徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

Ρ介子

指数 Ρ介子

在粒子物理學中,ρ介子是一種壽命短的重子,它的同位旋三重態是由、及所表示。除了π介子及K介子,ρ介子是最輕的強相互作用粒子,三種態的質量都大概在770 MeV左右。及間應該有一個小的質量差,是由粒子自身的電磁能所造成的,同時輕夸克質量所造成的同位旋破缺也會帶來一點的質量差;然而,現時的實驗指出這樣的質量差差額上限為0.7 MeV。 ρ介子的壽命很短,其衰變寬度約為145 MeV,還有很奇怪的一點是,ρ介子的共振寬度並不能用布萊特-維格納分佈(Breit-Wigner distribution)來描述。ρ介子主衰變模式的產物為一對π介子,其分支比達99.9%。 在重子的德·魯胡拉-喬吉-格拉肖描述(De Rujula-Georgi-Glashow description)中,ρ介子可被視為夸克與反夸克的束縛態,同時也是π介子的受激版本。跟π介子不一樣的是,ρ介子的自旋j.

23 关系: AdS/CFT卡魯扎-克萊因理論反德西特空間同位旋宇稱不变质量底數 (粒子物理學)弦理論强相互作用味 (粒子物理學)光速粲数粒子物理學總角動量量子數预期寿命規範對稱规范玻色子重子量子色動力學自发对称破缺電荷共軛對稱K介子

AdS/CFT

#重定向 AdS/CFT对偶.

新!!: Ρ介子和AdS/CFT · 查看更多 »

卡魯扎-克萊因理論

物理學中,卡魯扎-克萊因理論(Kaluza–Klein theory,有時簡稱為KK theory) 是一個試圖統一重力與電磁兩大基本力的理論模型。此理論最初由數學家西奧多·卡魯扎於1921年所發表。他將廣義相對論推廣到五維的時空。 所得方程式可以分成好幾組方程式,其中一個與等價於愛因斯坦場方程式,另外一組方程式則等價於描述電磁場的馬克士威方程組。 此外,還多出一個純量場——五維度規張量之分量 g_,其對應粒子稱之為「輻子(暫譯)」(radion)。.

新!!: Ρ介子和卡魯扎-克萊因理論 · 查看更多 »

反德西特空間

數學與物理學中,一個n維反德西特空間(Anti-de Sitter space),標作AdSn為一最大對稱的勞侖茲流形,具有負常數的純量曲率。其為的勞侖茲類比,一如閔考斯基空間與分別為歐幾里得空間與橢圓空間的類比。 反德西特空間最知名的應用是在AdS/CFT對偶。「德西特」是以威廉·德西特(1872–1934)為名,他與阿爾伯特·愛因斯坦於1920年代一同研究宇宙中的時空結構。 以廣義相對論的語言來說,反德西特空間為愛因斯坦場方程式的最大對稱真空解,其帶有負的(吸引性)的宇宙常數\Lambda,對應到負的真空能量密度與正壓力。 數學中,反德西特空間有時更廣義地定義為一個具有任意的空間。物理學的情形中,一維類時維度才有意義。由於標記習慣的不同,可寫作或。.

新!!: Ρ介子和反德西特空間 · 查看更多 »

同位旋

同位旋(Isospin),为与强相互作用相关的量子数。1932年,海森堡为解释新发现中子的对称性而引入同位旋。对于强力相同而电荷不同的粒子,可以看作是相同粒子处在不同的电荷状态,我们用同位旋来描述这种状态。同位旋并不是自旋,也不具有角动量的单位。它是无量纲的一个物理量。之所以叫做“同位旋”,只是因为其数学描述与自旋很类似。 在强相互作用过程中,同位旋守恒,但在弱相互作用、电磁相互作用过程中,同位旋不一定守恒。强子的同位旋反映了组成强子的上夸克和下夸克之间的对称性。 同位旋守恒是味守恒的一种。 Category:味量子數.

新!!: Ρ介子和同位旋 · 查看更多 »

宇稱

在量子力學中,宇稱被描述成宇稱變換中的量,以P (Parity) 表示。宇稱變換(又稱宇稱倒裝),是一個在一個三維座標系中其中一維的翻轉(變換),在三維空間之內,它也可以是一個在x, y, z 軸中同時進行的變換(點反演) 因為宇稱變換會將一個現象轉化為其的鏡像,所以宇稱變換也可以被形容成一個測試左右手座標系的物理現象。在宇稱變換之中,假設變換是在右手座標系,這樣的變換在左手座標系看來就可以被認為是一個身分轉換,反之亦然。 大部分的標準模型在宇稱底下,都呈現宇稱對稱,但弱交互作用卻會破壞這種對稱性。 在任何一維的三維座標系下,P的矩陣的行列式.

