目录
加法器
在电子学中,加法器(adder)是一种用于执行加法运算的数字电路部件,是构成电子计算机核心微处理器中算术逻辑单元的基础。在这些电子系统中,加法器主要负责计算地址、索引等数据。除此之外,加法器也是其他一些硬件,例如:二进制数乘法器的重要组成部分。 尽管可以为不同计数系统设计专门的加法器,但是由于数字电路通常以二进制为基础,因此二进制加法器在实际应用中最为普遍。在数字电路中,二进制数的减法可以通过加一个负数来间接完成。为了使负数的计算能够直接用加法器来完成,计算中的负数可以使用二补数(补码)来表示,具体的细节可以参考数字电路相关的书籍。.
查看 乘法器和加法器
运算放大器
运算放大器(Operational Amplifier,簡稱OP、OPA、op-amp、运放)是一种直流耦合,差模(差動模式)輸入、通常為單端輸出(Differential-in, single-ended output)的高增益(gain)電壓放大器。在这种配置下,运算放大器能产生一个比输入端电势差大数十万倍的输出电势(对地而言)。因为刚开始主要用于加法,減法等類比运算电路中,因而得名。 通常使用運算放大器時,會將其輸出端與其反相輸入端(inverting input node)連接,形成一負反馈組態。原因是運算放大器的電壓增益非常大,範圍從數百至數萬倍不等,使用負回授方可保證電路的穩定運作。但是這並不代表運算放大器不能連接成正反馈組態,相反地,在很多需要產生震盪訊號的系統中,正反饋組態的運算放大器是很常見的組成元件。 运算放大器有许多的規格参数,例如:低频增益、单位增益频率(unity-gain frequency)、相位邊限(phase margin)、功耗、输出摆幅、共模抑制比、电源抑制比、共模输入范围(input common mode range)、轉動率(slew rate)、输入偏移電壓(input offset voltage,又譯:失调电压)及雜訊等。 目前運算放大器廣泛應用於家電,工業以及科學儀器領域。一般用途的積體電路運算放大器售價不到一人民币,而現在運算放大器的設計已經非常成熟,輸出端可以直接短路到系統的接地端而不至於產生短路電流破壞元件本身。.
查看 乘法器和运算放大器
逻辑综合
在集成电路设计中,邏輯合成(logic synthesis)是所设计数字电路的高抽象级描述,经过布尔函数化简、优化后,转换到的逻辑门级别的电路连线网表的过程。.
查看 乘法器和逻辑综合
指令管線化
指令管線化(Instruction pipeline)是為了讓計算機和其它數位電子裝置能夠加速指令的通過速度(單位時間內被執行的指令數量)而設計的技術。 管線在處理器的內部被組織成層級,各個層級的管線能半獨立地單獨運作。每一個層級都被管理並且鏈接到一條“鏈”,因而每個層級的輸出被送到其它層級直至任務完成。 處理器的這種組織方式能使總體的處理時間顯著縮短。 未管線化的架構產生的效率低,因為有些CPU的模組在其他模組執行時是閒置的。管線化雖並不會完全消除CPU的閒置時間,但是能夠讓這些模組並行運作而大幅提升程式執行的效率。 但並不是所有的指令都是獨立的。在一條簡單的管線中,完成一個指令可能需要5層。如右圖所示,要在最佳性能下運算,當第一個指令被執行時,這個管線需要運行隨後4條獨立的指令。如果隨後4條指令依賴於第一條指令的輸出,管線控制邏輯必須插入延遲時脈周期到管線內,直到依賴被解除。而轉發技術能顯著減少延時。憑藉多個層,雖然管線化在理論上能提高效能,優勝於無管線的內核(假設時脈也因應層的數量按比例增加),但事實上,許多指令碼設計中並不會考慮到理想的執行。.
查看 乘法器和指令管線化