目录
一般线性群
在數學中,n 次一般線性群是 n×n 可逆矩陣的集合,和與之一起的普通矩陣乘法運算。這形成了一個群,因為兩個可逆矩陣的乘積也是可逆矩陣,而可逆矩陣的逆元還是可逆矩陣。叫這個名字是因為可逆矩陣的縱列是線性無關的,因此它們定義的向量/點是在一般線性位置上的,而在一般線性群中的矩陣把在一般線性位置上的點變換成在一般線性位置上的點。 为了使定义更明确,必需規定哪類對象可以成為矩陣的元素。例如,在 R(實數集)上的一般線性群是實數的 n×n 可逆矩陣的群,并指示為 GLn(R)或 GL(n, R)。 更一般的說,在任何域 F(比如複數集)或環 R(比如整數集的環)上的 n 次一般線性群是帶有來自 F(或 R)的元素的 n×n 可逆矩陣的群,帶有矩陣乘法作為群運算。這裡的環被假定為符合結合律和有乘法單位元的。典型符號是 GLn(F)或 GL(n, F),如果域是自明的也可簡寫為 GL(n)。 更一般的說,向量空間的一般線性群 GL(V)仍是抽象自同構群,不必需寫為矩陣。 '''特殊線性群''',寫為 SL(n, F)或 SLn(F),是由行列式.
查看 SL₂(ℝ)和一般线性群
庞加莱半平面模型
在非欧几里得几何中,庞加莱半平面模型(Poincaré half-plane model)是赋有庞加莱度量的上半平面,这是二维双曲几何的一个模型。 它以昂利·庞加莱命名,但最初是贝尔特拉米(Eugenio Beltrami)发现的,他用这个模型与克莱因模型以及庞加莱圆盘模型(属于黎曼)证明了双曲几何与欧几里得几何的相容性等价(equiconsistent)。圆盘模型与半平面模型在共形映射下是等价的。.
庞加莱度量
数学中,庞加莱度量(Poincaré metric),以昂利·庞加莱命名,描述了一个常负曲率二维曲面的度量张量。它是双曲几何和黎曼曲面中广为使用的自然度量。 在二维双曲几何中有三种广泛使用的等价表述。其中一个是庞加莱半平面模型,在上半平面上定义一个双曲空间模型。庞加莱圆盘模型在单位圆盘上定义了一个双曲空间模型。圆盘与上半平面通过一个共形映射联系,等距由莫比乌斯变换给出。第三个表述是在穿孔圆盘上,通常表示为与 q-类似(Q-analog)的关系,这种形式不同于前两种。.
查看 SL₂(ℝ)和庞加莱度量
伴随表示
在數學中,一個李群 G 的伴隨表示(adjoint representation)或伴隨作用(adjoint action)是 G 在它自身的李代數上的自然表示。這個表示是群 G 在自身上的共軛作用的線性化形式。.
查看 SL₂(ℝ)和伴随表示
圓周率
圓周率是一个数学常数,为一个圆的周长和其直径的比率,约等於3.14159。它在18世纪中期之后一般用希腊字母π指代,有时也拼写为“pi”()。 因为π是一个无理数,所以它不能用分数完全表示出来(即它的小数部分是一个无限不循环小数)。当然,它可以用像\frac般的有理数的近似值表示。π的数字序列被認為是随机分布的,有一种统计上特别的随机性,但至今未能证明。此外,π还是一个超越数——它不是任何有理数系数多项式的根。由於π的超越性质,因此不可能用尺规作图解化圆为方的问题。 几个文明古国在很早就需要计算出π的较精确的值以便于生产中的计算。公元5世纪时,南朝宋数学家祖冲之用几何方法将圆周率计算到小数点后7位数字。大约同一时间,印度的数学家也将圆周率计算到小数点后5位。历史上首个π的精确无穷级数公式(即π的莱布尼茨公式)直到约1000年后才由印度数学家发现。在20和21世纪,由于计算机技术的快速发展,借助计算机的计算使得π的精度急速提高。截至2015年,π的十进制精度已高达1013位。当前人类计算π的值的主要原因为打破记录、测试超级计算机的计算能力和高精度乘法算法,因为几乎所有的科学研究对π的精度要求都不会超过几百位。 因为π的定义中涉及圆,所以π在三角学和几何学的许多公式,特别是在圆形、椭球形或球形相關公式中广泛应用。由于用於特征值这一特殊作用,它也在一些数学和科学领域(例如数论和统计中计算数据的几何形状)中出现,也在宇宙学,热力学,力学和电磁学中有所出现。π的广泛应用使它成为科学界内外最广为人知的常数之一。人们已经出版了几本专门介绍π的书籍,圆周率日(3月14日)和π值计算突破记录也往往会成为报纸的新闻头条。此外,背诵π值的世界记录已经达到70,000位的精度。.
查看 SL₂(ℝ)和圓周率
表示论
表示論是數學中抽象代數的一支。旨在將抽象代数结构中的元素「表示」成向量空間上的線性變換,并研究这些代数结构上的模,藉以研究結構的性質。略言之,表示論將一代數對象表作較具體的矩陣,並使得原結構中的代数运算對應到矩陣加法和矩陣乘法。此法可施於群、結合代數及李代數等多種代數結構;其中肇源最早,用途也最廣的是群表示論。設G為群,其在域F(常取複數域F.
查看 SL₂(ℝ)和表示论
极大紧子群
数学中,一个拓扑群 G 的极大紧子群 K 是一个在子空间拓扑下是紧空间的子群,且是这些子群中的极大元。 一个一般李群不一定有极大紧子群,但半单李群却一定存在,而且他们在理论中有重要地位。极大紧子群一般不是惟一的,但在相差一个共轭的意义下是惟一的——他们是本质惟一的。.
查看 SL₂(ℝ)和极大紧子群
旋量群
数学中,旋量群 Spin(n) 是特殊正交群 SO(n) 的二重覆叠,使得存在李群的短正合列: 对 n > 2, Spin(n) 单连通,从而是 SO(n) 的万有覆叠空间。作为李群 Spin(n) 及其李代数和特殊正交群 SO(n) 有相同的维数 n(n − 1)/2。 Spin(n) 可以构造为克利福德代数 Cℓ(n) 可逆元群的一个子群。Spin(n) 由所有写成个偶数个单位向量的克利福德乘积的元素生成。对应到 SO(n) 中恰是沿着垂直于这偶数个向量的超平面的反射的复合。.
查看 SL₂(ℝ)和旋量群
亦称为 PSL(2,R),PSL2(R),SL(2,R),SL2(R)。