新!!: Ρ介子和宇稱 · 查看更多 »

不变质量

不变质量(invariant mass)或称内秉质量(intrinsic mass)、固有质量(proper mass),亦常简称为质量,指的是一个物体或一个物体系统由总能量和动量构成的在所有参考系下都相同的一个洛仑兹不变量。当这个系统作为整体保持静止时,不变质量等于系统的总能量除以光速的平方,这也等于这个系统在一个与之相对静止的秤上称得的质量。如果系统由一个单一粒子组成,不变质量也称作这个粒子的静止质量。 由于一个孤立系统的质心总保持匀速直线运动,因此观察者总可以选择这样一个参考系,使系统在这一参考系中的总动量为零,即相对这个参考系为静止。这样的参考系称作质心系,这时系统的不变质量就等于系统的总能量除以光速的平方。这个於质心系下的总能量,可以被看作是系统在不同惯性系下可能被观测到所具有能量的“最小值”。 在多粒子系统的情形下,质心系中的粒子彼此之间可能会存在相对运动,并有可能存在一种或多种基本相互作用。这时粒子的动能和力场的势能会增大系统的总能量,使之大于所有粒子的静止质量之和,这部分能量也对系统的不变质量有贡献。.

新!!: Ρ介子和不变质量 · 查看更多 »

底數 (粒子物理學)

#重定向 底數 (物理學).

新!!: Ρ介子和底數 (粒子物理學) · 查看更多 »

弦理論

弦理論,又稱弦論,是发展中理論物理學的一支,结合量子力学和广义相对论为万有理论。弦理論用一段段“能量弦線”作最基本單位以说明宇宙里所有微观粒子如電子、夸克、微中子都由這一維的“能量線”所組成;換而言之,弦論主張「弦」以不同的振動模式對應到自然界的各種基本粒子。 較早時期所建立的粒子學說則是認為所有物質是由零維的點粒子所組成,也是目前廣為接受的物理模型,也很成功的解釋和預測相當多的物理現象和問題,但是此理論所根據的粒子模型卻遇到一些無法解釋的問題。比較起來,弦理論的基礎是波動模型,因此能夠避開前一種理論所遇到的問題。更深的弦理論學說不只是描述弦狀物體,還包含了點狀、薄膜狀物體,更高維度的空間,甚至平行宇宙。弦理論目前尚未能做出可以實驗驗證的準確預測。.

新!!: Ρ介子和弦理論 · 查看更多 »

强相互作用

强相互作用是作用于强子之间的力,是所知四种宇宙间基本作用力最强的,也是作用距离第二短的(大约在 10-15 m 范围内,比弱交互作用的範圍大)。另外三种相互作用分别是引力、电磁力及弱相互作用。核子间的核力就是强相互作用。它抵抗了质子之间的强大的电磁力,维持了原子核的稳定。强相互作用也將夸克基本粒子結合成為質子及中子等強子,這也是組成大部份物質的粒子。而且一般質子或中子裡,大部份的質能是以强相互作用場能量的形式存在,夸克只提供了1%的質能。 强相互作用可以在二個地方看到:較大的尺度(約1至3飛米)下,强相互作用將質子及中子結合成為原子的原子核,較小的尺度(約0.8飛米,約為核子的尺寸)下,强相互作用將夸克結合,成為質子、中子或其他強子。强相互作用的作用力非常強,大到束縛一個夸克的能量可以轉換為新的夸克對的質量,强相互作用的這個性質稱為夸克禁閉。 强相互作用是唯一強度不會隨距離減小的作用力,但因為夸克禁閉,夸克會限制和其他夸克在一起,形成的強子之間會有殘留的强相互作用,也稱為核力,核力會隨距離而迅速減少。撞擊原子核釋放的部份束縛能和產生的核力有關,而核力也用在核能及核融合式的核武器中。 强相互作用一般認為是由膠子傳遞的,膠子會在夸克、反夸克及其他膠子之間交換。膠子會帶有色荷,色荷和人眼可見的顏色完全沒有關係,色荷類似電荷,但色荷有六種(紅、綠、藍、反紅、反綠、反藍),因此會形成不同的力,有不同的規則,在量子色動力學(QCD)中有描述,這也是夸克-膠子交互作用的基礎。吳秀蘭等科學家對膠子發現有很大貢獻的科學家,在1995年因此获得了欧洲物理学会髙能和粒子物理奖。 在大爆炸後,電弱時期時,電弱交互作用和强相互作用分離,統一弱交互作用和電磁交互作用的電弱統一理論已經獲得實驗證實。科學家進一步預期有一個大統一理論可以統一電弱交互作用及强相互作用,現今有許多是大統一理論的理論,第一個是哈沃德·乔吉和谢尔登·格拉肖于1974年提出了最早的SU(5)大统一理论,但和實驗不合,其他的理論有SO(10)模型、,但還沒有一個是廣為科學家接受,且有實驗證實的理論,而且許多大統一理論都預言質子衰變,但目前也還沒有實驗支持,大統一理論也還是未解決的物理學問題之一。.

