目录
正交群
数学上,数域F上的n阶正交群,记作O(n,F),是F上的n×n 正交矩阵在矩阵乘法下构成的群。它是一般线性群GL(n,F)的子群,由 这里QT是Q的转置。实数域上的经典正交群通常就记为O(n)。 更一般地,F上一个非奇异二次型的正交群是保持二次型不变的矩阵构成的群。嘉当-迪奥多内定理描述了这个正交群的结构。 每个正交矩阵的行列式为1或−1。行列式为1的n×n正交矩阵组成一个O(n,F)的正规子群,称为特殊正交群SO(n,F)。如果F的特征为2,那么1.
查看 Pin群和正交群
旋量群
数学中,旋量群 Spin(n) 是特殊正交群 SO(n) 的二重覆叠,使得存在李群的短正合列: 对 n > 2, Spin(n) 单连通,从而是 SO(n) 的万有覆叠空间。作为李群 Spin(n) 及其李代数和特殊正交群 SO(n) 有相同的维数 n(n − 1)/2。 Spin(n) 可以构造为克利福德代数 Cℓ(n) 可逆元群的一个子群。Spin(n) 由所有写成个偶数个单位向量的克利福德乘积的元素生成。对应到 SO(n) 中恰是沿着垂直于这偶数个向量的超平面的反射的复合。.
查看 Pin群和旋量群
亦称为 Pin 群。