an是一个复数列。 狄利克雷级数在解析数论中有重要的地位。黎曼ζ函数和狄利克雷L函数都可以用狄利克雷级数来定义。有猜测所有的狄利克雷级数组成塞尔伯格类函数都满足广义黎曼猜想。狄利克雷级数的名称来源于数学家約翰·彼得·狄利克雷。.
查看 亚纯函数和狄利克雷级数
狄利克雷η函数
在数学的解析数论领域,狄利克雷η函数定义为: 其中 ζ 是黎曼ζ函數。但η函数也用常来定义黎曼ζ函數。 对实部为正数的复数s,也可定义为狄利克雷级数表达式形式: 表达式仅当实部为正数时收敛。对任意复数,该表达式是一个阿贝尔和,可定义为一个整函数,并由此可知ζ函數是一个极点在s.
查看 亚纯函数和狄利克雷η函数
解析数论
解析数论(analytic number theory),為數論中的分支,它使用由数学分析中發展出的方法,作为工具,来解决数论中的问题。它首次出現在數學家狄利克雷在1837年導入狄利克雷L函數,來証明狄利克雷定理。解析数论的成果中,較廣為人知的是在質數(例如質數定理及黎曼ζ函數)及(例如哥德巴赫猜想及華林問題)。.
查看 亚纯函数和解析数论
黎曼球面
数学上,黎曼球面是一种将複數平面加上一个无穷远点的扩张,使得下面这类公式至少在某种意义下有意义 它由19世纪数学家黎曼而得名。也称为.
查看 亚纯函数和黎曼球面
黎曼-罗赫定理
黎曼–罗赫定理(Riemann–Roch theorem)是数学中的一个重要工具,在复分析和代数几何中的应用尤为广泛。利用该定理,可计算具有指定零点与极点的亚纯函数空间的维数。它将具有纯拓扑亏格 g 的连通紧黎曼曲面上的复分析以某种方式可转换为纯代数设置。 此定理最初是黎曼不等式,对黎曼曲面的确定形式由黎曼早逝的学生古斯塔·罗赫于1850年代证明。随后推广到代数曲面,高维代数簇,等等。.
查看 亚纯函数和黎曼-罗赫定理
辐角原理
在复分析中,辐角原理(Argument principle)或称柯西辐角原理(Cauchy's argument principle)说如果 f(z) 是在某个围道 C 上以及内部一个亚纯函数,且 f 在 C 上没有零点或极点,则下列公式成立 这里 N 与 P 分别表示 f(z) 在围道 C 内部的零点与极点个数,每个零点计重数,极点计阶数。定理的陈述假设围道 C 是简单的,即没有自交,以及它是逆时针方向定向的。 更一般地,假设 C 是一条曲线,逆时针方向定向,在复平面中一个开集 Ω 中可缩为一点。对每个 z ∈ Ω,令 n(C,z) 是 C 绕点 z 的卷绕数。则 这里第一个求和对 f 所有零点 a 进行并计重数,第二个求和在 f 的所有极点 b 上进行。.
查看 亚纯函数和辐角原理
赫尔维茨ζ函数
赫尔维茨ζ函数(Hurwitz zeta function)定义如下 其中q、s都是复数,并且有Re(q)>0,Re(s)>0 对于给定的q,s,此函数可以扩展到 s≠1的亚纯函数.
查看 亚纯函数和赫尔维茨ζ函数
除子
子是代数几何中的一个重要概念。在黎曼面X上,它可以简单的定义为X上的点的(整系数)形式和, D.
查看 亚纯函数和除子
极点 (复分析)
亚纯函数的极点是一种特殊的奇点,它的表现如同z-a.
杨乐
杨乐(),中国数学家,中国科学院院士,华罗庚数学奖得主,江苏南通人。.
查看 亚纯函数和杨乐
格蘭迪級數
格蘭迪級數(Grandi's series),即1 − 1 + 1 − 1 + …,是在1703年由意大利數學家發表的,後來荷蘭數學家丹尼爾·伯努利和瑞士數學家萊昂哈德·歐拉等人也都曾研究過它。格蘭迪級數寫作 \sum_^ (-1)^n 它是一個發散級數,也因此在一般情況下,這個無窮級數是沒有和的。但若對该發散級數進行一些特別的求和處理時,就會有特定的“和”出現。格蘭迪級數的歐拉和和切薩羅和均為 \frac。 格蘭迪級數与级数1 − 2 + 3 − 4 + …有紧密的联系。欧拉将这两个级数当作的特例(其中n为任意自然数),这个级数既直接扩展了,他在巴塞尔问题上所做的工作,同时也引出了现在所知的狄利克雷η函数和黎曼ζ函数。.
查看 亚纯函数和格蘭迪級數
正规族
在数学中,特别是应用于复分析,一个正规族(normal family)是连续函数的一个预紧族。非正式地讲,这意味着这一族中的函数不能扩展得太广;它们以一种相对“紧致”地方式集中在一起。理解函数空间中的紧子集是有广泛意义的,因为它们通常自然是无穷维的。 更正式地,定义在某个完备度量空间 X 上取值于另一个完备度量空间 Y 的连续函数 f 的一个集合(有时称为族) F 称为正规的,如果 F 中每个函数序列包含一个子序列紧收敛到一个从 X 到 Y 的连续函数。.
查看 亚纯函数和正规族
本质奇点
在复分析中,一个函数的本质奇点(Essential Singularity)又称本性奇点,是奇点中的“嚴謹”的一类。函数在本质奇点附近会有“极端”的行为。 粗略来说,对复平面 C 上的给定的开子集 U,以及 U 中的一点 a,亚纯函数 f: U\ → C 在 a 处有本质奇点当且仅当它不是极点也不是可去奇点。 例如,函数 f(z).
查看 亚纯函数和本质奇点
无穷
無窮或無限,來自於拉丁文的「infinitas」,即「沒有邊界」的意思。其數學符號為∞。它在科學、神學、哲學、數學和日常生活中有著不同的概念。通常使用這個詞的時候並不涉及它的更加技術層面的定義。 在神學方面,根據書面記載無窮這個符號最早被用於某些秘密宗教,通常代表人類中的神性,而書寫此符號時兩圓的不對等代表人神間的差距,例如神學家邓斯·司各脱(Duns Scotus)的著作中,上帝的無限能量是運用在無約束上,而不是運用在無限量上。在哲學方面,無窮可以歸因於空間和時間。在神學和哲學兩方面,無窮又作為無限,很多文章都探討過無限、絕對、上帝和芝諾悖論等的問題。 在數學方面,無窮與下述的主題或概念相關:數學的極限、阿列夫數、集合論中的類、、羅素悖論、超實數、射影幾何、擴展的實數軸以及絕對無限。在一些主題或概念中,無窮被認為是一個超越邊界而增加的概念,而不是一個數。.
查看 亚纯函数和无穷
拉普拉斯方法
在数学上,以皮埃尔-西蒙·拉普拉斯命名的拉普拉斯方法是用于得出下列积分形式的近似解的方法: 其中的 ƒ(x) 是一個二次可微函数, M 是一個很大的數,而積分邊界點 a 與 b 則允許為無限大。此外,函數 ƒ(x) 在此積分範圍內的 全域極大值 所在處必須是唯一的並且不在邊界點上。則它的近似解可以寫為 其中的 x0 為極大值所在處。這方法最早是拉普拉斯在 (1774, pp.
查看 亚纯函数和拉普拉斯方法
亦称为 亚纯。