新!!: Ρ介子和强相互作用 · 查看更多 »

味 (粒子物理學)

在粒子物理學中,味或風味(英文︰Flavour)是基本粒子的一種量子數。在量子色動力學中,味是一種總體對稱。另一方面,在電弱理論中,這種對稱被打破,因此存在味變過程,例如夸克衰變或中微子振盪。.

新!!: Ρ介子和味 (粒子物理學) · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

新!!: Ρ介子和光速 · 查看更多 »

是國際單位制中時間的基本單位 ,符號是s。有時也會借用英文缩写標示為sec。秒在英文裡的原始詞義是計算小時的六十分之一(分鐘)後,再計算六十分之一。在西元1000至1960年之間,秒的定義是平均太陽日的1/86,400(在一些天文及法律的定義中仍然適用)。在1960至1967年之間,定義為1960年地球自轉一周時間的1/86,400 ,現在則是用原子的特性來定義。秒也可以用機械鐘、電子鐘或原子鐘來計時。 國際單位制詞頭經常與秒結合以做更細微的劃分,例如ms(毫秒,千分之一秒)、µs(微秒,百萬分之一秒)和ns(奈秒,十億分之一秒)。雖然國際單位制詞頭雖然也可以用於擴增時間,例如ks(千秒)、Ms(百萬秒)和Gs(十億秒),但實際上很少這樣子使用,大家都還是習慣用60進位的分、時和24進位的日做為秒的擴充。 秒不但是國際單位制中時間的基本單位,也是公分-克-秒制、米-公斤-秒制、米-公噸-秒制及英制單位下的時間基本單位。.

新!!: Ρ介子和秒 · 查看更多 »

粲数

粲数(Charm,符號 C)是一個味量子數,用以表示粒子中粲夸克()與反粲夸克()的數量差異: 傳統上,味量子數的正負號與帶有對應味的夸克電荷同號。因此,有著電荷值 Q + 的粲夸克之粲数為 +1。反粲夸克則有相反的電荷值,而其粲数 C 則為 −1。 粲数在强相互作用與电磁相互作用下守恆,然而在弱相互作用下則不守恆(參見卡比博-小林-益川矩阵)。對於第一階弱衰變,亦即僅有一個夸克衰變的過程下,粲数僅能改變1 ()。由於第一階過程比第二階過程(有著二個夸克衰變)更為常見,這可作為弱衰變的近似。.

新!!: Ρ介子和粲数 · 查看更多 »

粒子物理學

粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一個物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。.

新!!: Ρ介子和粒子物理學 · 查看更多 »

總角動量量子數

量子力學中,總角動量量子數為一次原子粒子之總角動量的本徵量子數。 總角動量j為軌域角動量ℓ 與自旋角動量s的向量和: 相应的量子數即為總角動量量子數j。其數值為一有限範圍,每次變動值為1: 其中ℓ為角量子數(軌域角動量的本徵值),而s為自旋量子數(自旋角動量的本徵值)。 總角動量向量j與總角動量量子數j的關係為: 向量的z投影為 其中mj為次要總角動量量子數(secondary total angular momentum quantum number),其值介於−j與+j之間,每次變動值為1;如此產生了2j + 1個不同值的mj.

新!!: Ρ介子和總角動量量子數 · 查看更多 »

预期寿命

平均寿命、生命期望或預期壽命(life expectancy),指生物群体中衡量单一生命存活平均长度的统计量。預期壽命最常用的測量方法是自出生起算(Life expectancy at birth,LEB),也常以不同性別、不同年齡去做統計。.

新!!: Ρ介子和预期寿命 · 查看更多 »

規範對稱

#重定向 规范场论.

新!!: Ρ介子和規範對稱 · 查看更多 »

规范玻色子

规范玻色子是传递基本相互作用的媒介粒子,它们的自旋都为整数,属于玻色子,它们在粒子物理学的标准模型内都是基本粒子。 规范玻色子包括:.

新!!: Ρ介子和规范玻色子 · 查看更多 »

重子

重子(Baryon)是一個現代粒子物理學名詞,在標準模型理論中,「重子」這一名詞是指由三个夸克(或者三个反夸克组成的「反重子」)组成的複合粒子。在這理論中它是強子的一類。值得注意的是,因為重子屬於複合粒子,所以「不是」基本粒子。最常见的重子有組成日常物質原子核的质子和中子,合称为核子。其它重子中,有比这两種粒子更重的粒子,所谓的超子。重子这个称呼是指其质量相对重于轻子和介于两者之间的介子起的。 重子是强相互作用的费米子,也就是说它们遵守费米-狄拉克统计和泡利不相容原理,它们通过组成它们的夸克参加强相互作用。同时它们也参加弱相互作用和引力。带电荷的重子也参加电磁力作用。 重子与由一个夸克和一个反夸克组成的介子一起被合称为强子。强子是所有强相互作用的粒子的总称。 质子是唯一独立稳定的重子。中子假如不与其它中子或者质子一起组成原子核的话就不會稳定,並產生衰变。.

新!!: Ρ介子和重子 · 查看更多 »

量子色動力學

量子色动力学(Quantum Chromodynamics,简称QCD)是一个描述夸克胶子之间强相互作用的标准动力学理论,它是粒子物理标准模型的一个基本组成部分。夸克是构成重子(质子、中子等)以及介子(、等)的基本单元,而胶子则传递夸克之间的相互作用,使它们相互结合,形成各种核子和介子,或者使它们相互分离,发生衰变等。多年来量子色动力学已经收集了庞大的实验证据。 量子色动力学是规范场论的一个成功运用,它所对应的规范群是非阿贝尔的SU(3)群,群量子数被称为“颜色”或者“色荷”。每一种夸克有三种颜色,对应着SU(3)群的基本表示。胶子是作用力的传播者,有八种,对应着SU(3)群的伴随表示。这个理论的动力学完全由它的SU(3)规范对称群决定。 量子色动力学享有2种特有的属性:.

新!!: Ρ介子和量子色動力學 · 查看更多 »

自发对称破缺

自發對稱破缺(spontaneous symmetry breaking)是某些物理系統實現對稱性破缺的模式。當物理系統所遵守的自然定律具有某種對稱性,而物理系統本身並不具有這種對稱性,則稱此現象為自發對稱破缺。這是一種自發性過程(spontaneous process),由於這過程,本來具有這種對稱性的物理系統,最終變得不再具有這種對稱性,或不再表現出這種對稱性,因此這種對稱性被隱藏。因為自發對稱破缺,有些物理系統的運動方程式或拉格朗日量遵守這種對稱性,但是最低能量解答不具有這種對稱性。從描述物理現象的拉格朗日量或運動方程式,可以對於這現象做分析研究。 對稱性破缺主要分為自發對稱破缺與明顯對稱性破缺兩種。假若在物理系統的拉格朗日量裏存在著一個或多個違反某種對稱性的項目,因此導致系統的物理行為不具備這種對稱性,則稱此為明顯對稱性破缺。 如右圖所示,假設在墨西哥帽(sombrero)的帽頂有一個圓球。这個圓球是處於旋轉對稱性狀態,對於繞著帽子中心軸的旋轉,圓球的位置不變。這圓球也處於局部最大引力勢的狀態,極不稳定,稍加微擾,就可以促使圓球滾落至帽子谷底的任意位置,因此降低至最小引力勢位置,使得旋轉對稱性被打破。儘管這圓球在帽子谷底的所有可能位置因旋轉對稱性而相互關聯,圓球實際實現的帽子谷底位置不具有旋轉對稱性──對於繞著帽子中心軸的旋轉,圓球的位置會改變。 大多數物質的簡單相態或相變,例如晶體、磁鐵、一般超導體等等,可以從自發對稱破缺的觀點來了解。像分數量子霍爾效應(fractional quantum Hall effect)一類的拓扑相(topological phase)物質是值得注意的例外。.

新!!: Ρ介子和自发对称破缺 · 查看更多 »

電荷共軛對稱

物理學中, 電荷共軛對稱或稱C對稱(C-symmetry)表示物理定律在電荷共軛轉換中的對稱性。電磁作用、重力作用、強作用等現象都遵守C對稱,但弱作用則違反C對稱。.

新!!: Ρ介子和電荷共軛對稱 · 查看更多 »

K介子

在粒子物理學中,K介子(Kaon,標記為帶正電的K介子從前被分開叫做τ+及θ+,因為直至1960年代前K+一直被視為兩種粒子。見上面的宇稱不守恆))是帶有奇異數這一量子數的四種介子的任一種。在夸克模型中,我們知道它們含有一個奇夸克(或其反夸克),及一個上或下夸克的反夸克(或其夸克)。 自從它們在1947年被發現之後,K介子為基礎相互作用的性質提供了大量的資料。在建立粒子物理學標準模型基礎的過程中,它們有着不可或缺的角色,例如強子的夸克模型及夸克混合的理論(後者於2008年被諾貝爾物理學獎肯定)。在人類對基礎守恆定律的了解中,K介子也有着傑出的貢獻:CP破壞(一種造成大家所見的宇宙物質-反物質失衡的現象)的發現在1980年被諾貝爾物理學獎肯定,這種現象就是在K介子系統被發現的。.

新!!: Ρ介子和K介子 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »